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Absiract: Takeuchi (1961.1963) esiablished E-optimality of Group Divisible Designs (GDDs)
with 4= 2, + 1. Much later, Cheng (1980) and Jacroux (1980, 1983) demonstrated E-optimality
property of the GDDs with n =2, A= A3+ ) of with m =2, 2y= 2, 2. The purpose of this paper
is 10 provide a unificd approach for identifying certain classes of designs as E-optimal. In the pro-
vess, we come up with a complete characterization of all E-optimal designs alaning a specific
bound for the smallest non-zero eigenvalue of 1he underlying C-matrices. This establishes E-opti-
mality of & class of Y-concurrence most balanced designs with suitable intra- and wnter-group
balancing. We also discuss the MV-optimality aspect of such designs.
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I. Introduction

Jarrett (1983) defined m-concurrence designs and studied the usefulness of 2-con-
curcence designs in searching for an upper bound for the efficiency factor of block
designs. In this paper, we are primarily concerned with the E-optimality criterion
and, among other things, we will establish E-optimality of some classes of 3-con-
cutrence designs.

Takeuchi {1961, 1963) established E-optimality of Group Divisible designs (GDDs)
with 2, =4, + 1, Much later, Cheng (1980) demonstrated E-optimality property of
the GDDs with =2, m e yu and 4, =1, + 1. Subsequently, Jacroux (1983) deduced
that the GDDs with m=2, n={v and A=A, + 2 are also E-optimal. These are all
eamples of 2-concurrence designs. Some other related papers on this topic are
Jacroux (1980, 1982), Constantine (1981) and Sathe and Bapat (1985).

In this paper, we provide a unified approach to the undersianding of the above
nown E-oplimality results and, incidentally, we come up with a complete charac-
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terization of E-optimaJ designs which attain a specific upper bound for the smalles
positive eigenvalue of the underlying C-matrices. Such designs include GDDs of the
three types mentioned above as members of a class of 3-occurrence designs wih
suitable intra- and inter-group balancing.
Section 2 contains some definitions and the relevant results from Cheng (1980
and Jacroux (1980). Section 3 presents the main result of the paper and some
les. Section 4 ins some luding remarks.

2. Prelimingries

For given b, v and k, we assume bk =ur, r an integer. Denote by D(b, v, k) ihe
class of all connected block designs for comparing v treatments using b blocks each
of size k and by N =((n)) the incidence matrix of order v x b of a block design in
D(b,v, k). Write NN’=((4;-)). A design is said (o be binary or generalized binaryil
ny=[k/v] or [k/v) +1, 1Si<v, 15j<b where [x] = largest integer not excesding
x. A design is said to be equireplicate if the replication numbers for the treatments
denoted by ry,r;, ..., 7, are all equal to r. Otherwise, it is called non-equireplicatein
which case r;) (the smallest replication number) < r. In the following, binary is 10
be und d as binary or lized binary ding as k<v or kzv. A 3-con
currence design is an equireplicate binary design for which the 1,.'s assume exacir
three distinct values. Such a design is said to be most balagced if the three distina
A-values are, in fact, three consecutive integers. An Intra- and Inter-Group Balanced
Design (1IGBBD) is a design in which the treatments are classified into a number
of groups, say ¢ groups such that the treatments in the i-th group have each the
replication number equal to r, (say) and for any two treatments i and /', 4; i
determined through the group or groups to which i and i* belong (Rao (1947)). A
{binary equireplicate) 3-concurrence most balanced 1IGBBD is similarly defined and
we aim at establishing E-optimality of such designs in D¢b,v,&).

Following Jacroux (1980), we define

a=[k/v] = [r/b),
r=la+)+b-Na, I=r-ba,

@
8 =1a+1Y+(b-Na’,
rk-0=4(v-1)+e, 0se<v-1.
Also define
C=r‘—NN%, @2
gu=rk-0+u,  h,=v(rk-0-u)/(v-2), @)
T, =kC-x(l,~J,/v), x>0, @4

where r®=diag(r), ...,7,), 1, Is the identity matrix of order v and J, i the matrixol
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order uxv formed of all 1's. We denote by 0<x,Sx;$-5x,_; the non-zero
digenvalues of C.

We now state a lemma which is needed for the sake of completeness. This is essen-
ially based on the type of reasoning initiated by Takeuchi (1961). In the following
modified form, this is to be found in Jacroux (1980). We omit the proof.

Leamma 2.1. (8) If for some x>0, T, has (i) of least one negative eigenvalue, or (ii)
ot least two eigenvalues as zero, then kx,sx.
(b) If for some L, 1,4, <0 for o suitable choice of X, say, X=Xy, then kx,;<xy.

Next we state the following propositions whose proofs are also to be found in
Jacroux {1980) and Cheng (1980) and, hence, are omitted,

Proposition 2.1. For any non-equireplicate design in D(b,u, k),
(i) kx,<gs-)=rk—=0+8-1 for k23, v24,
(i) kx s(r-1)k=1e/@w-1).

|t may be noted that the second inequality does not require the condition k23
and/or v24. Further, it holds whether or not the design is binary,
Proposition 2.2. For any equireplicate non-binary design,
kx, <851,
Proposition 2.3, For a binary equireplicate design in D(b, v, k):

(i) kx,srk—8+ Ay for all i+i’, with strict inequality when Ay # A, for some
sl £

) kxy s w(rk-8~2,)/(v=2) for all i%i", with strict inequality when
Yo+ Ap) 2(rk—0-2;)/(0-2) for some s#i, #1I'.

The following is now immediate.

Corollary 2.1. For a binary equireplicate design in D(b, v, k),

kasg, kysh, (2.5)
where
u= l":l’ﬂ Ay)y w= l"l’\:“ () 2.6)

Remark. Since g.(h,) is increasing (decreasing) in X, it is clear that for any binary
equireplicate design (recall that r(k-1)=4d(v~1)+e¢, 0se<v-1),
kx,Sg;=h; whene=0,

kx) s min(gy, hgey) when 2>0, @n
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This is because for =0, usd<w while for >0, u<8<d+1sw. Now it s
be easily seen that g; = Ay, 85 £5§v. Accordingly, (wo cases emerge, viz. ks
855 hy,, for e24v and kx;shy, ) < g, for £<{v. Moreover, for e=0, it can b
checked that g;=h; and kx, reaches this bound iff the design is a Balanced Bloct
Design (BBD).

The above propositions can now be applied to derive some classes of E-optimal
designs. The first result in this direction has been due to Takeuchi (1961, 1963) who
studied the case of kx, =g, in (2.7). We state below his result without proof.

Theorem 2.). For k=3 and vz4, a design for which kx, = gy is necessarily binary
and equireplicate, and it is E-optimal in D(b,v, k). Further, such a design Is neces
sarily either a BBD or a GDD with ;= 1, +1.

In the next section, we give the main result of this paper. This is based on a study
of kx = hy, ) in (2.7). Partial studies of this case have been made earlier by Jacrom
(1980), Cheng (1980) and Jacroux (1983).

3. Main result

We state and prove the following Theorem which gives a complete characterin.
tion of T, when kx assumes the value A4, ;. This in its turn will lead to a compiexe
characterization of the underlying E-optimal designs in D(b, v k).

‘Theorem 3.1. For given b, v and k with k=23, v24 and bk =ur, r an integer, sup.
pose 0<e< $v. Then a design for which kx,= hy,, is necessarily binary and equ-
replicate, and It is E-optimal in D(b,v, k). Further, for such a design, the resulting
T, matrix with x=h,,, necessarily assumes the form of a block diagonal matrix
with the component mairices given by

b =4y i=
(_"P« ,n)‘ i=02,...,t (say)

where the p,'s are positive integers satigfying T\ p, =1v.

Proof. First observe that >0 implies g5, <hs,,. Hence the first part of the
theorem foltows. The second part on characterization of the form of T, needs close
arguments which we develop below.

Since kx) attains the bound kg, ), it is clear that w=4+1. Suppose then tha
Aja=d+1. Then for x=u{rk - 8~ - 1)/(u- 2), using A, =8 (Jacroux, 1980) we gt

v-l-g: | .
bn=hn=—ly=—]——=1"(say), 0<r'sl

Referring to Proposition 2.3(ii), since T, is n.n.d., we must have for evary
s#l, #2,



B.X. Sinha, K.R. Shah / -concurrence balanced designs m

A4 Ay =2(rk—0-A13)/(v-2) =25 +2(e-1)/(v-2).

As 0<e<4v, this gives 2552,,+4,,<25+1 s0 that essentially A\, + 14y, =28 for
erery s21, #2. This forces £=1 and, hence, 1'=1. Further, 1,,=1,,=4 or 4,=
d2), Ay, =81 are the only possibilities (as w=4+1). Note incidentally that
L,=4, § | is equivalent t0 1, =0, ¥| where x=v(rk—8-8~1)/(v-2). As to the
dements of T, we then have the following observations:

(i) ty=1, 151S0; 1=0, &1, 1Si#i’sy;

(ii) T, is n.n.d., Ljoy bor=0 for every i, 1sigy;

(i) 4= -1 (assumed);

{iv) tgp=—1 = lgg+tyy =0 e, Lyt =0 OF by, mxl, 4= F1 for every s,
JLIR 18

Without any loss, set now 2, =1, £, = —1 for some s, &', s#5'#2. Then we im-
mediately get the following structural form of the 4x4 submatrix of T, corre-
sponding to the rows and columns numbered (1,2,5,5°):

I -1 1 -l

-1 1 -1 1
1 -1 1 -1
-1 1211
This is equivalent (up to a ion) to

5 -
(--’1 "z).
Moreover, if now f;;,.=0 for some s"#s#5'#2, then we immediately deduce

1hal £y = {yg = Loy = 0.Thus starting with the first entry ¢, of T,, we end up with
a block diagonal matrix of the form

J -7
(= 7)
Certainly this can be carried further starting with a diagonal entry nof covered by
the above submatrix and using the previous argument. This settles the claim.

Remark, The extreme cases are

a) t=1, p =iv, 1-,=(_; _j)
nd

© f=fo, p=-=p=1 T.=<

where ® = Kronecker product.
In case (a), the corresponding design is immediately identified as a GDD with
n=2, n=4v, ;=2 +2 and In case (b), we identify the resulting design as a GDD

L )ee
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with n=2, m=4v, 4;=A;+1. Earlier, Cheng (1980) and Jacroux {1983) derivd
these results using quite different arguments. This study seems to unify all the pre.
viously known results and, further, it reflects various other struciures on the natax
of such E-optimal designs. This we claborate further below.

Clearly, except for the particular cases (a) and (b) presented sbove, in all otha
cases, the off-diagonal elements of the T,-matrix will involve elements 0, ] whic,
in their turn, will determine the A;'s as assuming values 5,5+1. Thus the resuking
design is a most balanced 3-concurrence design with the following group structwe
of the v treatments.

The treatments fall into # groups with 2p, treatments in the sth group 5o tha
T} py=1v. Divide the treatments of the sth group into two seis B, fid G, ad
having p, treatments. Then G = U(G,u G,) is the set of all u treatments. As regas
the 44's we have that

Ayp=08-1 for both ii’€ G, or G, i*i’,

=3d+1 forieG;, i'e b, or the reverse,

=4 for ieG,UG;; i'e G,UGy, s#s’.
Such designs form very special subclasses of what are generally termed /ntra- o
Inter-Group Balanced Block Designs (1IGBBDs). (See Rao (1947).) In the literature,
combinatorial and constructional aspects of such designs with unequal replicatioss
have been studied quite extensively. See, for example, Adhikary (1965). Below
give an example of an E-optimal 3-concurrence IIGBBD with A;=0, 1 or 2.

Example. b=v=12, r=k=4 and
G, =(1,2), G, =(3,9),
Gy=(5), GJ =(6),
Gy=(), G,=(),
Gy =(9), Gy =(10),
Gg=(11), G = (12).
See Table 1.
It may be noted that a GDD with m=6, n=2, 1, =2, 1,31 also exists in bk
design set-up.

Table |

Blocks Treatmenis Blocks Treaments Blocks Treatments
' 14 857 s 24 912 9 s 6 51
2 14 6 8 ] 240011 10 s 61012
3 13 910 7 23 5 8 1] 78 910
4 1Y n 8 23 6 17 12 78 nR
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| Conclading remaria

Rk can be seen that the non-z¢ro cigenvalues of 7, in its most general representa-
s above are 2p), 22, ..., 2p, each with multiplicity 1. Hence the non-zero cigen-
\aves of C for such a design are given by (x+2p)/k, i=1,2,...,4, each with
wkplicity one and x/k with multiplicity v—1—f where x=u(rk— 8- 6—1)/(v-1).
from this one can construct C*, the Moore-Penrose iuverse of € and verify that
demaximum variance for a paired treatment contrast is 2ka?/x if some p, 22 and,
wervise, it Is ka?{x~'+ (x+2)7).

The above analysis leads us to the following conclusions as regards A-, D- and
Voptimality.

(1} If a GDD with n=2, 4;=A;+1 exists, it is A~, D- and MV-optimal within
2 duss of 1JGBBDs. Further, by a result of Jacroux (1983), it is MV-optimal in
e entice class D(b,u, k).

 1f the above GDD does not exist, all the others in this class are equivalent with
rard to the MV-optimality criterion. Hence, by a result of Jacroux (1983) (which
wers that the GDD with m=2, A,=4,+2 is MV-optimal in the entire class),
dese are 8ll MV-optimal in the entire class, As regards A- and D-optimality, how-
oo, the GDD with m=2, 1;=2,+2 is least preferred within this class. At any
me, GDDs of this type seem 1o be rather rare for £>2.
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