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ABSTRACT

Let D be a paturated fractional factorial desiga of the
general k: x k, X L ..x k[ factorial such that {t consfsts of
n distinct treatment combinations and it 1s capable of
providing an unbiased estimator of a subvector of m factorial
parameters under the assumption that the remaining k-m,

(k= 1E1li). factorial parameters are negligible. Such a
design will not provide an unbiased estimator of the variance
of. Suppose that D is an optimal design with respect to some
optimality criterion (e.g. d-optimality, a-optimality or e-
optimality) and it 1s desirable to sugment D with c treatment
cosblnations with the aim to estimate o’ unblasedly. The
problem then is how to select the ¢ treatmegt combinations such
that the augmented design D. retains its optimality property.
Thiz problem, in all its generality ig extremely complex. The
objective of this paper {s to provide gome insight in the
problem by providing a partial answer in the case of the 2t
factoris), using the d-optimality criterion.
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1. INTRODUCTION

It {s well known that the theory of fractional factorial
designs presents many interesting and difficult algebraic,
combinator{al and geometric problems. For a comprehensive
introduction into the subject see the book by Raktoe, Hedayat
and Federer (1981) and the numerous references mentioned in it.

The topic of augmented designs has been treated by
several authors in different contexts, e.g. Federer(1956,1961),
Banerjee and Federer(1963,1964), Gaylor and Merril(1968),
Dykstra(1971), Federer and Raghavarao(1975), Pesotan and
Raghavarao(1975), Raghavarao and Pesotan(1977) and Pesotan,
Raghavarao and Raktoe(1977).

Our motivation in tackling the augmented fractional
factorial design problem is different from the above authors,
in the sense that we start with an optimal saturated design D for
a subvector of facrorial effects and ask for a design D., which {s
obtained by augmenting D with c treatment combinations, such thar

*
2 can be estimated unbiasedly and D retains its optimality

a
property.

In Section 2, we provide the general setting for the
formulation of the augmentation problem and then we specialize to
the 2" factortal where the design matrices are simply (-1,1)-
matrices. Section 3 gives a solution of this problem for the 1K
factorial under the added assumption that the fnitial design D is
orthogonal and hence optimal in the sense of d-,a-~,and e-optimality
(see Kiefer(1960)). In Section 4 we consider a balanced {nittal
design D of the 2 factorial and solve the problem when optimal
augmentation is limited to one extra treatment combinat{ion.
Pinally, in Section 5 we provide a discussion of further work in
this area.

2. FORMULATION OF THE PROBLEM OF AUGMENTED

FRACTIONAL FACTORIAL DESIGNS

Consider the general k—l x k, X oau. X k[ factorial, kilz.

where the i-th factor has ki levels from the set K1 = {0,1,2,..)
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XI-H. Let K = K~ K]' s+ * K be the Cartestan product of the
sers Kl. With a treatment combination (1‘1,...1!) in K associate
an observation y(lllz---il)- A factorial effect will be denoted
bv At'A::...A  uith at least one of the i 20 and K e,
...\t, and the mean will be indicated by A®A®...A°.

Let Yk be the set of all ebserva(lona‘n;socizud with the
full replicate K and let PK be the set of all effects Including
the mean. Let XK - xlex,e»..oxl be the Kronecker product of real
colunwise orthogonal matrices X‘ of order k‘ with each first
cotuen entry of x‘ equal to 1. Then XK 1s 8 real columnwise

orthogonal matrix of order k = ‘llkx with the sum of the entries
-

of each column of Xl and of X besides the first {s equal to zero.
Assoclate with the observation vector XK and the column vector

Px of parameters the well known linear model:

[ 3 =X P .

Cov [‘Y - u’lk . 2.1

«l

Fros the experimenter's viewpoint the complete parametric

vector PK can be partitioned as
P, = (P' 1P I P .
K (x.;.P))‘ @.n
vhere Pl is a Nl' 1 vector of parameters to be estimated, P2 is a
Kl *1 vector of parameters not of interest and not assumed to be
mown, and P‘ is a Nl x] vector of parameters assumed to be known
(vhich without loss of generality, can be taken to be zero), such
that lSNIﬁ k, Olesk-l. and OSN‘S I(-N’-Nsk-l. Explicitly the
2
following four cases occur:
()N =k, N =N =0;
) H 1
[§8)] N =0, Nx0;
(1) N 0, N =20;
? ]
and
(iv) N 20, N = 0.
? 3

1 i
By the degree of a factorial effect A)' A: .‘.I\tt we mean

the number of nonzero exponents among (111 ...1[). A fractional
?
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factorial design, or simply, desaign {8 & collection of treatment
combfnations of X. (Note that repetitions of treatment combinations
are allowed). A design is said to be of resolution R {f sl}
factor{al effects up to degree v are estimable, where v {s the
greatest integer less than R/2, under the assumption that all
factorial effects of degree R-v and higher are zero. The designs
of resolution R have been divided into two types in the literature,
namely:

(a) R = 2r, known as designs of even resolution, and

(b) R = 2r+1, known as desigas of odd resolution,
It follows that a design of even resolution is a special case
of (i11) and an odd resolution design 19 a special case of (i),

In the formulation below we will limit ourselves to case(if)
ajnce 8 similar formulation can be done for case (iii). The
observation vector of a design D consisting of m treatment combin-
atfons will be denoted by YD and the model for YD and a given
subvector PI wvith pl parameters is read off from the full wodel
(2.1), which in case (ii) gives rise to:

E [tp] = xp,P
Cov [YD]- a’r_ . (2.3)

1f the design D is such that the rank of "m is equal to p, then:
foa mex T v aw ey 2.4
) [xmxm] Xrfn = % Yo Yo
Cov|§;| - P(;la{

We are now ready to formulate the problem of augmented
fractional factorial designs. Let D consist of m distinct
treatment combinations and let l’l in (2.3) consist of pl =
parameters. Such a design to estimate Pl is called a pafurated
factorial design. Assume that D is an optimal design relative
to a given optimality criterion (see Kiefer(1960)). Since D is
saturated the variance 0’in (2.3) cannot be estimated unbiasedly.
The problem of augmented fractional factorial designe {s to augment
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pvith c >0 treatment combinations, resulting in the design Dt,
suwch that D. retains {ts optimality property.

Obviously, this problem {n all its generality is difficule
to resolve. Below, we specfalize to the 2t factorial, where

&-x‘-xlo . ® Xl , and )(2 - [}'i] The design matrix xm of

a saturated design D relative to a given vector PI is thea a(-1,1)-
wutrix. We will also restrict the development using the criterion
of d-optimality.

3. AUGMENTED OPTIMAL FRACTIONAL 2" FACTORIAL DESIGNS

Let PI be a fired parametric vector in the 2 factorial
uder case (I1) of Section 2. Let D be a given saturated d-optimal

design relative to P‘. 1.e. det (HD) is maximum in the ¢lass D‘>
]
of all designs with p‘ distinct treatment combinations. The

problem to be conaidered now is how to augment D with c extra
*
treatment combinatfons so that the resulting design D of cardinal-

ity p.¢ ¢ s d-optimal {n the class Dp re® Write the design

D‘ a8 D‘ - DUDA‘ where DA consists of ¢ additional distinct

treatnent combinations, and let KD, xn and XD' be the design
* A .

mtrices of D'DA and D respectively. = Theproblem before us is

to select D, such that the corresponding del:(HD.) - det(xl;.)%‘)

15 maximun {n Dp ‘e

1
Now,
b 3.1
X = |- .
)&.’A

Since det (xl')xo)-o. it follows from a well known expansion that

der(x ) = det(xl')xn).det[lc + "DA“B"D’-]"BA]‘ (a.2)
Thus the maximization problem reduces to maximizing
det [‘c + xDA(x,;xD)'HcI;AJ. 6.3
for the case c=1, X, 1s a row vector x' and hence the above

expansion becomes A
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det(xy,Xp,) = dercin). [1+ 5'(xl')xb)'15]. 6.8
Since D is fixed, the maximization problem for ¢ = 1 reduces to
maximizing the acalar 5'(XI;XD)_15 and this has been considered and
illustrated by Dykstra (1971) in a regresaion context.
To make some headway {n the general problem we further sssmme
that D is an orthogonal design relative to Pl , L.e. 71'310 . ul’ ,
vhere a is a fixed constant. Notice that this assumption is
equivalent to assuming that X‘D is a8 Hadamard matrix of order LY
which in turn implies that D is d-, a-, and e-optimal. It now
follows that equation (3.3) under this addirional assumption can
be re-written as:
der(1, + u"xDAx;)A) = der(ay ), say, (.5
and the maximization problem in this setting reduces to maximizing
det(ln ) given in (3.5).
A
If ll N Az yeoo .X are the nonzero characteristic roots of XD
xl') then the ¢ characteristic roots of BD are given by a~ \& 1,

A

u_lxz + 1.0 llt +1,1,1,...,1, vhere r = rank(X, )s nin(c.pl).
A

Therefore, to maximize det(BD ), we wust maximize the produet
A

I'l (a” 1 +1) (3.6)
1=1

for all r, 1 Sr<min(c,p ). Noting that for all choices of I) N
trace (XD Xn )= p c, the maximization of the quuu:y glven

in equation (3 6) is subject to the re.trlctlonil'l Ai
Now, for a fixed r

max ro X r
r n (a A+ D= L1+1), [¢R)]
“1‘7 c | i=1 r

[

- pe
shich {s equal to [ (a 1x1 R N N
We have now to maximize the quantity givea in (3.7) for all r,
where 1<$rsmin(c,p ).

The following lemma will be useful in the sequel.
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lesss 3.1, Llet x be any non-negative real number and u and v
be any tvo non-negative integers such that w20, and u<v. Then
u v
a+Z <am . (3.8)

Proof. Follows immediately from a term by term comparison of
the binomial expansions of the two sides of (3.8).
We therefore obtain the following inequality:

r -1 t
o1 E.Li s l pc ”mn(c,p )
I~ nin(c, P, ) T } (3.9

o P)C nln(c.P‘)
s {l + uln(c.pl)]

Thus the quantity (3.7) is maximized when r = nil\(c.pl). Rence
we have established the following theorem.

Teorem 3.1. If D {s a saturated orthogonal 2% fractional
factorial design relative to P in the class ) ,then an optimal
design D. with an additional set of ¢ treatment !combinations

relative to l’l in the class Dpl te will be obtained if

rsin(c, p )}, where r = rank (X ), and the nonzero characteristic

D

roots of XDAX are all equal.
The above theorem provides only a sufficlent condition for

the existence of an optimal augmentation. In some cases the

conditions of the theorem are attainable and in some cases they

are not. We ghall show that when c<p an optimal augmentation

aluays exists. Also, when c>p &nd ¢ is a Hadamard number

(1.¢. a Hadamard matrix of ordelr ¢ exists) then an optimal

wgmentation exists.

Theorem 3.2. There exiasts an optimal asugmentation for all

e3P, .

Proof, Since c<p we have r = c. (Clearly det(xl').xm) will be

Nximem when all the c positive characteristic roots of XD XD

Pc
ue the same and equal to —'— =p Since the positive
characteristic roots of and ' are the same, it
XDA%A XDAXDA
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0

follows that dee(X: X ) will be msximized when t mpt
xn xB‘ xDAxDA 1 ¢

{.e, when the rows of xn are mutually orthogonal., Since pl
A

is a Hadamard number we can choose sny ¢ vowa of H_, a Hadamsrd

Y
matrix of order P, 88 our XD . The corresponding treatment
A

combinations DA form the desired augmeatation DA.

Theorem 3.3. If c {s & Hadamard number (i.e. a Hadasard matrix
of order ¢ exists) and ¢> |>l then an optimal augmentation exists.
Proof. In thia case the maximum given in (3.9) is obtained vhen

XT‘,AX,DA -c lvl. Thus since both ¢ and pl are Hadamard numbers
we cao choose any ] columns of “c as our design mstrix XD and
the corresponding design DA will provide the optimal A
augmentation.

Note that the case ¢=1 is {nteresting. Since xb X‘II) » pll \
A A !

it 18 clear that the addition of any treatment combination to D
will give the same value of ae:(xﬁ.xb.) whenever D is an
orthogonal design relative to l’l in the 2L factorial.

Example 3.1. Consider the 2° factorial and let D be the
orthogonal saturated resolution III design

p ={(000), (110),(101),(011)}.

Note that in this case l’I consiats of the mean and the three
main effects, The design matrix XD relative to P) is the
Hadamard matrix

1 -1 -4 AT
111 -
T 1 a1
14 1 1

Suppose the problem is Lo augment D with ¢ =3 trearment
combinations such that the resulting design D., consisting of
7 treatment combinations, is d-optimal. Then, since c<pl, .
in this case, according to Theorem 3.2 an optimal design D
can be read off from the sugmented design matrix X‘Di and it
consists of D and the treatment combinations corresponding
to any three rows of X,D.l.g. picking the first three rows of
)(D results in:
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ot - bup,, where D, ={(000),(110),(10)}. With ¢ = B
then according te Theorem 3.3, an optimal augmented design D
con be read off from the augmented design matrix X.D., which
consises of )LD and the first column and any 3 other columng
of 8 seai-normalized Hadamard matrix, viz. taking the first
4 columns of Hg = H]a He Hz L with i, = B _ﬁ, ve have:

2
R Y
111 -t
L1
b .
1 a1 -1 4

P O g I o

=1 a1 1 e

1-1 -1 1 ,
1) 1A
11 1 1
1111
11011

This results fn:
D. = L‘uDA‘ vhere DA is the complete replicare of the 2!
factorfal, f.e. D, - {(000y, (100), (010}, (001}, (110), (101),(011),

AR
femarks: (1) It should be intuitively clear that the augmentation
should be done in such a way that the additrional treatment
coabinat ions DA lead to independent rows {n the design matrix
XD . If any two treatments lead to dependency of the
:aérespandmg rows in )H} then there {s no gain {n information
relatjve to estimation oe P} by including both of them in DA‘
(1f) We could have formulated the augmentation prohlem
by starting with anm unsaturated design D. However, the
sotivation vis-a-vis the most ecomemical design (in termg of
alninal number of treatment combinarions), which is incorporated
(n the saturated case,would be lost. Note that the same
argument, given for the saturated case ahove, ‘would follow
through for an vnsaturated design whose design matrix is column—
vise orthogonal in the 2t getting.
(141) One may generalize the abave regults to the general
aixed factorial setting as long as the initial design D, under
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an appropriate linear model, leads to )L!"X.D = aI for a real

conatant Q.

4. OPTIMAL AUCMENTED BALANCED 2* FRACTIONAL
FACTORIAL DESIGNS
Consider D to be a saturated balanced design in the 2"
factorial and let us restrict augmentation by c = 1 treatment
combination, {.e. l)A consists of a single treatment combination.
Further assume that the mean is always present {n Pl and is {ts
first element. The problem now is to select D, in such a vay
*
that det(x"”xm) is aaxioum, where D = DuD,.

It is clear from equation (3.2) that we are seeking a

(~1,1) - column vector x which will be such that
max.(x'A; 3] (a.1)
+]

will be achieved, where AD is the pl x pl information matrix.
Since D is a balanced design {t follows from Raktoe and Federer
(1973) that:

(6.2

vhere 8, b, d, e are constants, } is a (p -1)-column vector
whose entries are all 1l's, I is the identity matrix of order
(p -1), and J is the matrix of order (pl -1) with entries all
equal to 1.
Por any (-1,1)-tow vector 3' = (x1 .xz....,ap ), we have by
direct calculation 1
14 l’l
J)"e (jgzx

where £ = a + d(;al -1) 18 a poaitive constant. This lesds to the

2
max.x'A Mg = max. L42bx ( ), .

I
Ki-” xrzl

B 3

coneideration of the following cases.
Cage(l): e = 0. Under this case ve have the following
possibilities:

(1) b = 0. Clearly from (4.3) in this case any treatsment
combination selected for the augmentation will do to obtala the

maximization.
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(11) b> 0. In this case we must select % tn such a way that

x and I x, have the same sign and their product is maximized.
]

=2}
This means that the treatment combination selected mugt be
either 0' = (00...0) or irs foldover(ll...1) in order to obtain
an Opt{mal augmentacion.

(11i) b < 0. 1In chis case we must select x {n such a way that
P
xl Andj[lzxj have opposite signs and their product is maximized.

This means that the treatment combination selected must be
either (100...0) or its foldover (011...1) in order to obtain an
optimal augmentation.

Case(2): ex0. Since f =a+ d(;a1 -1) is a constant the
saxlaizacion depends merely on maximizing the other terms in

equation (4.3). Since
P

3 )
max[e([ x)+2bx(t x)]
X2l §=2 ] g2
b B2 2
- wmleler x) - B, .4)
_‘1 e j=2 e

ve are led to the following possibilities:

(1) e>0, We may choose xl to be +1 or -1 arbitrarily.
A
Then {f bx0, ve take J):ZxJ equal to respectively (P -1) or
-(p -1) aceording as _L) is positive or negative. If b = 0,
P,

any choice of a (-1, 1)—ve::ox x such that ( ).‘2 "j) 13 maximum
vill do. This means that in either cagse the additional treatment
combination needed to obtain an optimal augmentation is anyone of
Q= (00...0), (20...0), (0l...1), or (11...1).

(11) e<0. 1In this case the maximum of the expression given
in equatfon (4.4) will be obtsined by calculating the minimum
ulu,!lir:l( h—:l- +j:2 xj) . Choose x to be +1 or -1 such that

bx bx,
(-'—lho- Write ‘—l = h + g, vhere h>0 is the integer S“t of

1
°_:1 and 0<g<l. Then select xl,xl,...xp) such thltjEz xj 18
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respectively equal to -(p‘-l) 1€ h2 p,-]: =h if Oxhcpl-l aod
pl-h-l 18 even; =(b+l) if Osh<pl-l and p‘-h-l 1s odd. Such
chofces for the Xy clearly minimize the desired expression.
This means that the selection of any treatment combination
“1'2""9 _1) such that

1

b
tl- 1, 1f :>0.

b
= -1,4f ;<0.

b
-lor-l.lf—e- 0,

t, =0, for all 122 {f hkpl-l. and

i
if h<p)-l then take {4.5)
g 0, for any (Pl+ h-1)/2 subscripts 122,

= 1, for the remaining {, if (pl-h-l) is even,

=0 for any (p‘+h)/2 subscripts §22,

= 1, for the remaining i, if (pl-h-l) is odd,
will Jead to an optimal nugmen:ag)l(on. Simflarly, if xl is
selected as +1 or -1 such that (—;\) <0, then the selection of
the foldover of any treatment combination described in equation
(4.5) (l.e. the treatment combination obtained by {nterchanging
0's for 1'a and 1's for 0's) for the corresponding case will also
lead to an optimal augmentation.

We have thus esteblished the following theorem.

Theorem 4.1. Let D be a balanced saturated design relative to P‘
in the 2 factorial, where the mean {8 the first elewent io Pl-
Then an optimal augmentation D to D* with one additional
treatment combination is achieved in the following ways: (i)vhes
e=0and b = 0, any choice of a treatment combination will leasd
to an optimal sugmentation; (ii) when e = O, b> 0, then the
selection of either (00...0) or its foldover (11...]1) will lesd
to an optimal augmentation; (111) when e = 0 and b< 0, then the
selection of either (10...0) or ita foldover (01...1) will lead
to an optimal asugmentation; (iv) if e> 0, then the choice of
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anyone of the treatment combinations (00...0), (01...1), (10...0)
or (11...1) will lead to an optimal augmentation; (v) if e<0,
then the choice of any treatment combination satisfying (4.5)

or their foldovers will Jead to an optimal augmentation.

We now {llustrate the resules in Theorem 4.1 with an example.
Exasple 4.1. In the 2 factorial let D be the saturated main
effect plan given by:

o ={(0111),(1011), (1101),(1110), (1111)}.

Then under the usual model it can be easily verified that

Rence in the notation of the theorem we have:
a=2, b =-2, d= %, and e = % Since e >0 we are in case (iv)
of Theorew 4.1 and hence an optimal augmentation will be achieved
by selecting anyone of the treatment combinations (0000), (0111),
(1000), or (1111),
5. DISCUSSION

The results {n Section 4 for the case ¢ = 1 are a
peneralizarfon of those in Section 3 {n the sense that orthogen-
ality 18 {mplied in equation (4.2) when b = 0 and & = 0 8o that
a=d. Purther, one may generalize the results obtained in
Section 4 to the unsaturated case with the only restriction being
that the mean is the first element of P . As earlier, the
wtivation of starting with the most economic design (i.e. a
Dvith & minima) number of treatment combinations) would be loat.
The development of the theory for the general mixed factorial,
even for the case ¢ = 1, appears complicated since the design
mtrices will not be eimply (-1,1)-matrices. All the results
deafoed in this paper can be further generalired by not omly
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augmenting treatment combinations but also augmenting parameters.
The work of Pesotan et al (1975,1977) and Raghavarao et al (1977}
bas made a beginning in this direction by considering the 2
gseries. See as well Section 17C in Raghavarao (1971), where ideas
analagous to those in this paper concerning the augmentation of
singular weighing designs are discussed. It is clear that
considerable further work needs to be doue to resolve many of
the problems of augmented fractional factorial designe.
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