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SUMMARY. It is shown here that L1 convergence holds in large number of cases where 

the WLLN holds ; in fact, it is shown that the proof of the stronger fact is somewhat easier 

and more straightforward. In particular, several extensions and variations of the classical 

Khinchin WLLN are obtained. 

The classical Kbinchin's weak law of large numbers (WLLN) says that 

if {Xn} is a sequence of independent and identically distributed random vari 

ables with finite ?7( |XX|), then nr1(X1+...+Xn) converges to E(XX) in pro 

bability ; actually 'mutual independence' can be replaced by 'pairwise 

independence' (see, e.g., Chung, 1974, Chapter 5). The usual proof of the 

above WLLN is due to Markov. Dharniadhikari (1976) gave an alternative 

(and somewhat simpler) proof of the same result ; in fact, he proved a slightly 

stronger result that ^~3(X1+...+Zn) converges to E(Xt) in L1. It may be 

noted here that, under the above assumptions the strong law of large numbers 

also holds (see Etemadi, 1981). 

The aim of the paper is to demonstrate that the L1 convergence (and 

hence convergence in probability) of the sample mean holds under very general 

conditions. It is worth-mentioning that the proofs of Markov and Dharma 

dhikari use the truncation at levels nS (see, e.g., Rao, 1973) and n1/2 respecti 

vely ; this paper uses a different truncation. 

Below the Xj? are integrable random variables. 

Definition. A sequence {Xn} of random variables is said to be uniformly 

integrable in the Ces?ro sense if 

lim sup (n-1 S J \Xk\dP ) 
= 0. 

a-?ce n I k=l \Xje\ > a > 

Clearly, the above condition is implied by the uniform integrability of {Xn} 

(for the definition of uniform integrability, see Chung, 1974),. 

AMS (1985) subject classification : Primary 60F05 ; Secondary 60G42. 

Key words and phrases : Uniform integrability, uniform integrability in the Ces?ro sense, 

weak law of large numbers, martingale-difference sequence, <p- mixing sequence. 



310 TAPAS K. CHANDRA 

Remark 1. A sequence {Xn} of integrable random variables is uniformly 

integrable in the Ces?ro sense iff 

Um limsup in-1 S J \Xk\dP)=0. 

Theorem 1 : Let {Xn} be a sequence of pair wise independent random vari 

ables satisfying the uniform integrability condition in the Cesar o sense. If 
n 

E(Xn) 
= 0 for each n ^ 1, then n_1 S Xk converges to zero in L1. 

?? i 

To prove the above theorem, we shall use the following elementary result. 

Lemma 1 : // {Xn} is a sequence of uniformly bounded pairwise indepen 
n 

dent random variables, then n-1 S (Xk?E(Xk)) converges to zero in L1. 

Proof of Lemma 1 : Because of the Schwarz inequality it suffices to 

show that 

n-2 var / S (Xk-E(Xk))\ -> 0, 

which is obvious because of the given assumptions. 

Proof of Theorem 1 : Let N be an integer > 1 and put 

Yk = Xk if \Xk\ <#; 

= 0 otherwise. 

n n 

Let Tn 
= S Yk and Sn 

= S Xfc. 
fc=l k=l 

Then Sn = (Tn-E(Tn))+ 2 (Xfc- Ffc)+tf (T?). 

Hence n~* E{\8n\)< n-* E( \ Tn-E(Tn) \ )+n~^ S ?( | Xk- Yk \ ) 
k=i 

+n-i\E(Sn-Tn)\ (since E(Sn) = 0) 

< n-* ?7( | r?-?(SP J | )+2n-! S tf ( | Xk- Yk \ ). 
k=l 

By Lemma 1, the first term of the right side goes to zero as n-> oo for each 

fixed N > 1. We, therefore, get for each N > 1 

lim sup n-1 ?(|Sn|) < 2 sup in"1 S E(\Xk-Yk\)\. n ?? m ft I fc=l J 
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Now letting N-> oo and noting that 

E(\Xk-Yk\) 
= f \Xk\dP 

\Xk\ >N 

we get the desired result. 

The above theorem extends the first part of the Theorem in Landers 

and Rogge (1986) who prove, using a relatively more complicated argument, 
the WLLN under the assumption of the uniform integrability of {Xw}. It 

may also be noted here that the proof of the above extension of Khinchin's 

WLLN is much simpler than that, due to Markov, of Khinchin's WLLN. 

A slight modification of Lemma 1 will yield the following useful generalisa 
tion of Theorem 1. See, in this connection, Jamison etal. (1965) who discuss 

the i.i.d. case. 

Theorem 2 : Let {Xn} be a sequence of pairwise independent random vari 

ables with E(Xn) 
? 0 ^f-n > 1. Let {an} be a sequence of non-negative reals 

suchthat (2 a2)/62->0 as w-?oo where bn 
= 2 ak which is assumed to 

be positive for all n. If 

{1 

n \ 
r- S aje J \Xjc\ dP \ ->0asa->oo, ... (1) On fc=l |X* | > a > 

i n ? \ 
then E f 2 aj?Xjc ?bn?> 0 as n-> oo. 

It may be noted that the condition ( S af )\b\ ?> 0 as n-> oo holds 

if an 
= 

Og(^) for some t > 0. 

We now give an alternative description of the condition of the uniform 

integrability in the Ces?ro sense ; for the corresponding description of the 

uniform integrability, see Chung (1974). 

Theorem 3 : A sequence {Xn} of random variables satisfies the uniform 

integrability condition in the Cesaro sense if and only if the following two condi 

tions are satisfied : 

(a) sup (n-1 S E(\Xjc\)\ < oo 
n y k=i I 

(b) for each 6 > 0, there exists a S > 0 such that whenever {A]?\ is a sequence 

of events satisfying the condition that 

sup In-1 S P(Ak)\ <S, ... (2) 
n \ k=i i 
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we have 

sup (n-1 S J \Xk\ dP\<t. ... (3) 
n \ fc=l Ak ' 

Proof of Theorem 3 : We shall first prove the 'only if part. Let a0 > 0 

be such that 

/ n 
sup mp (n-1 S J |X*| dP) < 1. 

w \ k=l \Xk\ > a0 / 

Then 

2?(|X*|)<a0+ J ?X*l dP 

which implies that 

n-1 ? E(\Xk\) < ao+n-1 S / \Xte\dP < a0+l ; 
*=1 *=1 |Zfc|>a0 

thus (a) holds. 

Now fix an e > 0. Let aQ > 0 be such that 

sup (n-* ? f |X*|*P) <4" n \ k=l |Xfc|> a0 I ? 

Put * = e/(2oo). Then if (2) holds, 

-i S J |Z*|?P<n-i? (a0P(^fc)+ J |X*|?P) n" 

= aQ n"1 2 P^?+n-1 S J | Xk \ dP < a05+e/2 = e. 

Thus (b) holds. 

For the 'if part, put 

Jg: = 
sup?n-1 f E(\Xk\)\. 

Then for each a > 0, 

P(|X*| ^a)^a^E(\Xk\) ^k>l 
and so n 

n-1 S P(|X*| ^a)^Kja V w > 1. 

Fix an s > 0. By (b), there exists a 8 > 0 such that (2) implies (3). 
Put a0 

= 
Z/?. If a > a0, then 

J \Xk\dP< j \Xk\dP 
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which implies that 

n-i 2 J \Xk\dP < n-1 2 J |X*|dP < s. 
fc=l \Xk\>aQ *=l \Xk\^aQ 

Hence the proof is complete. 

We now show that for the L1 convergence of the sample mean of indepen 

dent random variables, the condition of uniform integrability in the Ces?ro 

sense is not necessary. 

Example 1. Let {Xn} be a sequence of independent random vari 

ables where Xn follows N(0 ; crl) *f n > 1. Put an 
= nlf*. Then w1 

E(\X1+...+Xn\)->0 iff n-2(<rl+...+(r%)->0 which is true, since 

2 W* < 2 J xW dx = J x1* dx. 
?=1 k=l k 1 

Put an = 2JS?(AT(0 ; 1) 7(iV(0, 1) > a/crj), ^ > 1. Then an increases with n 

and 

We next show that uniform integrability in the Ces?ro sense fails for {Xn} ; 

in fact, for every a > 0 

sup {n-1 2 J Ii*|?P\ 
= oo. 

n l *=1 \Xk\>a J 

To see this, it suffices to note that 

n~x 2 (Tkfrk > <*i l^""1 S 0-^1 

> % t?t1 J #1/4 dx. 
o 

We next show that the uniform integrability in the Ces?ro sense is strictly 
weaker than the uniform integrability. 

Example 2. (due to B. V. Rao) : Let Xn 
= + 1 or ? 1 with probability 

| each if n is not a perfect cube, and Xn 
= +n1/z or ? n1/3 with probability 

J each if % is a perfect cube. Then sup E( \Xn | ) = oo, so that {Xn} is not 
n 

uniformly integrable. But if a ^ 1, then 

n-1 2 f |Zfc|dP<^-12 J |X*|?P<?-1 2 fc1'3 
*=1 |X*|>a fc=l |Xfc|>l A?=,;? 

< ((w-1/3+l)7l1/?)/(2^)^0. 
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Now use Remark 1 to establish the uniform integrability in the Ces?ro sense. 

For the lemma below, note that the uniform integrability of {Xn} implies 

Condition (1) of Theorem 2. 

Lemma 2 : Let {an} and {bn} be as in Theorem 2. If whenever an ^ 0, 

6??? oo and 
( 

2 a\\jb2?>0 
as n-> oo, Condition (1) of Theorem 2 holds, 

^k =? 1 
' 

then {Xn} is uniformly integrable. 

Proof : Suppose, by way of contradiction, that 

sup J \Xk\dP /> 0 as a??oo. 
*^l \Xjc\>a 

Then there exist an s > 0 and a sequence {km} of reals such that 1 < kx <k2 

<kz< 
... and 

J \XkJdP>* Ym>l. 

Define a, = 1, a?. = 1 "V" w > 1 and a? = 0 for all other values of n. Then 

n 
S a\ 

= 1+the number of j such that kj < n ; 
k=l 

so that 6w-> oo and ( S a|)/&??>0 
as n~~> ??? Clearly we shall get a con 

tradiction (to Condition (1)) if we show that 

lim sup|?2% J \Xk\dP) > 
n-?? ?? yk=l \Xk\>m 

> 
c*i; 

/or ?oc? m > 1. Now fix an m > 1 and observe that for j > w, 

liai f |Xi|?P}/6Ai 

= 
{s 

r 
iz^idpj/i 

j-m+l . ^U i ,z |dPl 

f?_fYYi.-\ 1 

^ I-;-e (i3y the choice of {km}). 
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Thus 
limsup j 2 <k J |X,|c?P}/&*. ., >e. 

|X,|>* 

This completes the proof. 

We now replace the condition 'pairwise independence' in Theorem 1 by 
suitable 'other dependence conditions'. 

Theorem 4 : Let {Xn} be a sequence of a martingale-difference random 

variables relative to {Sn}, i.e. E(Xn | ?n_x) 
= 0 for all n > 1. // {Xn} is uni 

formly integrable in the Cesaro sense, then E(\n"18n\)?> 0 as n?? oo where 

?n 
= 2 Xu n > 1. 

?-i 

Proof : Let ?80 be the trivial sigma-field, N an integer ;> 1 and F^ be 

as in the proof of Theorem 1 (k > 1) ; put 

Zn 
= 2 (F?-^rjfcl?^!)), n > 1. 

?=i 

Then 

S. = Zn+ 2 ilFtl?j + 2 (Xk-Yk). 
k=l fc=l 

Hence 

^( I ?-1 -s, I )< ?-1 i?( I z;i )+?-i e ( i | ̂(z*- r* | ??_!) | ) 

+n-i? ?(|Z*-F*|) ... (4) 

since ?/(Xjr | <Sjfc_x) = 0 for A > 1. Now the second term of Inequality (4) is 

= 11^ 2 jB(|x*-r*|). 
Thus *=1 

^(K-1^n|)<^-1JS7(|ZJ)+2supm-1 2 ?(|Z*-7*|) 

Below we show that 

var(Zn/w)?> 0 as n?> oo, ... (5) 

which will imply that n~x E( \ Zn\)-> 0 as w?> oo by the Schwarz inequality 
since E(Zn) 

= 0. Letting N~> oo and using the uniform integrability of 

a 3-9 
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{Xn} in the Ces?ro sense, the proof will be complete as in the proof of 

Theorem 1. Now 

n-2 var(ZJ 
= 

n~2[ 
S YM(Yk-E(Yk\?k_x)) 

< n-2(4niVr2+0)-> 0 as n-> oo 

since for 1 < i < j < n, 

= 
jB{(r,-J^r? | ?ux))(E(Yj 1?M)-JE(r, | ?M))} 

= 0. 

For the next theorem, let r > 1 and recall the definition of f -mixing 

sequence as given in Billingsley (1968, page 166). 

Theorem 5 : Let {Xn} be a sequece of f -mixing random variables such that 

n-l 

n-1 S (?(i))r-? 0 as n-> oo 

and E(Xn) 
= 0 for n ^ 1. // {Xn} is uniformly integrable in the C'esaro sense, 

n 
then E( | n_1 Sn | )-? 0 as n-> oo where Sn 

= 2 X?, n ^ 1. 

Proof : Let N be an integer > 1 and define Yk and Tn as in the proof 
of Theorem 1. Then, we get as before, 

E( | ?-1 Sn | )< rc-i j0( | Tn-E(Tn) | )+2 sup m-i 2 tf( |Zfc- F* | ). 
m A?=l 

It remains to show (as in the proof of Theorem 4) that for each N > 1, 

ya,T(n-1(Tn-E(Tn)))-^ 0 as n-> oo. 

Now n-2 var(7n) < n~2(4n N2+ 2 | cov(F<, Ts) \ ) 

< n~2(?nN2+2N2 l?(n-i)f(i)) 
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by Lemma 2 of Billingsley (1968, page 187). To complete the proof, we let 

r-^+s-1 = 1 and note that 

n-l ( n-1 ^ 1/S ( n-1 \l/r 
on? 2 S (n-i)?p(*) < n-*{ S j'\ S (<?(iy\ 

, w-1 ?+1 . 1/8 , n-1 * 

<^-2 2 J x*dx\ I 2 (<p(i))rV I j=l j ) I f=l J 

^-2 
j J as? dx\ 

j 
2 

(cp(i))r| 

;ns4-l 
. 1/8 f n-l a 1/r 

w1 2 (<p(i))r | 
->0as^oo, 

Remark 2. The assumption of cpairwise independence' in Theorem 2 can 

similarly be relaxed to cover the above two notions of dependence. We omit 

the details. 
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