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We continue the study of a class of real analytic mappings (cheistened
Fueter mappings) from open :ubuu of R"iato R". Thisclass hu connec-

tions with spaces of and ons of and
ic variables. We ch ise such iags by a system of pamll
differential jons and i ditions for their X- iconf

in the sensc of Ahlfors.
We also characterise the Jacobian matrices of these mappings. The Jacobian

mlmoet ronn a family of subgroups of GL (v, R) (which are mutually
ised by certain projéctive spaces.

INTRODUCTION

This paper isa continuation of our study of Fueter’s interesting class of
mappings. The domains and ranges are open subsets of R* (n > 2), and the mps are

obtained by certain transformations of complex analytic fuacti The mapping
are as follows : Let ¢ be a holomorphic mapping whoso domain is an open subset of
the upper half plane U ={z : Im(z) > 0}. The n-dimensional Fueter transform of ¢,
denotedby F, (é), ns obtained by substituting in ¢ the expression (e, x,+...+¢,-, X,.,)]
x +.. +x,_,) for the imaginary unit /. (Here R* has coordinate (xo,..., X,-,) with

unit Vectors ey, &, ..., €-1)

One main reason for interest in the ‘Fuster maps® stems from the fact that F, (¢)
and Fy ($) are expressible as power series ina quaternionic or octonionic variable
(respectively) when ¢ has formally-real expansion around real centres.

Nag el al® had proved that Fueter diffeomorphisms (and the corresponding
gt ic and pping classes) from pseudogroups. The main interest
has been in modelling C*° ifolds on these pscudogroups. In the same paper® a
geometrical interpretation of how Fueter diffeomorphisms arise was discussed via
certain “rotations” of complex analytic mappiags. Using these principles we bad
been successful in characterising compact hypercomplex and Fueter manifolds in
that paper.
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In the present study our main purpose is to make a more algebraic attack oo the
study of these pscudogroups. Firstofall we are able to characterise Fueter mappings
by a set of algebro-differential conditions.

The problem of whether a given C™ ifold can be assigned byp plex/
Fueter structure is of course intimately related to whetber the structure group of the
tangent bundle of the manifold can be reduced to the group of Jacobians of hypercom-
plex/Fueter diffeomorphisms. In this paper we therefore study the Lie groups of
Jacobian matrices and their corresponding Lie algebras. The results of Nag ef al!
might therefore be approchable by pure differential geometric methods using the con-
clusions of the present study.

Imaeda and Imaeda®?, bave also pursued analytic functions of hypercomplex
variables, extending work of Fueter er al.. In section 4 we describe the connec-
tion between the functions treated here and Imaedas’ functions.

1 Tue FueteR TRANSFORMATION
The precise definition of F, (¢) is :

Let Dbea regionin U (the standard upper half plane in C)and ‘R* = R*
— {x, — axis} (n > 2), we set

B D) = (05 e) €R: (3} 4452, ) ") €y
C 'R~ )
Let ¢ : D -+ @ be complex analytic with real and imaginary part decomposition ¢ = £
+ iy, then
F,($): F.(D) - R*is defined by
n—=1
Fu($) (o or Xa) = € (50 3) + ,z LI (x05) -

1z
wherey = (x,' + ..+ x'._,) >0.

If the holomorphic map ¢ has real boundary values where the real axis abuts D then
a direct application of the reflection principle that F, (é) can be defined real
analytically on the revolved domain 7, (D) her with the corresponding portions
of the x, — axis,

We can also define a Fueter transform on analytic maps of several complex vari-
ables. [For the sake of simplicity of ion we ider the case of 2: lex variables).

Let $ = ($,, $s): D — C* be an apalytic map.
DC UV =((02)EC: Im(z)>0;/=1,2))
We define its Fuster transform F% (¢) : F2¥ (D) - R* x R°by
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F2 ) (o + €000 + oo + oy Xety Zon + €1 X1
oot i Xe1a)

=1

- (Sem )z (Sop) o

= -
] 1
where ¢, = £, + i,y = (x AR ) =12
F:')(D) = {Xon + & X+ o+ Gy Xy

Xen & X+ o+ G Xy
(%o + iy Xo + 1) € D, 88 above) C' R x ‘R,

Some simple properties are given below. -
F,(ag)=aF.(¢),aER (9
FR@+9=FL@+FW w(6)
F@ W) =F@) F.(}) )]
FaGre 8)=Juo F,(9). w(8)

(Ju is the conjugation in R™ i. e., Jji, (Xa, -+ Xaer) = (Xo = X1, .0y = X,-1))
F, ()= F () w(9)

{whenever ¢~ is well defined with domain in U).

Fy(3.4) = F.(#). Fo(¥), forn=4or8. -(10)

Remark : A Mabius (conformal) transformation (in dimensions n > Z) may not
be a Fueter mapping. Indeed even the translation ¥ - ¥ + &, b not purely real, al-
ready fails to be a Fueter map.

Definition* —Consider a differentiable mapping

f:D(C R »>R"
Define,
Sf = §¢Df + (D)) — tnTr (D) 1y
where D f is the Jacobian matrix of f and 7r (D f) = Trace of D /.
IS £l = (sum of the squares of the entries of S )N, f is said to be X~quasiconformal
f(vmISfI< K.

Proposition 1.1—Suppote f = F, (4) is a Fuster mapping. fis X-quasiconformal if

| w — nly | < 2K over the domain of ¢ = § + in. ()

(The result has already been announced in Nag er al.f).
ProoF : By direct calculation one obtaina
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sop = (- 2). G,

SR ISfl = (0 — At [y =y [ € 4] —aly ],
The result follows.
2. CHARACTERIZATION OF FUETER MAPPINGS (ANALYTICALLY)

Theorem 2.1—Let f2 (f;, ..., fo-s) = Fy (¢) : Fu (D) ~ R" be a Fueter mapping.
Then f satisfies the following relations :

fy=—8L0G>0 [8. = %.p =0,.,n— 1] ~(12)
Wfi=38 fr( k>0) - (13)
<V 9/>=0(j>0). (14

Supertrace of Jac (f) (= 8, f, — :Ii‘ 811)

me-n (et ) )

at (Xo, sy Xay) 19
(in case n = 2, (15) becomes 8 fo — 8, f; = 0 which is the second Caucby-Riemann
relation.)

(G fo) = 'i: @ f)x, k>0 (16
(in case n = 2, (16) also reduces to the Second Cauchy-Riemann relation.)

3, /, is a function of x, and (x‘, + .+ X, ) =Yorly, ..(I17)

equivalently,
AU TA U R Y (YA A178)
% * Xe-t

(for Xy, ...y Xamy # 0)
Mf_ b
Xk Xy Xp X,

forallp, 4,k >0, xy. 3. %) x,#0, mdk#/,p3# q. 19
&

5 . .
n x; lufuncuonofx.lnd(x: + .+, )=Y°nly' (19

fork# 4, j, k> 0.

Equivalently,
s(ak) w(ad) o =)

x * o Xot
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for xi, Xy oy Xa-s 0
- N 5% S,
Jr (%o, ey Xem1) (Bcfo (x, + ..+ X:_, );xl; )X, ...(20)
fork,) >0k#j,xx - x,#0,p>0,
a8 500 XD
B A= (o )y BBAL 2, ( Lol )

X)
ot ) - Sl ()]
-0 e

k) k)irnp g s>0, X% %0 X0, %, #0,
y = (x: + .+ x"")
[(2) is unambiguous because of (17a) and (19a)).
BB f) gL P WY
y Xp » B,( ) 0

Xex; | X, '\ Xpx,
Xp Xe Xp, X # 0, k), f, k. pg>0.
Proor :  The Cauchy-Riemann relation between § and 1 and Laplace’s equation
Ay = 0 (which is (21)) implics all the above formulae.

s

.(22)

Theorem 2.2—f @ (fo, vy fout) 3 (C’' R" - R~ is a Fueter map if and only
if it satisfies formulas (12) and (17) — (22).

1n
ProOF : Lety = (x’l +.+ 2 )

8 f;
Put " (x,, ») =>‘(3of- -7 x:x, )

(it is vnambiguous because of (17), (18) and (19)) then by (20)
Xk
- =0, k>0
Jx y k>
The equation (12) says
8 fo= =8 fy= - —;Lq..,k>0.

‘Therefore,

LY WYY
X1 Xt

equivalently f, depends on x, and y only (which meana that on x, and y constant loci
/o takea constant values).

One may therefore unambiguously define
EGaN=fi (teax+ ..+ e1x).



206 BASUDEB DATTA
Then by eqn. (12) §y= — ns,

and byeqn. (22) &, = & fo = .
Equation (21) says v is harmonic in the relavent domain of the x, — y plaze.
Now one verifies that f = F, (€ + /1) on the relavent domain.

3, Jacorians oF FueTer MaPPINGS
Definition—For any ; = (ky ... kyy) € S*%, we comsider a subgroup of
GL (n,R):
a —bk —bky bk
bky a - (l— kK )c chyky wockik,

[
|
|
J.(")-‘-’@(ﬂ-b-t.")-l by ckky d-(l—k:)c..clt,k..l
[
[ By ki chok, a—(l—k’ )c:
a-1 €Ky Kg-1 L w1 )
(a, ) # (0,0)and a # ¢) C GL (n, R)

Remark : 3 (a, b,e, k) = M(l;-)"A(a.b.c.BM (;)
where the ‘base-point’ in S"4 is

T=1.0,.,0€ s

and

~ 1 0 0 .0 )
M@= .
F0 ke wke |
! 0 ]

|

: ¥
0

Nisany (n — 2) X (» — 1) matrix such that
M(¥)is orthogonal i c. M (K)T = M (k).
Lenma 3.1—det (A 3, b, ¢, K)) = (" + 5%) (a — e~

Proor : From the remark det (A (g, b, ¢, IS) == det (A (a, b, c,‘l.’))
=(a+ &) (a— )
[Also by direct calculation it can be proved that

det (4 (3, by, B) = (@ + 9 a — e,
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Theorem 3.2— (i) J, (k) are commautative subgroups of GL (m,R), (i) Any
two such mbgroups are uomorpluc to cach other, (iii) J, (k) = J (- 5, (iv) for
k(l);.«_- + k(l) Ja (km) N Jn (ldﬂ) = (al,/a # 0, 1, is identity matrix).

Proor ; (i) follows from the fact that
My by B A (0 By e, K) = A2y By 0 B).A (@ By 6 B)

= A(aa, — biby, aib, + biay, iy + ejay — iy — biby, 5

and
ay # ¢ 8y 7 ¢y implies a) 6y — b, by # a1 ¢y + €18y — ciey — bib,,
And
-b —(ac +5*) ~
A (@b, c-*)"‘( PP T+ BT @@ -9 -"))
and

—(ac + ¢¥
a 3% ¢ implies a’+b7$ @rHE-9o

i) Aa,b ¢ k‘") 1=>2a(a, b, e, k"’) gives an isomorphism.

(i) follows from the definition of J, (k)

@) al, = 1(a,0,0, K0) = A (2,0, 0, k™) belongs to J, (k) (1 J, (k).
Conversly,let A (a, by, ¢, K) = A (as, br, ¢sy ) € J, (K 1) J, (K®),
If b, 3% 0(.". by 7 0) compairing the terms of A (), b, ¢;, ;") and
A (ay, by, ¢, k‘") we get, either both k. lndk are zero or both

non zero and for nonzero &’ and kY
m \'
z (#)
1
(%) k0o l
- =
(&) s ()
@0
which implies I‘" = 4 k~m
Similarly if we assumo ¢, 5 0(.", ¢ 5% 0) then for £{" = 0if and oaly if £,k® 4
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= oy KO, K 0 and only if ek AP o . mey K D m 0; i and

only if k% m 0 and hence by the same argument &%) = & K9, Thus for & 4k
b0 =e (s by= 0=

Remark : Note that in virtue of Theorem 3.2 (iif) and 3.2 (iv) the distinct sub
groups are parametrised by [p*~* (R) (real projective space).

Theorem 33—For any A (8,5, ¢, k) € J, (k) = Jo (—K), (k = (ki ..., kum)
€ $**and # > 2) and for any point p in {the 2-plano gonerated by the vectors (1,0,0,
oy 0) 20d (0, Ky, ..., Ky-)}\real line, (note, if p = (%y, X, ..., Xp-y) then Xy & by = xy¢
ky= ... = X,-y. k,-)), there oxists a Fueter mapping f = ( fi, ..., fa-p) [i. €. 3 holo ¢
with f = F, ()] such that

d,f = Use ()b = A (e, by c, B).
Proor: A(a,bc, K) € J, (k).

Let
= (po, L ky, ., Pr Kyey)

we may agsume p; > 0.
[Since if p, < O we can replace p, by —p,.k~by - 'I: and b by -3),
Consider th trix[‘-b] 2 (g, b)
nsi 0 ma b a (a, b).
There exists a complex analytic function ¢ = § + iy defined in & neighbourhood D of
(Pa P)in U to @ with % (po, py) = (a — c) py such that
ac (Bkwomy = 4* (2, b).
Consider the Fueter function f = F, (¢)
0 (X oy 2 = E (20 )) + 5‘&,’*"‘—""‘ s

where

y= [x§ +ot A, ]m.

%fo oo Bihh

tac (= | 2SSk

Do Syt oo Bum fumt ;
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— e oy X5 x
W Nxg y ‘h,y— - =g

By 28 ( —1) Eey-n) "E(,,,_l)+1

Ly Ty Py ATy P

= ) (a, b, ¢, k).
Definition—From (7) and (9) it follows that the Fueter diffeomorphisms form pseu-
d We call a n-di ional C® ifold a n-di ional Fueter ifold if

BIoup:

it is modelled on one such pseudogroup.
Thus, a Fueter manifold is 2 manifold with transition functions from the class of

Fueter diffeomorphisms. -
Theorem 34— () Det chy Blspiyotos, = ( ;"' ) [det Uz ()] e
where "
gmEtiny = [x: ot x,',_,] #0.
(ii) Fueter manifold of even dimension (With di charts ¢: U~ ¢ (V)
C R") are orientable. Also those odd dimensional manifolds (we also called them
Fuster manifolds) modelled on the pseudogroup of Fueter maps obtained from holo-
morphic maps of the type ¢ : D (C U) = ¢ (D) C Uare orientable (for any dimension

n>2).
ProoF : (i) Det [Jac Fy ($)xgsxyprrestyeyy )

, 4 -
[ 250 4) 5035
(s [ o]

—de:(x(a,b,c.ﬁ{whmk. = %’- fo 1, wan-l,
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Ko (hy o k). b ey (0]
=@+ —c)"‘[ a =y (X Y € = M (t)) — "("l-’)l
= (2)™ det e B

(i) From (i) if  is even and n # 0 then the determinant of the Jacobian of the
Fueter transformation is positive. And therefore :.\th manifolds are orientable.

We observe that X a= (x, x%, x%: A(q, b, ¢, k) 1+ (a, b, c) definea a global C*®
structure on J, (k). The multiplication in J, (K) Is equivalent to tho mappipg! R=R?
x R? -+ R? givea by ((a,, by, )), (8, By &) |-+ (may — biby, by + gy, aiey + )
8, —cy—bbe) which is €, and A @by, k) 1= A (az, K- is cquivalent to the maps

‘R* -’ R¥as (g, b, ¢) l-,( n'-:-_b" a':—bbl R (a%f)
which is 2130 Cuo.  This shows direetly that J, (K) is a 3~dimenional Lic subgroupof
o ("k:tm : The isomorphisms defined fn Th, 3.2 are actoally Lie group isomor-
phisms.

Remark : We can calculate explicitly tho Lie algebra L (J, (k)) (lhe Lie algebra
of all left invariant vector fields) 7. (J, (k)) (the tangent space of J, (k) at the

ideatity (¢ = A (1,0,0, k) = < &y e e1 26 m ( ,i'. ) >
Let 22 (J, (K)) be all the lef invarisnt vector fields, Then
~ [}

LULE =<XXoXa| X:dLye (—“ )';1- ,2,3>.
Since J, (k) is commutative than of course all Lie backets vanith. Also by some simple
calculations

X‘F"' X! Dx' —+ x‘
[these are a basis for the lel't-mvnmnt vector ﬁelds]
9

o= # g+ - g

o= -2 g
And,

X0, X = [X, Xl = (X, X5] = 0.
For higher dimeasional Fueter transforms ( F ) the Jacobians form families of non-
commutative Lie subgroups (of dimension 2/* + /) in GL (w/, R). The Lie algebra of
any one of these subgroups is non trivial and has been explicitly compatable, (details
are available with the author).
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(whm'I:, ; €Y

with det (A (a,b,¢,d, ¢, £, 2, b, p, g, l:' ;)).

=(ad - be)* + (eh—2f) (a-prtb—o™*

And for (k, m) € S** x §*-%
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- (24)

Ju (l::;) ={A(a,bcdefighpa I,;):a;e pb#yg
(ad, eh) % (be, gf)} C GL (21, R)
i a non-commutative Lie group with multiplication:

{00 Bus o iy 60 i B bt P G0 Ko ). A (02 B 3 o s o B0 i, )

a, 01 |l b oay [ n,c.]
\ +6 b I +d b, , +¢, dy
—e e | | —fi e —e, g,J
=& h \—h, f:J - h
. o e ) b, e |f a, g,
I| +e h +d, fi] +ey by
| +6 @ +/ & | +e o !
L4gb) Cambd  Utgids)
( ¢ b b, ¢
} —e QW | =h &
l -2 fa —h, he |I
+a,p| " 4+d g
tha l | +q, d
I,-PlpaJ‘ L~q )

And the Lie Algebra of any of the Lie groups is

LU m) = < Xy oo X [,] > where
X, =x'8 + x'0, + x¥ 35 + x'9, + x%,,
X=X 8 + x4y + X" + x93, + x%,,
Xy = X0, + x*3 + x%0, +x9, + x'B,q,
X = x%: + x49, + x78y + x9, + x1%3,,
Xy = — X9, — XM, + x' 8, + x'y — x39,,
X, = = x", — x%, + x%, + x40, — X0,
Xy = — x3y — 208, + x10y + x1, — x*3,,,

© by
) _flh|
L=hbh)
) bxxﬂl
| +4,
+h &
J+hdy )

~ o~

km

-(29)
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X, = — x40 — 330, + x'3, + x40, — x%,p,
Xy = (x' = x?) By, Xyo = (x* ~ x')9yy ..(26)
and
(X, X3] = [Xo, Xo] = [Xa, Xp] = [X,, X5) = X,
[XuX) = X Xo) = X, Xi] = [X,, Xa]) = X,,
X, Xo] = (X, X)) = X, X) = [ X5, x) = Xy,
[Xo o] = (X, X = X, (X, Xo) = [Xo, Xo] = X, — X,,
(X, n) =X, Xy Xa] = X, + Xoe — Xa — X,
[Xo, X)) = 0 .(27)
where [X;, X)) or (X, Xi] are not amongst the above.
4. CoNNECTION BETWEEN FUBTER AND REGULAR MAPS
Ima eda and [maeda® had defined some generalizations of analytic functions of
an octonionic variable which are similar to those for quaternionic variables defined
and discussed by Fueter®. Imaeda and Imaeda’ also generalized these concepts over
v ariables from more general algebras. The Fueter maps which aro discussed in Section
1 an d 2 and the regular maps defined by Imaeda and Imaeda actually from disjoint
classes (except for the constant maps, being members of both). However, there is
some connection between these two classes which we are going to discuss.

Definition —(due 10 Imaeda and Imacda, of regular functions). A map = ( f,,

e fpt) = Cofo + o + &1 f-1: D(CR?) - R* iscalled left regular  (resp. right
-1

regular) if Df = 0 (resp. /D = 0) where D = /Eo e andeen + ey — By

Proposition 4.1—A map f both Fueter and regular in the sense of Imaeda and
Imaeda if and only if it is a real constant.

Proor:Letf: D (C'R") = R* be both left regular and Fueter D i.e.,
Df (x5y.-%-)) = O for (xa, ,%,-1) € D and there exists holomorphic map ¢ = £ + in
on the relevant domain such that f = F, (¢) on D. Equivalently

(s + z 1) (&) +2 Sy, ) )= 0
=1 =

n
(where y = (x: + ..+ x:_, ) ) which gives by using Cauchy-Riemann relation

beween fandy, =220 g
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Therefore for n > 2, y = 0, which implies $ and therefore f are constant maps which
constant real values. Similarly for right regularity.

For even dimensions one can generate regular maps in the sense of Imaeda from
Fucter maps. For interest's sake we state this connection below (see Imaeda Imaeda®).

Proposition 42—I£/': D (C' RY) — R is a Fuster map then (1~ /s both left
and right regular. (whe:e O=D b= ':g:a;).

Remark 1: Note that for the trivial 2-dimensional case Fucier maps and Imacda'’s

regular maps all coincide with usual holomorphic maps.

Remark 2: As a general referenco for previous work in this and allied areas we
refer to Brackx et al.*.
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