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1, Introduction

In [10] Voronin proved' the following universality theorem for the Riemann
Zeta lunction. Let D be any closed disc contained in the strip § <Re(z)<l. Let
{ be any non-vanishing continuous function on D which is analytic in the
interior of D. Let £>>0. Then there exist real numbers ¢ such that

Supl((z+it)—f(z)| <e. (L)
zeD

Voronin mentions in [(0] that the analogoue of this result (or an arbitrary
Dirichlet L-Tunction is valid.

In this paper we prove that (1.1) holds for arbitrary ¢>0 provided D is any
simply connected compact subset of the strip 4 <Re(z)<1, and f is any non-
vanishing continuous function on D which is analytic in the interior (if any) of
D. Further, even under these relaxed assumptions, the set of all real 1 satisfying
{1.1) has positive lower density. The analogue of this result for an arbitrary but
fixed Dirichlet L-function is also valid.

These results may easily be deduced from the main theorem (3.1) of this
paper. This is a result on simultaneous approximation by vertical translates of
all the Dirichlet L-functions with a given modulus.

Section 2 lists the notations used. In Sect. 3 we state the main result and
derive some of its consequences. In particular the Riemann hypothesis is
shown (Theorem 3.7) to be equivalent 1o a version of almost periodicity (viz
strong recurrence) of the Zeta function in the strip } <Re(z)< .

Following Voronin in [10], we base the proof of the main theorem on a
suitable Hilbert space result (Proposition 4.3). The requisite lemmas arc proved
in Sect. 4. The deduction of the main theorem (3.1) rom Lemma 4.10, as given
in Sect. 5, is based on an idea of Reich in [6]. The resulls of this paper form a
part of the author's Ph.D. thesis [1] where the proofs were based on pro-
babilistic ideas which have been avoided here to the maximum possible extent.

Although the formulation given by Voronin in [10] appears to be more specialised than the
onc given here, the two slalements arc easily seen Lo be equivalent
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320 B. Bagehi

2. Notations

In this paper R and € will stand for the real line and the complex plane
respectively. 11={zeC: |z]=1} is the unil circle. Q={zeT: { <Re(z)<I} is the
sub-critical strip. For z=(z,, ..., z,)6C", the modulus [z} of z is defined by |z
=Y iz
=1

For any subset A of a topological space X. we denote by /, the indicator
function of A. That is, I,: X—1{0,1} is defined by I,(x}=1 if xe4 =0
otherwise,

For Borel subsets A of the real line, we denote by d(A), d(4) and d(A)
respectively the lower density, the upper density and the density. Thal is,

b T
4(A)=hrn::3rﬁ _ITIA(l)dl,
- . 1T
d(A)=I|1r_xls°\ipﬁ _ITIA(t)dt.
l T
d(A)=1lim — [ I,(0d:, when it exists.
r-0 2T °r

For any planar region U, we denote by H(U) the space of all analytic
functions on U, with the topology of uniform convergence on compacla. In
particular, we put H=-H(Q). For any topological space X, and a subspace 4 of
X, we denote by hd(A) the topological boundary of A4 in X. If I is a positive
integer, we denote by X' the Cartesian product of / copies of X, with product
topology.

p will always denote an index running through primes. For positive integers
I, p, will stand for the Ith prime in natural order. z. with or without suffix, will
stand for Dirichlet characters. L(.,x) and { will stand for the Dirichlet L-
function with character g, and the Riemann Zeta lunction, respectively.

3. The Main Result and Its Consequences

The object of this paper is to prove the following result. The prool appears in
Sect. 5 below.

3.1. Theorem (Joint universality of Dirichlet L-function)?. Let k21, and let
Xy X be distinet Dirichlet characters modulo k. For 1jsn. let Dy be u
simply connected compact subset of Q, and let f; be a non-vanishing contimwns
Junction on D, which is analytic in the interior (if any) of D;. Then the set of ull

1 Prol, Reich has shown (private icglion) that the given in this paper may e
mudc 10 yield a stronger result. Namely, the Theorem 3.1 remains valid if the D,s are compavt
subsets of Q0 whose complements relative lo the Riemann sphere are connected. Further, the
retaxed condition is necessary for the validity of the theorem
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teR for which

Sup SupIL(z+u 1) —filal<e 3.1)
15/Sn zeD

has positive lower density for every £>0.
Theorem 3.1 has the following immediate consequences.

32. Corollary. If x,, ..., x, are distinct Dirichlet characters to a fixed modulus
then there is  no non-trivial algebraic-differential  equation relating
Lizphoer LG 2,

33. Corollary. If y is an arbitrary Dirichlet character, D is a simply connected
compact subset of Q and f is a non-vanishing continuous function on D which is
analytic in the interior (if any) of D, then the set of all teR for which

Su‘?lL(zHl, 0-f(2i<e (3.2)

has positive lower density for every £>0.
34, Corolllry Let geH be given by any one of the following:

(@ gl=)= Z m=* for Re(z)>1, and hence by analytic continuation to Q.

Here L Sh <k, ng; h and k are relatively prime.

(b) g=L"4.,x) where m21 and y is a Dirichlet character. Then for any simply
connected compact subset D of Q and any continuous function f on D which is
analytic in the interior (if any) of D, the set of all teR for which

Suplg(z+it)— f(2)<é (3.3)
zeD

has positive lower density for every 6>0.
Proof. First let g be as in (a). Let x,, .. ,x,, be the Dirichlet characters modulo
k. For 1<j<n, let a,——z,(h) Then g= Z a,L(.,x)
Since D is simply connected, by Mergelyans theorem [8, p. 423] there is an
f*eH such that
Suplf(z)—f*(2)l <3- (3.4)
zeD

1
Let S denote the set of all heH such that #=0 or FEH. Suppose we have
fi1...J,€8 such that

Sup <— (3.5)

Z a, /i) - f*(2)

Clearly there is an >0 such that whenever for some teR (3.1) holds (with D,
=...=D, =D} it follows that

I}
s'.:‘? <3. (3.6)

l)":l aLiz+it,x) _J).:l a,Jj(2)
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Combining (3.4), (3.5) and (3.6), we see that whenever (R satisfies (3.1), it also
satisfies (3.3). Hence by Theorem 3.1 it suffices to exhibit f,, ..., /€S satisfying
(3.5).

Thus it is enough to show that the set { Y a,f;: €S, 1Sj<n; is dense in

H. Since we have n22 (as k23) this set contains S+S={/, + f;: f,,/,€S).
Now, for any bounded heH, there is a constant ¢ such that h(z)}%¢ for zeQ.
Hence both h—c and ¢ are in §. But h=(h—c)+c. Thus S+S contains the set
of all bounded elements of H. Since the latter set is dense in H, we are done.

In case g is given as in (b), we may similarly deduce the above result from
Corollary 3.3 provided we know that {f*™: feS} is dense in H for any fixed
m2 1, In view of the preceding paragraph, this set contains the image, under
the continuous surjective operation of m-times differentiation, of the (dense) set
of bounded members of H. Hence it is dense.

3.5. Corollary. Let g be as in 3.4. Then the set of all real parts of the zeros of g
is dense in [4, 1].

Proof. Let $Sa<bs1. We have to show that g has a zero in the strip
a<Re(z)<b. Let D be a closed disc contained in this strip. Let's choose feH
such that f has a zero in D and fis non-vanishing on bd(D). Let’s take J such
that 0<é< mf lf(z)l By 3.4 there is a teR such that (3.3) holds. Hence by

Rouche’s theorem [9, p. 116] the function z—g(z+it) has a zero in D. There-
fore g has a zero in D +it and hence in the strip a <Re(z)<b.

3.6. Definition, Let U be a strip a<Re(z)<b. We say that an feH(U) is
strongly recurrent on U in case for every compact subset D of U and every
e>0, the set of all teR for which Suplf(z+u) JS(2)<e has positive upper
density.

In an abstract setting, the notion of strong recurrence occurs in [4].

3.7. Theorem. Let 1Sa<bS|, and let ¢ be a Dirichlet character. Then L{., 1) is
zero free in the strip a<Re(z)<b if and only if L(., ) is strongly recurrent on
that strip. In particular, the Riemann hypothesis holds for L(.,x) if and only if
L(., x) is strongly recurrent on Q.

Proof. 1f L(.,y) is zero free on a<Re(z)<b, then for any compact set D
contained in the strip, and [or any £>0, we may substitute L(.,x) for fin 3.3
above (replacing, il necessary, D by its convex hull) to conclude that L{..z) is
strongly recurrent on the strip.

Let's now suppose, if possible, that L(.,y) is strongly recurrent vg
a<Re(z)<b and that L{.,x) has a zero p with a <Re{p)<b. Let D be a closed
disc contained in the strip and containing p such that L(., ) has no zero in
bd(D). Let's fix & such that 0<s< lnl' IL(z. x). By the assumed strong re-

currence, the set of all real t such thnt SuplL(z+H x)—L{z, ) <& has positive

upper density. Hence by Rouche's lheorem the set of all real t for which L(.. )
has a zero in D+1t has positive upper density. Therefore, il ¢=InfRe(z) and
D



A Joiot Universality Theorem for Dirichlet L-Functions 323

N,(T) denotes the number of zeros of L(.,x) in Re(z)2c and —T<Im(z)< T,

then limsup N‘;T)

T=o

L-functions. This establishes the converse.

>0. Since ¢>4, this contradicts a well-known property of the

38. Examples. (a) If {is given on a strip by an absolutely convergent Dirichlet
series then f is strongly recurrent on that strip. If, further, g is strongly
recurrent on the same strip then both f+g and f- g are strongly recurrent (see
01, pp. 42-44]).

(b) If [ is strongly recurrent on a strip U and for some m21, P: C"—C is
analytic then P(f, f, ..., f™ ") is strongly recurrent on U (this is a particular
case of Proposition 1.3.2 in [1, p. 25]).

(c) Il g is as in 3.4 then g is strongly recurrent on Q. This follows from 3.4.

(d) If g is given by g(z)=diz((l-2l ~5){(2)), zeC, then it can be shown that g

is strongly recurrent on the strip 1<Re(z)<1 as well as on the hall plane
Re(z)> 1; but there is no >0 for which g is strongly recurrent on the strip 1
—d<Re(z)<1+d. Therelore, even under reasonable growth assumptions, a
function given by a convergent Dirichlet series need not have “the hall-plane
of strong recurrence™. (Thus the recurrence conjecture in [1, pp. 56-57] is
false)

4. Preliminary Lemmas

41. Lemma. Let x,,...,x, be linearly dependent vectors in a complex vector
space. Let ay. ..., a, be complex numbers with |a] <1 (1 <j<n). Then there exist
complex numbers by, ....b, with |b|<1 (L<j<n) and at least one |b)=1, such

"
that 'y ayx;= 5 b,x,.
jml =1
Proof. By assumption there exist complex numbers c,, ..., c,, not all of them
n
2¢r0, such that ) ¢;x;=0.

J=1

Let K={a=(a),...,a)eC: lafs) for 1Sj<n}, and let I={teR: a
+icek}.

Here a=(a,....,a,) and c=(c,, ..., c,).

Since aeK, 0€l, so that I is nonempty. Since K is convex, so is I; therelore
I is an interval. Since K is compact and c+0, I is bounded. Let t, be one of
the end poinls of I, and let b=(b,,...,b,)=a+t,c. Clearly bebd(K). That is,
bis1 (1 gjsn) and |bf=1 for at least one j. Also,

n n n B
Y byx=Y apxtty ¥oex,= 3 ayx;.
i= J=1 = j=1

So we are done.
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42. Lemma. Let x,, ..., x, be points in a complex Hilbert space and let a,, ....a,
be complex numbers with |aJ<1 (1SjSn). Then there exist complex numbers
by, ...,b, with |by=1 (1 5j Sn) such that

N n 2 .
Y ax~ ¥ byxfl s4 F Ixh2

M Jm1 Jat

Proof. We prove it by induction on n. It is trivial for n=1. So suppose it is true
for n, and we prove it for n+1.

Let x,.....X,,, be points in our Hilbert space, and let a,,....q,,, be
complex numbers with Jaj<1 (1SjSn+1). Let y,,, be the orthogoral pro-
jection of x,,, into the span of x,,....x,. Thus x,,...,x,, ¥,., are linearly
dependent vectors. So by Lemma 4.1 there exist c,,....c,,; with |¢|$1
(1gjsn+1)and [¢;|=] for some j, and

" n
Z X+ aps ) Ynet =,Z € Xyt Cout Yaer:
J=1 -l

Casel. jo=n+1. That is, Ic,,,(=1. By induction hypothesis there exist
by, ....b, with b =1 (1 <j<n) such that

|LZ €x;— 3 bx)
-t J=

Letus put b, |, =c,,,. We have:

2 "
43 Ixh
j=1

L A+l n "
Y ayx,~ ¥ byx,= (Z ogx)=3 bl"i)"'("-m— we 1) Znat
J=1 =1 \jm 1 J=1

where z,,, =X,, | — V4. SO that z,, | is orthogonal to x,....,x,. Hence

n+ | A+l

Y. ayx,— 3, byx,
=1 jmt

2

n " 2
PNGEAD) br‘;“ S B
a1 Je1
é"“}z "x}||‘+4'"zn+|"z-

=1

But fizy e I3 =M1%py 12 = 1¥ps 1 I S Bx,4 B2 So in this case we are done.

Case Il. 15j,Sn. So without loss of generality we may take jo=1, so that ||
=1. By induction hypothesis there exist b,,...,b,,, with b]=1 2gjsn+1)
such that

n n 2 L) :
’Zlclxl"'cnﬂynn_lzzblxl_bnﬂ."nl §4lzz ""‘.I“l""‘“y"”ﬂ ’
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Let us put b, =c,. Then we have:
a+l A+l L] n
lg:l “JXJ_J; byx;= (}Z:zc.lxl"'cuﬂ}’un—E:lb/x/_bnuynu)
+@y = bas 1) 21
Therefore,

LE2

A+ )
IZ ax;= ¥ byx)
=1 J=1

2

N N 2
=“/I.1C1x)+cn+ ) yn+1_lzzb1x1_bu+ 1¥nes

2
+|a",—b,,”| "zn+1"2

S4- 31244 Wna 12 +4- 12,0, 12
jal
n+t A+l

=4 Y x24T lx,l*
Jm2 Jm1

This settles the second case too.

43. Proposition. Let {x,:n21} be a sequence in a complex Hilbert space X
satisfying:

0 ¥ Ix2<oo, and
Aml

(i) EI(x,,.x)l:co Jor xeX, x+0.
Aml

Then the set {Z a,x,.mzl,a,¢ell for léngm} is dense in X,

Proof. We have to show that for an arbitrary x,e€X and £>0 there exists a
sequence {a,: | SnSm} in [T such that

< @1

m
Xo— 2 a,%,
LYY

Let us fix an integer M so large that

00 el
Y Ieli<g #2)

Am M

Let K={ S byx,: |blS1 for M<n<m and m>M ). Clearly K is convex.
=Ml

First we show that K is dense in X. If not, then the closure of K is a proper
closed and convex subset of X, and hence by the separation theorem 3.4(b) of
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[7. p. 58], there exists xeX x+0 such that {Re(x,y): yeK} is bounded above.

That is, there exists a finite constant ¢ such that Re Z h,(x,,.x))gr
Ao
whenever m>M and [, S 1 for M <n<m. In particular, choosing b€/l such

that b,(x,, x)=Kx,.x)| for n>M, we find that ) [(x,,x)} Sc for m> M. Hence
& n= Mol

¥ l(x,. x)| < 0. Since x#0, this contradicts the assumption on {x,}. Thus K is
LR

dense. Hence there exists a sequence {b,: M <n<m} with |b| S | such that

™ o
T buxt ¥ XX
nel

[ M+ 1

€
<5 4.3)

By Lemma 4.2, there exists a sequence {a,: M<n<m} in [T such that

Y gy~ Y b,

nw M4+ 1 AmM4l

2 m
<4 % k%
A=l

Hence [rom (4.2), we obtain

m m
a%,= Y bx,
na ¥ 41 n=M+1

£
s-.
3 (44}

Putting a,=1 for 1 £n< M. and combining (4.3) and (4.4}, we obtain (4.]).

4.4. Proposition. Let {f,:m21} be a sequence in H (f,={f}..... " m21)
which satisfies:
(i) whenever p,. ..., n, are complex Borel measures with compact supports

comtained in Q such that

x

z

S [fdy)

=1

< oo, we have _[z'(lu,(z)=0far 1<jsn,  r=0,1,2....

and (i) Y Suplf,(2)*<o0 for each compact KSQ. Then the set of all sums
ma1 ek

M

Y 4, Sy with MZ 1 and a,€ll is dense in H".

me=

Proof. Let g=(g'.....g" e H" be arbitrary, let £>0 and K be a compact subset
of 2. We have to exhibit a finite sequence {a,: 1 Sm<M) in [T such tha

M

S_gf\g(z)— Y anful2) <&

i
Let y be an analytic simple closed curve lying inside @ and properly
enclosing K. Let U denote the region enclosed by y. Consider the Hardy space
H,(U) (see [3. pp. 168-175] for definition and other properties used below),
Let X be the Cartesean product of n copies of H,(U). H,(U) is a Hilbert space
with an inner product (.,.). Let's define {...> from X xX 10 € by (g,.g>

=Y (g}.g}). Then (...) is an inner product on X which makes X into a

i=1
complex Hilbert space. Let ||. | be the induced norm. f,, g may be regarded as
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points in X. Clearly there is >0 such that whenever <§, it

Z a, fu(2)-2(2)

-

M
Zl dy fn—8

<e. Thus it suffices to show that the set

follows that Sup

M
{Z a,f:Mzl,a,ell for 1§m§M}

ma 1

is dense in X.
Now the assumption (i) above implies that Z |l /12 < co. Hence by Pro-

position 4.3, it suffices to show that whenever hEX satlsl'es

mill<f..,h>l<eo @)

it follows that k=0,
So let us assume (4.5). There exist complex Borel measures g, ..., u,, with
compact supports contained in y, such that whenever geH has continuous

extension to the closure of U, it follows that (g, h)= Z fg’dp,. (Indeed, the

density of B relative to the normalised arc-length measure of y equals the
complex conjugate of the boundary value ol' hyon y).

Hence (4.5) may be rewritten as Z

Z If/du1‘<oo Therefore, by assump-

1=
tion (i), jz’d;xl 0 for l_j<n r= 0, 1,2 . Thus A/ is orthogonal to all the
polynomials. But since y is analytic, the polynomials are dense in H,(U).
Hence =0 for 1 <j<n. That is, h=0. So we are done.

45, Lemma. Let u be a complex Borel measure with compact support contained

in Re(z)>a. Let f be given byf(z)=]'e""du(s), zeC. Let's assume that { +0. Then
I

limsup ogl/ix} |£(X)l >a.

&
Proof. Clearly f is an entire function of exponential type. A simple com-

Iu()

putation shows that its Borel transform F is given by F(z)= for z

oulside the support of u. Therefore the conjugate indicator diagram of f is
contained in the convex hull of the support of 4, and hence it is contained in
Re(2)>a. Since by assumption f %0, an appeal to Theorem 5.3.7 of [2, p. 74]
completes the prool.

46. Lemma (Bernstein). Let f be an entire function of exponential type, let

{4,:nZz 1} be a sequence of complex numbers. Let a, B, 6 be positive reals such
that

(i) timsup 08U/ (£
Yy-dﬂ\" y =
) y—d 28 Im—nl,  mn21,

I
0 29
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and

(iv) af<m.

Then limsup

LET

limsup

x—oc
x¢R

log | f(A) _ log|f (x)|
Al x

Proof. First suppose f=1, so that 0 <a<n. Also, if & is the indicator lunction
of f then by hypothesis (i), » (;—)ga, h (—%)éa. So by Theorem S5.1.2 of [2

p- 66], h{8) <h(0)CosB+«lSind] for I9I§;. Also, as f=1, lim %: 1. Hence by

Bernstein's theorem, the stated conclusion follows in this case (see [2, p. 185]
and also the remark in 4.7 below).
One obtains the general result by applying this special case to the system

S, A% «*, 6* where f*(2)= f(B2), /l:=%", a*=ap, 6‘=%.

4.7. Remarks. (a) The statement of Bernstein’s theorem as given in 2, p. 185] is
false. A counterexample is given by f(z)=Sin(rnz), az=§-, a=2 b=0 J=n4

=1. An examination of the proof shows that the correct statement is obtained
by replacing the hypothesis “h(8)<aCos8+bISind™ by ™h(0)<h(0)Cosd
+bISin6|™. It is this rectified version that we have used in 4.6 above.

(b) Arguments similar to those in 4.1 to 4.3 above have been used by
Drobot in Trans. Amer. Math. Soc. 142, 239-248 (1969), and by Fonfl in Math.
Notes 11, 129-132 (1972), in order to prove results regarding rearrangement of
series in Hilbert spaces.

48. Lemma. Let [ be an entire function of exponential type such that

limsupw> —1. Let h and k be mutually prime positive integers. Then
x~00 x
xeR

2 |flogp)=co.

ot

Proof. Let «>0 be such that limsupwga. Let's fix B such that

0<ﬂ<E. 2 Y

-4
Suppose, if possible,

S |f(log p)l < co. (4.6}
ik

Let 4 be the set of all positive integers n such that there exists x with (n
~4B<x<(n+4)f and |f(x)|Se ™ Then

1
Y 1flogp)2 T Z3Ifllogpl2 ¥ £X~,
n atA i P

pa
modk
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where Z? denotes a sum over all primes p such that p=hmodk and (n
-YB<logp<in+)p.

Let 17, ,{x) denote the number of primes p<x such that p=/i(mod k). Well
known estimates of Hadamard and de la Vallee Poussin, logether with the
asymptotic expansion of the logarithmic integral, yields the result:

1, (%)==~ (x(log )~ + x(log x) =2 + O(x(log x)~*)),

1
ok}
where ¢(k). as usual, denotes the number of Dirichlet characters modulo k.
Hence. summation by parts gives the estimate

1 =X
,;,p ¢(I\)Ioglogx+Ck+0(logx) )

mndk
where C, is a constant depending only on k. Therefore, putting x,=exp
=48 and x,=exp(n+}) § we have
1 1 1
-= Y = ¥ -+0(x;")
P §x P ps5x:
1] pEh
modl modk

o

——(loglog x, —loglog x,)+O(x; ')+ O(log x,)~?)

¢(k)
-5’ H'*"(, =)
=531 Ge)

Thus

1 l 1
n% (W n (F)) _I;‘ E‘
2 Z Z:lf(logp)l (by definition of 4)

Z 1f{logp)l

mndk
<o  (by assumption (4.6)).

1 . . .o
Hence Y - <. A fortiori, the natural density of 4 equals one. That is, if we
A
write A={a,:n2 1) with a, <a, <... then lim —=l
n—0
Now, by definition of 4, there exists a sequence {4,} such that

(a,-Dp<i,Sle, +HB and |f(A)Se ™

Therefore
. A
lim ;"=ﬂ and limsuphguﬂg—l.

LR A
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Hence by Lemma 4.6,

limsupl—wg -1

x=0o
xeR

This contradicts the hypothesis on f; so that (4.6) must be false.

49. Lemma. Let k21, and let ,, ..., , be distinct Dirichlet characters modulo k.
For primes p, let f,eH" be defined by f,’(z):zl(p)p‘:. 2eQ, 1 SjEn. Let x4>0.
Then the set of all sums of the form ). a,f,, with a,ell and x>Xxq, is dense
in H. X<pRx

Proof. In view of Proposition 4.4, it sullices to show that whenever u,.....p,
are complex Borel measures, with compact supports contained in &, satisfying:

z

[

,Z. [fiduf <o @1

it follows that
fzduf2)=0 for ISjsn r=012,.. (48)
For 1 Sh<Sk with (h k)=1, let the complex Borel measure v, be defined by
n
W=y 1M p;. Then (4.7) may be rewritten as:
jat

Y Ifptdvfz <o for 1Shk (k=1

4

Or, defining g, by g,(z)=[e~*"dv,(s), ze C, we have

Y. lglogpl<co. (49)

pEhmodk

If for some h, g, £0 then, by Lemma 4.5,

10glg,(»
limsup —ogli"( AL @10

X—0o
xeR

But (4.9) and (4.10) together contradicts Lemma 4.8. Hence g, =0. Diflerentiat-
ing the integral representation of g, r times, and evaluating at z=0, we oblain

f2dvy(2)=0. That is, ) x,(h)§z dpfz)=0Tfor 1Shsk
=1

The orthogonality relation of the Dirichlet characters imply that they
are linearly independent over €. Hence we have (4.8).

4.10. Lemma. Let k21, and let y,, ..., %, be distinct Dirichlet characters modulo
k. For primes p, and aell, ler's define g,{.. a)eH" by gh(z.a)=(l —ay,lp)p~3)~".
zeQ, 1 SjSn. Then the closure of the set of all products [ g,(..a) with x22

pSx
and a,ell, s the set S" where S={feH f=0o0r }EH}.
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Proof. For primes p and well let h(.,q)eH" be defined by M(..«)
=loggl(..a). 1£jSn. Clearly it suffices lo show that the set of all sums
Z (.. 2,) with x22 and «,€/7 is dense in H". Let he H". K a compact subset

pix
of 2 and £>0. We have to exhibit x22 and a sequence {«,:p<x} in [T such
that

Suplh(z)— 3 hy(za,)<e (4.11)
seK pSx

Ciearly ZSupIa,,L(z)—h,(z,aJkoo uniformly for all sequences {a,} in 1,
FRELLY

where f, is as in Lemma 4.9,
Hence we may choose x, so large that

P>xp 7

b} Suple, f,(z) — hy(2)] <§ “12)

for all sequences {a,} in /1.
By Lemma 4.9 there is x>x, and a sequence {a,: xo <p<x} such that

Suplh(z)— ¥ h(z)— Y a,f,,(z)|<§. 4.13)
ek pSx0 Xo<pEx

Let us put x,=1 for p< x,. Then (4.12) and (4.13) together imply (4.11).

5. Proof of the Main Theorem

We need one (inal lemma from which Theorem 3.1 will be readily deduced.

S1. Lemma. Let k21, and let i, ..., 7, be distinct Dirichlet characters modulo k.
Let f=(f",....f"€eS". where S is as in Lemma 4.10, Let D be a compuct subset
of Q and £>0. Then the set of all real t such that

Sup Sup|L(z+it, 1) —fH(z)<e
185180 zeD

has positive lower density.

Proof. Let AeH" be defined by A=(A4'....,A". A’=L(., ). Clearly it suffices
to show that the set of all real ¢ such that

SuplA(z+it)—f(z)| <e (5.1}
ceD

has positive lower density for every £>0.
For positive integers 1, let A,€H" be defined by

'
AD=T1U—xfpdp7™", 260, 15j3n
im)
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Also, for positive integers /, and a=(x,, ..., a)e T, let A(., 2)eH" be defined by
!
Alza)=[]0-xdp)ep?) ™",  zeR 15jgn
Pl
Let E be a compact subset of Q such that D is contained in the interior of E.
Let 5>0 be such that whenever geH" satisfies | |g(z)]*d=<d. it follows that
E
Sup|g(z)|<§. Let ! be a large positive integer (to be specified laler). By
zeD

Lemma 4.10, there exists an a=(x,,...,a,) in [T’ such that
Suplaz, 0 - f(2) <= (52
z€E 2

Since the real-valued map on Ex 7' sending (z.a) o |A(=.2)—f{:)] is uni-
formly continuous, there exists a nonempty open set U< /1" such that (5.2)
holds for all xelU. We choose U 1o be & p-continuity set (i.e., p(bdL')=0) where
u is the Haar probability measure on /7"

Since logp,..... log p, are linearly independent over rationals, it follows by
Weyl's criterion (see [5]) that the net {(p; ", ....p,"): teR} is uniformly distrib-
uted over [T Hence il V denotes the set of all real ¢ such that sz,

—it

=(py".....p " is in U. then V has positive densily d(V}=pu(U)>0.
For teV, ¢,eU, and hence S_I;lglA,(Z, a)—fz) <§. That is, we have,
SuplA,(z+in—f(2) <§ for reV, (53
ek

Let W be the set of all teV such that
flAz+in=-Alz+indz <.
E

By choice of 8, we have
SuplA(z+i1)—A,(z+|'l)|<§ for teW. (541
zeD

(5.3) and (5.4) together imply that (5.1) holds for 7€ W. Hence it suffices to show
that d(W)>0. Suppose not.
Then, clearly,

-
I =liminf= § LU =T [IAC+i0 = Adz +i0 dzdi2sdV) (55)
T 2T 3 i

That is, I 26 p(U).
On the other hand,

| T
[ScoSuplimsups=— [ I(A(z+in— ALz +in*d,
ek T~ 2T 2p
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where ¢, is the Lebesgue measure of E, so that 0 <c¢, < 0. (5.3) shows that for
2

te¥, Sup |4z +it)* S¢, < o0, where ¢, = G+Sup|f(z)|) .
H13 ek

Hence

|_Alztig]?
Afz+it)

l T
1Scoc, Suplimsup— [ 1,(t
Scoc, Sup l;n_sgp”_fr WA

where | is the constant function (1,1,...,1)e H".

Let I be so large that all the prime divisors of k occur among p,.....p,.
Then. since U is a u-continuity set and since {«,: teR} is uniformly distributed
on 7', it can be shown by imitating the proof of Theorem 9.5! in [9, pp. 304-

T
306], that 71’1_1112—7_ -I'r I(0).

2

‘ At IO e ywynzm1,

T Az

the convergence being uniform for ze E. Here Z* denotes a sum over all m> |
which are relatively prime to p,,...,p,. lf we put x,=min{Re(2): ze £}, so that
Xo>3%, then we obtain

ISncoe p(U) Y n=2=, (5.6)

mui+]

Combining (5.5) and (5.6), and noting that 0<u(U)S 1, we obtain:

Y nze>0 (6]

LIV

where c=

does not depend on /.

But if / is chosen sufliciently large, then (5.7) is [alsified, so that for such an
f we must have d(W)>0.

5.2. Proof of Theorem 3.1. For | <j<n, since f; is continuous on the simply
connected compact set D) and analytic in the interior of D, there is a sequence
|P,.;} of polynomials such that P, (z)-fj(z) uniformly for zeD; (Mergelyan's
theorem). Hence, if we put g,=F, , for a sufliciently large m, then g (z)+0 for
€D, and

3 .
Suplfiiz)—g <5, 1Sjsn (5.8)
26D, 4

Since g, is a polynomial, it has only finitely many zeros. So we may choose a
simply connecled region E, containing D, such that g(z)+0 for zeE;. Hence
there is a continuous version logg, of the logarithm of g, on E,. Clearly logg;
is analytic in the interior of D,. There is a sequence Q,, ; of polynomials such
that @, —~logg, uniformly on D, Hence, il we put Iy=exp(Q, ) for a suf-
ficiently large m, then €S and

Suplga)~hAl<S, 1%jsn. (59)
30D 4
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Combining (5.8) and (5.9) we obtain
£
Sup S -1 <z
Sup Suplfila)=hyizl <3 (510
where h=(h,,...,h)eS"
Also, by Lemma 5.1, the set of all real ¢ for which
£
Sup Sup|Liz+it,q) =<z
SRS < B

has positive lower density for any compact subset D of Q which contains all
the D;'s. But in view of (5.10), any real ¢ which satisfies (5.11) also satisfies (3.1).
This completes the proof.
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