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In this paper we prove global univalence results in R* when the Jacobian matrices are of the

Leontic{ type. Proofs of these make use of idcas from Gale-Nikaido and some nice game
theoretic results on completely mixed games due o Kaplansky.

1. Introduction. Recently global univalence theory has received considerable at-
tention partly because of its usefulness to problems relating to Mathematical Econom-
ics, see for example Mas-Colell [8], Nikaido [11,12] and partly because it is a natural
extension to the classical implicit function theorem. Another area where global
univalence theory is applied is in nonlinear complementarity theory—see Kojima and
Megiddo [7]. For other applications see Parthasarathy [13).

Let F be a differentiable map from £ C R” 1o R”. We are interested in finding
suitable conditions on F and & so that F is globally one-one in Q. It is well known
that nonvanishing of the Jacobian alone will not suffice for global univalence 1o
prevail. Generally two approaches are followed 1o obtain solution to the global
univalence problem. For example Hadamard [4], Kestelman [6], McAuley [9) and
Plastock [15] have placed topological assumptions on the map F and  while
Gale-Nikaido-Inada, Garcia-Zangwill [3] and Mas-Colel! placed strong conditions on
the Jacobian matrices to obtain results on global univalence. For a comprehensive
account of their results see Parthasarathy [13].

In this paper we follow the approach taken by Gale-Nikaido and prove univalence
results in R*. It is not clear how to extend Theorem 1 1o higher dimensions. Proofs of
these results make use of ideas from Gale-Nikaido and some game theoretic results on
completely mixed games due to Kaplansky [5]. We also give a counterexample to show
that theorem 2 may not be valid in higher dimensions. For notations and terminology
we follow [2,13].

Let  be a nonempty set in R”. Whenever,

Q=(x:x€R" a,<x;<b for i=12...,n),

Qs called a rectangular region. Here a,, b, are real numbers where we may allow
some or all of them to assume —oo or +o0 and x, is the ith coordinate of the
vector x,

Let F: @ = R” be a mapping defined by F(x) = (f(x). fo(x),.... f,{x)) where
each f{x) is a real valued function on §. Let F be differentiable in —in other words
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for x, a€ ),

109 = 1@ + E @)% ) + Ol = )

for i = 1,2,..., n where O()jx — al)/]ix — al]| = 0 as x - a. The Jacobian matrix J
of the mapping F at a point x is given by J(x) = || f,,(x)|l where f, (x) = 3f(x)/dx,.
If the partial derivatives are also continuous then F is called a conlinuously differen-
tiable map.

Let A = [a,/] be a not necessarily symmetric real n X n matrix. Call 4 a P-matrix
if every principal minor of A is positive. Call A an N-matrix if every principal minor
of A is negative. 4 is said 10 possess positive dominant diagonal property if there exists
a strictly positive vector d = (d,, d,,...,d,) where each 4, > 0 such that a,d, >
Ly jeidayld, for every i=1,2,....n. A is said to be of Leontief type if the
off-diagonal entries of A are nonpositive.

It is well known that a matrix A with positive dominant diagonal property is a
P-matrix. If A is of Leontief type and il there exists a positive vector d =
(d\,dy,...,d,) with Ad'> 0 (here each coordinate of Ad’ is positive) then A is a
P-matrix. For other interesting properties of P and N matrices see (10, 13]. We are
ready to state the following which we need in the sequel.

GLOBAL UNIVALENCE THEOREM (Gale-Nikaido-Inada). Ler F: Q C R" = R be a
differentiable map where @ is a rectangular region. Then F is globally univalent in Q if
either one of the following conditions holds good.

(a) J (= Jacobian of F) is a-P-matrix for every x € Q.

(b) J is an N-matrix and F is a C' map throughout Q.

For a proof see (10, 13].

ReMARK 1. We can slightly weaken the hypothesis under (b) where n > 2. That is
global univalence prevails if J is almost an N-matrix (by that we mean that the
diagonal entries are nonpositive and other principal minors are negative) and Fisa C'
map throughout §.

We will now describe the game theoretic results due to Kaplansky. In order to do
that we need some preliminaries.

A two-person zero-sum matrix game can be described as follows: Player 1 selects an
integer i (i = 1,2,..., m), and player 2 selects an integer j (j = 1,2,..., n) simulta-
neously. Then player 1 pays player 2 an amount a,, (which may be positive, zero or
negative).

A strategy for player 1 is a probability vector ( p,, p;,-.., p,,). The idea is that he
will choose integer i with probability p,. From von Neumann's fundamental results we
know that there exist strategies ( p,, p3...., p,,) and (4. 4;...., ¢,) and a real number
v such that

Tpa <o forj=12,....,n and
7
Yqa »v fori=1,2,...,m.
J

This v is called the value of the game and the strategies are called optimal strategies
for the two players. In the game we described, player I is the minimizer (that is he
wants to give player II as little as possible) and player I is the maximizer.

A strategy is pure if it has the form (0,0,1,0,...,0), otherwise it is mixed. In case
each p, > 0 we call the strategy p = (p, P2, ..., Pn,) completely mixed. 1f the only
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optimal or good strategies are completely mixed, we shall call the game completely
mixed. We are ready to state Kaplansky’s results.

(i) If player 1 has a completely mixed optimal sirategy p = (p,, p3.-... P,,) then
any optimal strategy ¢ = (qy,. .., q,) for player 2 satisfies L,a,,q; = v, for all i.

(ii) If m = n and the game is not completely mixed then éoth players 1 and 2 have
optimal strategies that are not completely mixed.

(iii) A game of value zero is completely mixed if and only if (a) its matrix is square
(m = n) and has rank n — 1 and (b} all cofactors are different from zero and have the
same sign.

(iv) The value v of a completely mixed game is given by v = |A|/ZLA,; where 4,
are the cofactors of a,, and |A] = determinant of A. For a proof of these results see
Kaplansky [5]. We freely make use of these results throughout the paper and we refer
them as simply Kaplansky. In fact Raghavan made use of these results to give several
equivalent characterizations of ingular M-matri interested readers should see
116).

2. Main results and their proofs. In this section we state and prove two univalence
resulls for rectangular regions in R* when the Jacobian matrices are of Leontief type.
We also give a counterexample in R® to show that Theorem 2 may not be valid in
higher dimensions. We make use of Kaplansky’s results on pletely mixed games to
prove the following two lemmas, that are needed in the sequel.

LemMa 1. Let

ay 4 4y a4y
ayn 8 ap a4y
ay 4y a4y 4y

dq 8y Gy Ay
be a 4 X 4 nonsingular matrix with the sign structure

RS

|For example a,; < 0, a4, > O etc.] Then exactly one of the following statements holds
good always:

(i) the value of A and the value of A' are positive,

(ii) the value of A and the value of A' are negative.
If (ii) holds good, then — A is a P-matrix.

PROOF. Suppose the value of A is less than or equal to zero. Then from the sign
structure of A, we can conclude that every oplimal for the minimizer has to be
completely mixed. Hence from Kaplansky we may infer that the game is completely
mixed. Since |A} # 0, value can never be zero. Thus either (i) must hold or (ii) must
hold always.

If (i) holds good, then —A has positive dominant diagonal property (10] and
consequently —A is a P-matrix,

Lemma 1 holds good for any n where A is a nonsingular matrix of order n whose
diagonal entries are negative and off-diagonal entries are positive. If |A| < 0 in Lemma
1, then clearly (i) cannot hold good since —A is a P-matrix of order 4 and
consequently (i) must hold good always. In other words when » is even and when
|4] < 0 then the value of 4 and the value of A’ are positive with the above sign
struclure.

+ o+

++ 41
|+ 4+

-+
+ -
+ o+
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What happens to Lemma 1 if we allow some of the entries in A to be zero? We have
the following lemma.

LEMMA 2. Let A be a 4 X 4 nonsingular matrix with the following (weak) sign
Structure

€0 »0 »0 >0
A=|20 <0 >0 >0
>0 »0 <0 >0/
>0 20 20 <O

Further suppose |A| > 0. Then exactly one of the following statements holds good always:
(i) the value of A and the value of A' are positive,
(ii) the value of A and the value of A' are negative.

If (ii) holds good then —A is a P-matrix.

ProOF. We will first show that the value cannot be zero. Suppose the value is zero.
Clearly no | strategy is pletely mixed. For if x = (x,, X;, X3, x,) with
x,> 0 (for all i) is optimal for one player then from Kaplansky, there exists a
probability vector y with Ay = 0 but this is impossible as A4 is a ingular matrix.
Suppose x = (0, x,, X3, x,) with x,> 0 (i = 2,3,4) is an optimal strategy for the
minimizer = (who chooses the rows) then x4 < 0. This means

<0 20 20 20
0 <0 »0 >0
0 20 <0 >0/
0 20 20 <0

A=

Since | 4] > 0, it is clear the 3 X 3 principal minor (leaving out the first row and frst
column) is negative. Now one can easily verify that — 4 is a P-matrix. This means the
value of 4 is negative contradicting the value of 4 = 0.
Suppose x = (0,0, x, x,) with x, > 0, x, > 0 is an optimal strategy. Then x4 < 0.
This means
€0 20 =20 20
A=|20 €0 20 >0
0 0 €0 >0
0 0 >0 <0

Since |A4| > 0, the two principal minors of order 2 X 2 (the leading one and the other
got by omitting the first two rows and two columns) should keep the same sign. If both
are negative then this will imply that the value of 4 to be positive which contradicts
our hypothesis, namely, the value of 4 = 0. If both are positive then — A is a P-matrix
which will again contradict the fact that the value of 4 = 0.

If x = (0,0,0,1) is an oplimal strategy for the minimizer then once again one can
prove that —A is a P-matrix which will lead to a contradiction. Thus we have shown
that the value of A cannot be equal to zero.

If the value of A < 0 then clearly (from the sign structure) game is completely
mixed. Hence from Kaplansky the value of A’ < 0. (Here A’ = transpose of A.)

This terminates the proof of Lemma 2.

Lemma 2 may not hold good if 14| < 0 as the following simple example shows. Let

7 8 9
0 7 0
0 -7 0l
0 0 -7

QONH
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Clearly A satisfies the sign structure imposed in Lemma 2. Observe that 4] < 0, the
value of 4 = 0 and the value of A" > 0. (While computing the value of A, we assume
as usual minimizer chooses the rows.]

Let A satisfy the conditions of Lemma 2 and let B = —A. Then the conclusion of
Lemma 2 is valid also for the matrix 8.

Let D be a diagonal matrix of order 4 with exactly two entries +1 and the other two
entries — 1. Let A satisfy the conditions of Lemma 2. Let C = DAD. Then conclusion
of Lemma 2 is valid also for the matrix C. (Note that the sign structure of C is not the
same as that of A.) This fact is crucial to the proo! of theorems given below.

THEOREM 1. Let F: @ C R* - R* be a C! differentiable function where R is an
arbitrary rectangular region. Suppose the Jacobian J is nonsinguler and has the sign

structure
o-|

throughout Q. Then F is globally one-one throughout .

PrRoOF. Since F is a C' differentiable funcuon it is clear from Lemma 1 that value
of J and value of J are positive or hroughout £. If value of J is positive
thrqughout @ then it is & P-matrix lor all x € @ and univalence prevails from
Gale-Nikaido's theorem.

Suppose value of J (as well as value of J') is negative throughout Q. In this case
consider the map G = —F. Note that the sign structure of J; will be

-+ + 4+
+ - o+ 4+
+ o+ - 4|
T z

+ o+

b+
L1+
T+11

+ 10
[AE———

To complete the proof we have to prove the following: If a €  and if G(x) £ G(a)
and x > a then x = a. We imitate the proof as given in Theorem 3 in [2].

Let X=(x: x€8, G(x)<G(a) and x> a) and Y = X\ {a)}. Let X be a
minimal element of Y. Two possibilities occur ) X > a, (ii) X, = a,, E, za, jai
Case (i) can be disposed of as in Gale-Nikaido [2]. If X, = a;, and i, 2a, i then
clearly from the sign structure of the Jacobian of G we have g,(X) > g;(a) contradict-
ing G(X) € G(a) where G = (21 82 8y 84)-

Now unival of G i This can be seen as follows. Suppose G(b) =
G(a). b+ a.lfb>a, lhe above observation implies & = a leading to a contradiction.
I b, < a4, b, > a, then g,(b) > g,(a) (from the sign structure) leading 10 a contradic-
tion. If b, <ay, b,<a, and b, >a, i=3,4, then define H = DoGoD where
Dx = (—x,, —x3, X, x;). (Here x = (x, x;, X3, x,)). Now one can verily that the
sign structure of the Jacobian of the map H will be

Lt +

I1+1

+101
T+

Let H=(hy, hy, by, b)) and H = (ky, by, by, hy). Then the sign structure of the
Jacobian of H will be of the Leontief type. Note that H(b*) = H(a®) where
D(a) = a* and D(b) = b* and b* > a* Now we can conclude from what we have
shown already that a* = b* or a = b leading 10 a contradiction. This termi the
proof of Theorem 1.
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What happens to Theorem 1 if we allow the partial derivatives to vanish at some
points? We are able to settle the question when |J| > 0 throughout Q. The problem
remains open when |J| < 0 for every x € 9. We are ready to state the following.

THEOREM 2. Let F: 8 C R* — R* be a C! differentiable function where Q is an
arbitrary gular region. Supp the Jacobian J is ingular with 1J] > 0
throughout @ and has the following (weak) sign structure

>0 <0 <0 <0
J=|%0 20 <0 <0
<0 <0 20 <O
<0 <0 <0 >0
throughout Q. Then F is globally one-one throughout Q.
Proor. We will only indi the rel dificati equired as the proof is

similar to Theorem 1. Since F is C' differentiable, value of J (as well as value of J') is
positive or negative throughout @ (see Lemma 2). If value of J is positive then J is a
P-matrix and we are done. Suppose value of J (as well as value of J') is negative
throughout §. Let G = —F. Thea the Jacobian of the map G satisfies the coaditions of
Lemma 2 throughout @ and further we assume value of Ji; is positive in €. To
complete the proof it is enough if we prove the following. If a € &, G(x) < G(a) and
x » a then x = a.[To prove this we may and do assume that @ is a compact rectangle
and this entails no loss of generality.) As before (sec Theorem 1) let X be the solution
set, Y= X\ {a} and X be a minimal element of Y. Since value of J; is positive,
X > a is impossible, Suppose X, = a, and X, > a,, i = 2,3,4. As the value of J; is
positive at X, the first row of J; must contain at least one positive entry. This means
81(x) > g,(a) where G = (g,, 8, 81 84) but this leads to a contradiction to the
assumption that G(X) € G(a).

Suppose X, = a,, X, = a, and X, > a,, i = 3,4, If the first or the second row of J;
at X contains one positive entry we can conclude either g,(X) > g,(a) or g;(X) > g,(a)
which will lead to a contradiction. Suppose J; at X takes the following form

<0 =0 0 0
> <0 0 0
20 20 <0 =20/
20 20 20 <0

Since the value of J; at X is positive and since |J;| > 0, it follows that the principal
minor of order 2 X 2 (omitting the first two rows and two columns) is negative at X. In
fact value of this 2 X 2 matrix is positive. Let G = (g, g,) and & = {(x,, x,):
(a,, a;,x;, x,) € ). Since G is differentiable and since X, > a,, X, > a, we can
construct for small positive ¢, x; + fuy > ay and X, + fu, > a, where uy <0, u, <0
with Jzu < 0 where u = (2). [Existence of the vector u is a consequence of the fact
that the value of the 2 X 2 matrix at X is positive.] For a suitable choice of ¢ > 0, (sce
case (i), p. 10 in [13))
8(ay, a3, y3, 7)) <830y, 0, %3, X4) and  g,(ay, a3, 33 1) < 8a(ay, @20 5. K)
where y; = X; + fuy, y, =X+ tu,.

Since y, < X, and y, < X,, from the sign structure of the Jacobian of the map G. it
follows that

81(a1, 4, 13, 1) < 81(a1, 05, %, %) and  g;(ay, a3, ¥y Ju) < 82(ay0 @5, %y, 7))
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In other words G(a,, a,. y3. y;) € G(a,, a3, %5,’X,) it [ollows that (a,, a,, Y EY
contradicting the minimality of (ay, a,, X,, X,). Thus the case X, = a,, X; = 0, and
X, > a, i = 3,4, is impossible.

Suppose X, = a,, X; = a,, X, = a, and X, > a,. If any oac of the first three entries
in the last column of J; at X is positive we will arrive at a contradiction to the fact that
G(X) € G(a). If all the first three entries in the last column of J; at X are zero, the
fourth entry in that column must be negative. This will mean that the value of the
mainix game J¢ at X will be less than or equal to zero contradicting our hypothesis
namely value of J¢§ is positive throughout 2. This compietes the proof of G(x) < G(a)
and x » @ = x = a. The rest of the proof can be repeated verbatim as the proof of
Theorem 1. This terminates the proof of Theorem 2.

REMARK 1. We are unable 10 prove theorem 2 when |J| < O throughout . The
main trouble arises due to the failure of lemma 2 when |J| < 0 if we want to imitate
the proof given here.

REMARK 2. Ongmnl proof of Gale-Nikaido's th uses ind: (sec
Theorem 3, p. 85 in (2]), but the proof of Theorem 2 (as well as Theorem 1) of the
preseat paper uses the sign structure of the Jacobian.

REMARK 3. Gale-Nikaido proves univalence in R” when @ is an open rectangular
region and when the Jacobian is a weak P-matrix (that is |J| > 0 and proper principal
minors are nonnegative). Compared to this result, Theorem 2 has limited scope as we
shall see below.

Now one can raise the following question:

Is it possible to extend Theorem 1 as well as Theorem 2 to higher dimensions?

We are unable 10 say anything as far as Theorem 1 is concerned, but we have a
counterexample in R® for Theorem 2. This example is based on an example given in
[14). We do not know the answer when n = 5 for Theorem 2.

Consiruction of caunlerexample Define / (u,v) = (Fi(u, v), F(u, v)) where
Ffu.v) = el —v?+3 and Fy(u v) = 4ve™ -’ Observe that |J|> 0 and
J(0. £2) = (0,0)—this map was constructed by Gale and Nikaido. Next define a
smooth map F of R? into itself by F(u, v, w) = (F(u, v), Fy(u, v). Fy(u, v, w)) where
Fyu, v, w) =10 + e2*) e’ + e~*)(e!®~ — £7'%). Note that F(u,v,0) = (F,(u.v).
Fy(u,v).0) and therefore F(0, +2,0) = (0,0,0). Now take a linear mapping 4 of R’
into itsell given by the matrix

/3 =23 13
a=l13 13 -2s30
173 13 173

Now define the mapping G of R into itself by G(x) = A~'o Fo 4(x). Note that G is
10t one-one and all the partial derivalives are positive [14]. Define a mapping H of R®
10 R® by H(y) = (—y1, —yp ~y) where y = (y), 35, y5). Now Lhe required map is
the following map L from R® to R%:

L{y,x) = (~G(x), H(y)) where y, x € R’
Note that G is independent of the first three di and H is ind dent of the

last 1hree coordinates. One can verify that the Jacobian of the map L is of Leontief
type and |J| > O throughout RS In other words the map L satisfies the conditions of
Theorem 2 but clearly L is not since G is not . Thus Theorem 2 fails in
higher dimensions. However we do not know the answer to Theorem 2 when n = 5,
However one can prove parlial results with some additional assumptions. These results
are stated in the next section.
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We close this section by giving an example to show that a matrix game has the value
greater than zero but a principal subgame (omitting a row and the corresponding
column from the given matrix) has the value 0. For example take

-2 1 1 1
1 -2 1 1
1 1 =2 1]
1 1 1 -1

As such results obtained by Charnes et al, [1] are not applicable to our situation.

3. Further extensions, remarks and open problems. One can extend Theorem 1
partially for n 3 5 as follows.

THEOREM 3. Let F: @ C R" = R" bea CV di_ﬂ'erenllable map 1 withn > 5 and R a
rectangular region in R”. Suppose the following jons are met thr Q:

(i) Jacobian J is nonsingular.

(ii) J has strictly positive diagonal entries and strictly negative off-diagonal entries.

(iii) Every principal minor of the Jacobian of order K X K is positive where K =
1,2,...(n/2) where (n/2) denotes the integral part of n/2. Then F is globally one-one
inQ

8

Essential ideas of the proof are already contained in the proof of Theorem 1 and as
such we will not make an attempt to prove Theorem 3. Now the following question
arises:

In Theorem 3, will (i) and (ii) alone imply global univalence?

Answer is yes for n < 4, but for general n > 5, it is not known.

In fact Theorem 1 can be proved under slightly weaker hypothesis.

THEOREM 1. Let F: @ C R* — R* be a C! differentiable map where @ is a
rectangular region in R*. Suppose the Jacobian J of F is a ingular matrix with the
following sign structure throughout Q:

20 —~ — —

Then F is globally one-one in .

Note that Theorem 1’ is not included in Theorem 2 since |J| < 0 is possible by our
assumptions io Theorem 1’. Next theorem includes Theorem 1 as well as Theorem 1"

It was pointed out in the previous section that we do not know whether global
univalence prevails in Theorem 2 if we assume |J| < 0 (instead of |J| > 0) throughout
2. However it can be proved under additional assumptions.

Call a matrix A decomposable if we can find two permutation matrices P and @
such that

B
re-[;
otherwise A is said fo be indecomposable. In particular a reducible matrix (whece

P = Q) is decomposable.

THeoReM 2. Let F: §CR* > R* be a C 1 dw'erennable /unclian where Q is a
lar region. Suppose the Jacobian J Is il P . lar and has the
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Jollowing sign structure:

»0 <0 <0 «0
J= <0 >0 <0 <0
<0 <0 >0 <0
<0 <0 <0 »0

throughout Q. Then F is globally one-one in Q.

Indecomposability makes the value of the game J to be nonzero and as such same
proof goes through as that of Theorem 2.

Does Theorem 2’ remain valid if we replace the assumption of indecomposability by
irreducibility?
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