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ON SOME INVOLUTIONS AND RETRACTIONS ARISING
IN TEICHMULLER SPACES
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§ 1. Introduction. Let T be the Teichmuller space of Riemann Surfaces
of a fixed finite type. The Teichmuller modular group is known to act
biholomorphically and isometrically on T (equipped with its Telchmull
metric). The fixed point sets of these mappings, which are non-empty
if the mapping is of finite order, are complex submanifolds of T
consisting of those Riemann Surfaces which carry a certain group of
automorphisms.

Let f be an involutory (i.e. fo f = 1) element of the modular group.
Then we define in § 3 a natural geometrical retraction, Hy, of T onto the
fixed point set 7Y of f. For example, We can thus associate naturally to
any compact Riemann Surface of genus greater than one a hyperclliptic
Riemana Surface of the same genus by choosing f appropriately.

In § 3 we study this retraction induced by f; we prove its continuity
and we are able to characterize its fibers (i. e. the sets H>)(x)) in terms
of geodesics (or quadratic differentials) determined by the eigenvectors
of the action of df (respectivly d°f) on the holomorphic tangeat space
(respectively cotangent space) of T at a fixed point x of f.

Using some general results of the author we are able to provide
conditions for holomorphy of the maps Hy in § 4.

*This rescarch is from the author’s 1980 doctoral thesis at Coraell University.
The author is very grateful to his thesls advisor, Professor C.J. Barle, fof suggesting
the problem here and for his support ard help.

The author is currently a Visiting Fellow at tho Tata Institute of Fundamental
Rescarch.
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In § 5 wo study in more detail one of thess retractions Hy on the
Teichmuller space T(1, 2) of ‘twice punctured tori’. We have an explicit
construction for a holomorphic retraction Hirom T(1,2) to the fixed
point set T of f. Comparing H; and H shows that they agree up to
first order approximation near their common target sct I/ even though
globally they are distinct mappings. The proof that H; and Hare
different mappings rests on an interesting result regarding the nature of
the fibers of the Bers fiber space over Teichmuller space.

The approximation of Hy by H leads to the vanishing of a certain
integral involving classical elliptic functions as explainedin §5. We
substantiate this Teichmuller theoretic result by utilizing some classical
function theory involving the evaluation of an unusual double-series.

Besides the new results about these natural retractions the paper also
proves some fundamental facts about the g y of the Teichmull
metric in Teichmuller spaces. For example we establish in Theorem 3. 14
that a Teichmuller geodesic is uniquely determined by its tangeat direction
at any point on it. The idea of that proof is due to C. J. Earle.®

We commence by presenting some necessary material on Teichmulier
spaces in § 2.

§2. Preliminaries on Teichmoller Spaces. As references for the standard
material below and for relevant deflnitions about quasiconformal map-
pings we cite Ablfors [1] and Kravetz [5].

Let U be the upper half-plane and G be a Fuchsian group acting on
U. Let L (U, G) be the closed linear subspace of L(U,.C) consisting
of cloments p satisfying

We(2)-2G)g'() = us)ae. forallg € G.

Let M(G)={n € Lu(U,G): ke < 1}. Given p € M(G)itis
classical that there is a unique quasiconformal (q.c.) automorphism w,

*A study somewhat simllar to the results of the present paperwas carried out
by Marden and Masur ‘A follation of Teichmuller space by twist invariant
diske" Math, Scand, 36 (1975) 211-228, 39 (1976) 232-238.
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of U which fixes 0, 1, .o and whose Beltrami coefficient is p. (Recall
that every q.c. automorphism of U extends continuously to an auto-
morpbism of the closure of U in the Riemann sphere). For p € M(G,
w, is compatible with G in the sense that G, = w, o G o W} isalso a
group of Mobius transformations of U.

For u, v € M(G) we set u ~ v (and w, ~ wy) if and only if
=W, ogoW =wogow' =g, foraligeG.
Then T(G) = M(G)/~ is the Teichmuller space of the group G which
has a structure of a finite dimensional complex manifold such that the
quotient map M(G) - T(G)is a holomorphic submersion when G is
finitely generated of the first kind. We write [u] for the equivalence
class of p.

If S, is a fixed Riemanon surface of type (g, k), (i.c. genus g with k
punctures), then we say (S,, f, S) is a marked Riemaon surface when S
is another Riemann surface of the same type and f : Sy - S (the ‘mark-
ing map’) is a q.c. homeomorphism. Two marked surfaces (S, f, 5)
and (S,, f', S') are called ~ equivalent if there is a conformal map
h: S - S such that the q.c. self-map (f') o h o f of S, is homotopic to
the identity. We set T(S,) = T(g, k) = ~ equivalence classes of marked
surfaces. As usual in Teichmuller theory we assume 2g—2 + k>0
to avoid a few well-known special cases.

When G is a Fuchsian group of the first kind without elliptic elements
such that U/G is a surface of type (g, k), say ;. then T(G) and T(g, k)
are isomorphic by a map « in the following maoner:

Given [g] € T(G) let a(fp]) be the marked Riemann surface (S,, f,,
U/G,) where G, = w, o G o wg!' as before, and f, : S, - U/G is the
map induced by w, : U+ U.

T(G) and T(g, k) will be henceforth identified via «, (G will always be
a fixed point free Fuchsian group of the first kind on U).

THE MODULAR GROUP, Let S, be a Riemann surface of type (g, k).
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Given a q.c. self-homeomorphism f: S, = S, wo get a bibolomorphic
mapping f* : T(Sy) = T(Sy

f‘[(S,, 8, s)] = [(so- -4 o f, )

J* is called the modular transformation induced by f. The quotient
group: g.c. self-homeomorphisms modulo those homotopic to the
identity, is called the Teichmuller modular group, Mod(g, k).

If ¢ € M(S,) represents (S,, g S) then the Beltrami differential p - f
represents f*[(S,. g, S)] where if f{w) = z and p = u(z) d7/dz in local
coordinates on Sy, then

_MNOm ) e ()
eSS T =Rt @D

TBICHMULLER'S THEOREM AND THE TEICHMULLER METRICI

The Teichmuller metric = on T(G) is given by

(el D = 3 iof g K(we + w7 o] = [u] and [1] = [}
where K(f) is the maximal dilatation of the q.c. map f.

On T(g, k) the Teichmuller metric js the one faduced from = by the
isomorphism a : T(G) = T(g, k); « becomes an isometry.

The modular group acts as isometries with respect to this complete
metric.

The integrable quadratic differentials Q(G) for the group G are the
holomorphic functions ¢ in U satisfying

$(g2)g'(z)* = $(z), forallze U, s € G
and

141 =[[ 146 1 dxty < o

U1e
If U/G = X we set Q(G) = Q(X), and M(G) = M(X).

DEANITION 2.1. Let X be a Riemann surface of type (g, k) and
$ € Q(X) be an integrable quadratic differential on X. Then, for ¢ in the
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unit disc A, p = t§/ | § | (eM(X)) Is called a Teichmuller-Belirami (T-B)
differential on X. (For ¢ = Osetyp = 0.) The T-B differentials form a
subset Mra(X) of M(X). We shall call ®X : Mry(X) - T(X) the restric-
tion of the quoticnt map ® : M(X) - T(X).

DEFINIiTION 2.2. Let f be a homeomorphism of 2 Riemann surface
X (type (g, k)) to another Riemanu surface X’ of the same type, Then
fiscalled a Teichmuller mapping if cither f is conformal, or f is q.c.
with complex dilatation equal to a T-B differential on X.

TreOREM 2.3 (TEICHMULLER). (i) Given two Riemann surfaces X and
X’ of type (g, k) and homeomorphism h : X — X' then there is a unique
Teichmuller map f: X - X' in the homotopy classof h; f has the property
that K(f) < K(f;) for any other g.c. h rphism f, in the h Py
class of h.

(i) Let Qy(X) be the open unit ball in Q(X) (equipped with the L*
norm). Then the map

g: Qo) =~ T(X)
g =% (1413 141)

is @ homeomorphism onto T(X).

given by

As a corollary we find that T(X) is homeomorphic to R4+,

We now study the Teichmuller metric more carefully.

TreoreM 2.4, The Teichmuller metric < on T(g, k) is a Finsler metric
making T(g, k) a straight space. In particular, given any X and X' in
T(g, k) there Is a unique geodesic on which they lie. Indeed, if X' = g($)
(notation as above) then the geodesic segment between X and X' Is

(8k$):0 < kg 1)
For relevant definitions and proofs see Kravetz [5] and Royden [9]. We
now define a Teichmuller geodesic disc:

DEFINITION 2.5, Let X € T(g, k) &nd ¢ € Q(X). Then the map
et > T(g, k) given by e,(2) = 07p(z§/1$|) is a holomorphic
isometry from the Poincare digc A to T(g, k) with the Teichmuller metric.
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The image of such an e, is called a Teichmuller geodesic disc. The images
of Poincare lines in A are Teichmuller lines in T(g, k).

THE Bers FIBER Spacs, Let G be a torsion-free Fuchsian group acting
on U with quotient surface U/G = X of type (g, k).

DEFINITION 2.6. (i) The Bers fiber space =,: FIG) = F(g, k)~
T(g, k) is defined by

FG) = (s} 2) € T(g, k) x C: p € M(G), 2E wi(U))
and
wole], 2) = [u]

Here the map w is the q.c. automorphism of the complex sphere fixing
0,1, 0 which has complex dilatation p on U and 0 on the lower half-
plane.

§3. Tavolutions and Induced Retractions on T(g, n). Let X be a Riemana
surface of type (g, n), (2g + n — 2 > 0), X being the closed surface of
genus g in which X is embedded.

Let £ € Mod(g, n) be an arbitrary involutory (i.., f o f = 1) element
of the Teichmuller modular group. As usual let T(X)/ = fix-point set
of fl={x € T(X) : fix) = x)). finduces a retraction Hy : (LX) » T(X)/
as described in the following.

DeriNmTion 3.1, For any x € T(X) define a map Hy by
Hyn) = {midpoin! of the Teichmuller geodesic segment joining x to
Sx), if x ¢ T(XY; x,if x € T(XY.
We claim that Hy is a well-defined retraction of T(X) onto T(XY.

All we need to show is that Hy(x) € T(X)/. This is clear since the
isometry f carries the geodesic segment from x to f(x) onto itself with
the endpoints reversed. Since f is an isometry the midpoint must be a
fixed point of f. (Sce also Kravetz [5, § 6)).

REmARK 3.2. For any involutory f € Mod(g, n) the set T(X) is a
non-cmpty complex-submanifold of T(X) and is itself analytically iso~
morphic to a Teichmuller space. This is well known; see Earle [2).
Henco we can ask whether the geomotrically induced retraction
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Hy : T(X) > T(XY is continuous, or holomorphic, etc. These questions
will occupy us in later sections.

ExampLg 3.3, Let X be a closed surface of genus g > 2. Let
f€ Mod(g, 0) be induced by the hyperelliptic involution on X. Then
T(XY is one compouent* of the set of hyperelliptic points in T(X),
Thus H; as defined in 3.1 gives a natural way to associate to any
Riemann surface of genus g a hyperelliptic Riemann surface of the
same genus.

DescRIPTION OF THB RETRACTIONS H;. We will prove that Hj is
continuous and then proceed to charactesize the fixed point sets T/ and
the fibers of these retractions. The description of I7 is known but is
included for uniformity and clarity of exposition.

DematioN 3.4 (8) Let b: E—> T(g, n) be the cotangent bundle of
T(g, n). We know that any S &€ T(g, n) represents a Riemann surface
of type (g, n) and the cotangent space to T(g, m) at § is the finite-
dimensional Banach space Q(S) of integrable holomorphic quadratic
differentials on S, with the norm:

1
i$1=3 18l
s
Let E, C E be the open subset of cotangent vectors of norm less than 1.

(b) Given ¢ € E, let b(¢) = S. Then ¢ is a quadratic differential
on S, and the Teichmuller-Beltrami differential | ¢ ||-¢/| ¢ | on S
determines & point g($) (as explained in Theorem 2.3 (ii)) in (g, n);

s =0k (141 £}

Whenever S € T(g, n), ¢ € Q(S) and p = ‘l% is a Teichmuller-

Beltrami (T-B) differential on S with ¢ € A (the unit disc), we shall say
that  is a T-B differential formed from ¢,

We are now ready to prove.

*[ thank a referee for correcting an Inaccuracy here.
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THEOREM 3.5, For any involutory f & Mod(g, n) the retraction Hy Is
continuous,

Proor. Counsider the map Ey — T(g, n) x (g, n) given by

$ — (5($), 8(9)-
By Earle {3) we know that this map is a homecomorphism. Following
bim we will call the inverse map F,

F:T(g,n) X T(g, n) > E,

Notice that F(S,, S;) = 0y € Q(S,) such that the T-B differential
4. 1-34/ | s | on S, represents the point S,. Now, the Teichmuller
geodesic segment joining S, to S, is {g(ké,): 0 € k  1}. A calculation
then shows that at the midpoint the value & is

=1 (b=t 3
b= i) @
Ll \e
where ¢‘(l-lws,n)
Let us define
m:E, > E,
by

m($,) = k¢, with k as determined in (3.1).
Setting | X f': T(g, n) > T(g, ) X T(g, n) to be the map
S+— (S NS)
Hy=gomoFo(l X ).

Fach member of this composition is readily seen to be continuous.
Hence the composite map H; is contiouous, as claimed. 0

we see that

We aim to describe exactly the fibers H7%(S) for any § € T(X)/. Let
£ be an iavolutory holomorphic automorphism of S whose residue-class
in Mod(g, m) is f.

Levwa 3.6. If =k I%'l € Mra(S), 0 )¢ € O(S), then - f&
Mrs(S) also. Indeed, if f*: Q(S) > Q(S) is the involutory linear co-
differential map induced by f on the cotangent space to T(g, n) at S, then

i L%
wf kTrel
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ProoF. In terms of local coordinates w and z on S let the holomorphic
map f be given from the w-patch to the z-patch by f(w) = z. Thenin
these local coordinates the mapping (f*)! : Q(S) -+ Q(S) is given by

$()dz — ($ 0 j)'(%'{v)’ dw, at w, Since £ lainvolutory, f*=(f*).

20 a2
Q)T &z

coordinate. Hence, calculating in local coordinates,

Now if ¢ = ¢(z)dz* in the z-patch, thea p= in this local

p-fw=k ‘(f SUm) f f(w) dw (See equation (2.1))
[$C70)| £'(w)

_ i S Sy @
|¢(f<w» [ Fmr
|f'¢ | (w) as claimed.

Since f*$ € Q(S) wo see p.-f € M:5(S), and we are done. [m]

DerinmmioN 3.7, (i) Simee f is involutory on Ti(g,n) and fixes S
(¢ T(g, ny/) the codifferential f* is involutory and linear on Q(S), and
bence has exactly two eigenvalues: + 1 and — 1. Let the corresponding
eigenspaces be called ES(4) and ES(—) respectively. f* on O(S) is an
Isomorphism since it is its own inverse, hence Q(S) = ES(+) @ ES(—).

(i) For any (0 )¢ € Q(S) let N: Unit disc A - Mra(S) be given
by \(1) = 'Fﬁ_l (T-B differential on § formed from §).
NOTATIONAL REMARK. When the base-point S & T(g, n) is kept

fixed we will write ® and @rp for O and ®F, and similarly drop
the superscript S from ES(+) and ES(—).

TuroreM 3.8.  The manifold of fixed points of f. T(XY, is precisely the
unlon of the geodesic discs given by images of e,, (0 #) € ES(+) (for
any S € T(XY we start with).

Proor. ¢ € E(+) implies f*¢ =4, s0if p=k [%_l’ (k € A), then
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p-f=pbyLemma3.6. Now, the modular group acts via
S(®rs(w) = Orsu- /)

Thus w-f =y implies that f fixes Orp(p) = ey(k), avy k & A, any
é € E(+). Thus the union of the images of e;, $ € E(+), is in (XY,
For the reverse inclusion notice that for any S, € T(g, n) we have

unique p = k I%"! € Mra(S) such that S, = 0S,(u) (seo Teichmuller's

theorem (Theorem (2.3)). If S, € T(g, nY then

f(S) = Sy, 50 Orslu - f) = Ora(p) (By Lemma 3.6 - f'€ Mri(S))
Hence p+ f= g by uniqueness of T-B differential representing S,.

Thus:
¢ )
k——t =k
TR 141
Now it is easily seen that two T-B differentials k I%-l and k I% are equal

only if ¢ is a positive multiple of §. So

Sf*$ = (some positive constant)- §.
But this implies ¢ is an eigenvector of f* with positive cigeavalue. The
only positive eigenvalue of f*is + 1, hence ¢ € ES(+) as was required
to prove. o

Thus we see that the + 1 eigenvectors at S & T(X) cull out the fix-
point set T(X), We will now sec that in the same sense, the — 1 cigen-
vectors at S € T(X) cull out the fiber H;(§)at Sasa union of geo-
desic discs.

THEOREM 3.9. The fiber of Hy at S € T(g, nY is precisely the union
of the geodesic discs given by the images of e;, (0 %)} € ES(—).

COROLLARY 3.10. The fibers of Hy are all connected topological sub-
manifolds of T(g, n) of (real) dimension = twice the complex dimension
of ES(=)(for any S € T(g, ny). And dim ES(—) = codimension of
T(3, ny in T(g, n).

The proofs require & sequence of Lemmaas,
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Lemma 3.11, Teichmuller distances from any point S on T(g, ny to
any pair of f-related points, Z and {(Z), are equal.

ProoF. Consider the geodesic segments joining S to Z(s/z say) and
the segment joining S to f(Z) (slyzy). Sinco fis an isometry fixiog S
and carrying Z to f(Z), it carrries slz to lyz) isometrically. Hence the
result, ]

LemMA 3.12.  The only point z on the Poincare unit disc, A, equidistant
from every pair k and — k, for all k € A, Is 2 = 0.

This is a simple fact whose proof is a calculation left to the reader.

LeMMA 3.13. S € T(XY and (0 #)$ € ES(—) implies
(Im eg) N (T(XY) = {S).
PROOF. Suppose there is a point §' # S also in Im ¢, N} T(X). Let

2€ A sothat gyz) = 5. Now ¢,(0)= S and §' # Smeans z3% 0
since e, is an injective embedding. Now notice that if

p = Ak = Iri k € A then

| ¢ |
p-f= k '¢| by Lemma 3.6
l(—:)l since ¢ € ES(—)
= —km= M(— k).
Now f(Ors(w)) = Ora(u /), and Ors o &y = ¢ 50
Sley(k) = ey~ k). (3.2

Now e,(2) = S’ € T(XY, s0 e,(2) is equidistant from every pair e,(k)
and e,(— k), for all k € A by equation (3.2) and Lemma 3.11. But
e, 1 A - T(X) is an isometric embedding; thereforo z is equidistant from
every pair k and — k in the Poincare metric on A, forall k € A. By
Lemma 3.12 we conclude z = 0 which contradicts S’ 3 S. 0

ProOF OF TaEOREM 3.9. Given (0 )} € ES(—) we will first show
Im e, C HfY(S).
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For any k € A, fley(k)) = ey(— k) by equation (3.2). SoZ € Imee,
means f(Z) € Im e,

But Im e, is a Teichmuller geodesic disc, so If it contains two points
it ins the geodesi t joiniog the two points. Thus H/(Z) &

Im ¢, if Z€ Im ¢;. But H{(Z) € T(XY, therefore

H{Z) € (Ime)) N (T(XV).
By Lemma 3.13 we see Hi(Z) = S, forall Z € Im ¢, as claimed

We are left to show that any S, € H7'(S) lies in some Ime,,
¢ € E5(—), (S # 5). This follows by an argument similar to the latter
part of the proof of Theorem 3.8. O

We have now obtained a complets description of T(g, n) and the
fibers of Hy in terms of the action of the codifferential /* on the bolo-
morphic cotangent space of T(g, n). We obtain & similar description in
terms of the differential of f(= df or f,) acting on the tangent space to
T(g,n). We nced the interesting result on Teichmuller geodesics given
below.

TuroreM 3.14. If two Telchmuller geodesics through a point
X € T(g, n) have the same tangent direction at X then the geodesics
colncide.

ProOF, With X as base-poiat of T(g, n) consider & tangent vector v
at X. Choose p € L,(X) to represent v, i.c.

dOx(y) = v, whers ®:M(X)-> T(z, n) {8 the quotient map. By
‘Teichmuller’s Lemma’, p andv € L.(X) represent the same tangent
vector if and only if

[ = =0forats e o
So ¥

%J‘J‘p¢=%J‘Iv¢fornu¢EQ(D-
X

So associated to v we have a uniquely determined linear functional /y on
Q(X) defined by
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Mg =3 U i Whore dOx(u) = v. ()

Now any geodesic-ray through X is the set { ( v ) 0t <]} for

some § € O(X), ¢ # 0. We can always normalize § so that || § | = L.
The tangent direction to the above geodesic at X is of course

¥ [
V= d0y (I_'ﬂ)' B= 3 € L(X).
We now claim that if /; is the lincar functional determined by v = d®(n)
as in (3.3), then ¢ is the unigue unit-vector in Q(X) with /y({) = 1. (That
L{}) =1 is clear). Indeed, suppose ¢ &€ Q(X) of unit norm and
I(¢) = 1. Then

'=%U% +=3% ﬂﬁ“ IiGE
sffrer=nsr=1. @4

x

Hence equality holds throughout the above.

Thus, from (3.4) we sce

[t} ] 1el
]l(||$_|"|—R‘{,T¢-|-¢})=o.

But | i ¢| ') ' > Re v{l—l ¢} shows that the integerand above is zero

so that

almost cverywhiere on X, Henco

—re{ ¥
. [¢] Re{wl-é}&lmosleverywhereonx

{__W(_I)ﬂ_ -$(2) } > 0 for almost every z (local coordinates)
So we get
Re {:8} > 0 almost every z (3.9)
(dividing by | {(2) |, which is > 0).
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Now, ¢, € O(Y) implies that § and ¢ are meromorphic quadratic
differentials on the compact surface X (in which X is embedded) with at
most simple poles at the distinguished point-set X — X. Hence
$/4: X - P!is a meromorphic function on X. By (3.5), Re{$/}) > 0
everywhere on X because a single negative value would force an open
set of negative values.

But this implies $/§ = a constant ¢(>> 0) since the image of a non-
constant meromorphic fuaction on a closed Riemann surface is all of
CP'. Theconstant ccanonlybe las | ¢ll=¢[l=1 So¢ =¢as
claimed.

To complete the proof of Theorem 3.14 let us suppose that the
Teichmuller geodesic-rays determined by ¢, § € Q(X) through X have
the same tangent direction v at X. We normalize ¢, ¢ to be of unit

porm. Then
=) ()

we =3 [ 5 =-”|¢|—l

x

So

since p = $ fepesents v
(e = 5 reprmv)

But by what we proved, /i(}) = 1 and § is the unique unit vector with
this property, So ¢ = {, and the geodesics coincide, as claimed. [

Let S € T(X)Y. Then the differential of f, called f,, maps TsT(X)
(= tangent space at S to T(X)), to itself linearly. As f is involutory
(fo = identity and TsT(X) = E,(+) @ E(—) where E,(+) and
E(—) are the eigenspaces of the action corresponding to the only two
cigenvalues + 1 and — 1 respectively. We can now state tangent-space
analogs of Theorems 3.8 and 3.9.

TueoreM 3.15. For § &€ T(XY, the union of the geodesics through
whose tangent directions are in E,(+) 1s T(XY,

TreoreM 3.16, For S &€ T(XY, the union of the geodesics through S
whose tangent directions are in E,(—) is the fiber Hf'(S).
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ProoF of 3.15, Let S, € T(XY, S, # S. The geodesic segment
sls, joining Sto S; must remain fixed by £ Hence its tangent at § is
fixed under f,, so the tangent was in E,(+).

Conversely, if a geodesic through S has tangent at S lying in E,(+),
then under f the geodesic goes to a geodesic with same tangent vector
atS. By Theorem 3. 14 this guarantees that the geodesic went to itself,
and since it most fall on itself isometrically, it must be pointwise fixed
under f. This completes the proof. 0

The proof of 3.16 is similar, so we omit it.

§4. Criteria for holomorphy of the retractions H;: Some general
theorems of the author (Nag [8]) give answers to the following problam:
Givena map f: X - Y, X a complex manifold and Y a real manifold,
find conditions that will allow Y to have acomplex structure with respect
to which f is holomorphic. It turns out that these theorems provide
conditions for holomorpby of retractions. We notice the following
crucial lemma.

LemMa 4.1, Lef f: X —> Y be aretraction of a complex-manifold X
onto a complex-submanifold, Y, of X. Then the only possible complex-
structure on (the topological manifold) Y which can make f holomorphic
is the original structure, o, induced on Y as a submanifold.

ProoF, Let o' be another complex-structure on Y-making f holo-
morphic. Then f: X - Yo, holomorphic implies that f restricted to any
submanifold of X is bolomorphic to Y. In particular

fly, : Yo - Yo is holomorphic.

But f I8 a retraction, so f|y, = the identity map, 1. So 1: Yo+ Yu
is a holomorphic homeomorphism, hence a biholomorphism, showing
o = o as required. 0

To quote some general theorems we need some discussion and defini-
tions,

Let X= be a m dimensional complex manifold. Woe let Gr (s—s) (TX)
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denote the Grassmann bundle of (m — d) dimensional complex subsp
in the tangent bundle TX of X. The total space Grip-qay(TX) inherits a
natural complex structure from X,

DerNmTioN 4.2(A). A (m — d) dimensional distribution on X isa
section of the Grem—a)(TX) bundle over X. Wo say the distribution is
analytic if the section is an analytic function.

REMARR. Note that the distribution is analytic if and only if it can
bo spanned locally by (m — d) linearly independent analytic vector fields.

Let f: X - Y be a Clesub ion from a comp! anifold X onto
a real Cl-manifold ¥. Then if y € Yand x & f-'(y), the differential
of f, dif : TuX > T,Y, i8 a surjective linear map, If ker d,f i3 a
complex subspace of T.X then (and only then) does T,Y inherita
complex vector-space structure such that d,f is C-linear. (Indeed,
d.f: T.X[ker d,f - T,Y is then a C-linear isomorphism). This leads to
the following definition:

Dernmmion 4.2(s). If forall y € Y, T,Y inberits via d,fa unique

plex structure independent of the choice of x € f~(y), then we say

that f induces a well-defined almost complex structure on Y. In this
definition we allow X and Y to be complex Banach manifolds.

DeriNITioN 4.2(C). Let Y be a Cl-manifold. A complex structure o
on Y will be said to be compatible with the Cl-structure if the C'-structure
underlying ¢ coincides with the original C'-structure on Y.

The following theorems are proved by the author in [8).

TraeoreM 4.3, Let f: X — Y be a surjective Cl-submersion from a
m-dimensional complex manifold to a 2d-dimensional C'-manifold with
fibers f-3(y) connected for all y € Y. Then there is a complex-structure
on Y, compatible with the C-structure, making f holomorphic, if and only
i

(1) The fibers are (m — d) dimensionol complex submanifolds in x
and
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(2) the distribution on X given by A(X) = tangent space to the fiber
through x, is analytic,

The complex-structure, when it exlsts, Is unique.
Another set of necessary and sufficient conditions are below:

THeoreM 4.4, Let f:X Y be a surjective C'-submersion from a
complex Banach manifold X (modelled on a complex Banach space B) to
a 2d-dimensional C'-manifold Y. Then there is a complex structure on Y,
compatible with its C'-structure, making f holomorphic if and only if f
induces a well-defined almost-complex structure on Y.

The complex structure, when it exists, Is unique.

In view of Lemma 4.1 we immediately obtain the following theorem
giving criteria for holomorphy of H; by using Theorem 4.3 and 4.4.

TueoreM 4.5. (a) If Hp: T(X) - T(XY is holomorphic then it is
also a holomorphic submersion on an open neighbourhood of T(X) whose
complement is contained in Hy* of a measure-zero set in T(X).

(b) Hy:T(X) > T(XY is a holomorphic submersion if and only if
(1) Hyls a Cl-submersion,
(2) The fibers of Hy are complex submanifolds of T(X),

(3) The distribution A in T(X) given by the tangent spaces to the fibers
is analytic}

or again, if and only If,
(1) Hyis a Cl-submersion,
(2') Hy induces a well-defined almost complex structure on T(XY.

ReMARK, Part (8) of the theorem tells us that the conditions of part
(b) must hold at least in an open neighbourhood of T(X)/ for Hy to be
holomorpbhic in the neighbourhood. It is a simple application of Sard's
theorem on critical values.
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Lastly, we note the following proposition.

ProposITION 4.6, If T(X)Y is of codimension 1 in T(X) then the con-
dition (2) of Theorem 4.5 (b) is automatically satisfied.

Proor. Indeed, we ses by Theorem 3.9 that the fibers of H are
complex disce—in fact Teichmuller geodesic discs. n]

Therefore in this case if Hy is a C*-submersion with the distribution A
analytic then Hy is holomorphic.

ExampLE 4,7, Let X = compact surface of genus 3, and f be the
clement of the modular group on T'(X) corresponding to the hyperelliptic
involution. Then dime7(X) = 6 and T(X)Y = one component of the
hyperelliptic Riemann surfaces in 7(X), has codimension 1 in T(¥).
Hence the fibers of H, are geodesic discs so Proposition 4.6 applies.
However, we are unable to decide whether Hy is holomorphic or not.

REMARE. It seems likely that if T(X)/ bas codimension greater than
one in T'(X) then Hy cannot be & holomorphic retraction. This is becauss
in view of the description of the fibers obtained in Theorem 3.9 one
cannot expect the fibers to be complex submanifolds any more,

Another example of Hy with T(X)/ of codimension one is studied in
detail in the next section.

§5. Some Special Retractions in T(1, 2). An Involutory f € Mod(1, 2)
and Associated Relraction Hy. We let (1, ) denote the integer lattice
in C generated by 1 and +, ¥ € upper half-plane, U. Then X, = C/.[{1, 1)
{s the closed “c-torus’ and we let = : O -+ X, be the quotient map, which
is also the holomorphic universal covering map. We will write x(z) = [2).

Fixt, € U. Let X,, = X,, — (I0], [{]} be taken as base point for
the Teichmuller space T(1, 2) of twice punctured tori,

ProposiTION 5.1, The map f,:C—> Q given by f(=z+4%
induces an imvolutory automorphism, say §, on the Rlemann surface
X,,. f may be identified with the 180° rotation of X,, depicted in Figure 1,
f Interchanges the two punctures of X,.
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Figure 1, The Involutiun?.
The proof of this is clear.

DEFINITION 5.2, The element of the modular group Mod (1, 2)
{nduced from the mapping f of Proposition 5.1 will be named f. fis
thus an involutory automorphism of 7(1, 2) having X,', a3 a fixed point
(s, & U is fixed but arbitrary).

Let us proceed to identify the fixed point set T(1, 2) (= T¥) of f.
We know from general principles that 7/ must be a connected complex
submanifold of T'(}, 2) isomorphic to the Teichmuller space of X.’, with
symmetries H = {f} 1}. Since ¥,,/H = a torus with one puncture we
expect that 7/ = T{(1, 1) = U. Indecd we have the following theorem.

TepoREM 5.3. Let X, = C/L(1, 7) and X, = X, — {[0), [§]}, for any
+€ U. Then there is a natural (affine) marking map ¢ : X,, - X, glven
by

¢dlx +yu) =[x+ »l forx,yER
The Telchpuuller points Eq = [(Xsy ¢+, X)) € T(1,2) for t€ U form
the fixed point set T/, ¢ Is in fact the Teichmuller map (in its h Py
class) between X,y and X,. So T/ e U.

For the proof we need two Lemmas.

LeuMa 5.4, The integrable quadratic differentials Q(X,,) on X,
are a 2-dimensional C-vector space spanned by the basls

{d22, sm(z + ~/2)dz%}
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where sn is the classical Jacobian elliptic function with periods ‘4K e |
and ‘2K’ = vy (see Whittaker-Watson [10, p. 504]).

Here z is the uniformising parameter on the universal cover C of X,,
and the above quadratic differentials o0 € induce difforentials on X,
This is not hard to see from the properties of the = function.

LewMa 5.5, The codifferential £ of the involution f acting on Q(X,)
decomposes the latter into the direct sun of eigen-spaces E(+) and E(-),
(as in Definition 3.7). Indeed here

E(+) = subspace of Q(X,,) spanned by ‘d2% 6.1
E(-) = subspace of Q(X«,) spamned by 's(z + wy2)dz®.  (5.2)

Proor. The involution f& Mod(l, 2) at X,, € T1, 2) was induced
from fy(z) = z + § oo the complex plane (Definition 5.2). Now, by
a crucial property of the sn function:

sn(u F §) = — sm u (sec Whittaker-Watson (10, p. 500D.  (5.3)
* Jo(on(z + wy2)dzt) = — (sn(w + 2w 6.4
Thus we sec d2* & E(+), and sn(z + 1,/2)d2* € E(—). The lemma
follows easily. o

PROOF OF THEOREM 5.3. Knowing E(+) from Lemma 5.5 we cap
apply Theorem 3.8 to assert that
I/ ={§ & I(1, 2) : § lies on the geodesic disc given by
im e, (through Xy,), ¢ = d)
We claim that the marking map ¢,:X,’ > X’ has complex dilatation
given by a T-B differential 1§/] ¢ | with ¢ € E(+) and & A, This
follows by a calculation. Heaco indeed ¢, is a Teichmuller mappiog

corresponding to a quadratic differential in E(+) and therefore the point
£, of Theorem 5.3 is in 77,

Coaversely, it is easy to see that the whole geodesic disc Im ¢, ¢ = dr*
consists of the £, r & U. Hence wo have TV = (X.' with marking map
$s: v € U} U proving our result. u]
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TuEOREM S.6. Let Hy (Definition 3.1) be the retraction of T(1,2) to
T(1, 2Y/(= V) induced by the involutory f € Mod(1, 2) (of Definition 5.2).
2 X,'. (T, € U) is an arbitrary point of T/ then the fiber H,"(X,') is the
geodesic disc through X, given by Im e, where

& = sz + 5,2)dz* (€ E(—)).

Proor. This is a restatement of Theorem 3.9 and equation (5.2) of
Lemma 5.5, a

A deeper study of Hy will follow after we have made some other
considerations on I(1, 2).

AN ExpriciT HoLomorpHIC RETRACTION H OF T(l,2) onTo T/, We
saw in Theorem 5.3 that T7 is essentially a I(1, 1) (2% U) embedded in
T(1,2). There is a natural holomorphic projection =: I(1, 2) - T(1, 1)
obtained by ‘forgettiog a puncture’ (sec for example Kra [4]). We want
to define a holomorphic retraction A:7(1,2)—> T/ by identifying it
essentially with this ‘forgetful map’ w. The simplest way to do this is as
follows.

Let X;, as defined at the beginning of Section 5 be kept as our base-
point for T(1, 2). Define.
$:7(,2) > U

by §(Ju]) =wk(s,) (w* as in Definition 2.6). Notice that, by the classical
Bers isomorphism theorem, the Bers fiber space F(1, 1) T(l, 2) and the
map ¢ becomes identifiable with the Bers fiber projection <, (Defini-
tion 2.6).

Now a:U~> T/ defined by o(s) =E;, where &, is the element of 7
defined in Theorem 5.3, is a holomorphic isomorphism. We define
H:7(1,2)-> T7 as the composition a o §.
Clearly wo have the following:

Tugoreu 5.7, & = a o defined above is a holomorphic retraction of
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T(1, 2) onto the fixed point set T/ of the involution f. The fibers of H are
the fibers of the natural projection x: T(1, 2) > {1, 1).

Now the following was proved in the author’s paper [6).

Tueorewu 5.8. The fibers of the natural projection =:T(g, n+1)->
T(g, n) are never Teichmuller geodesic discs (except for the trivial case
(2, n) = (0, 3)) altheugh they are properly and holomorphically embedded
complex discs in T(g, n+ 1).

We saw in Theorem 5.6 that the geometrically induced retraction Hy
had geodesic discs as fibers. So from Theorems 5.7 and 5.8 we get:

TasoreM 5.9, Hy and  are distinet maps from T(1, 2) onto T,

This result is especially interesting in contrast with the following
result we will establish: the maps Hy and & do coincide upto first order
tion near their target set I/,

144

To prove this we need local coordinates for 7(1, 2) in the neighbour-
hood of & point of 77 to compare the positions of the fibers of H; and
f above the point. Let X,, € 77 be the point of T/ wo have used &3
base point, (it is the r,-torus with punctures at [0) and [1/2]), Then
deflne

W T(1,2)>UXC as

by (1)) = (wP(se)s W (1/2)) = (x, 2) say.
It has beea proved by the author in his paper [7] that this map is a
bolomorphic universal covering map of its image set D,,, (which is
actually the Torelli space for twice-punctured tori). Hence we may use
§, to give local coordinates to (1, 2) near Xy, & IV,

Now the map ¢,: T(l, 2) - Torelli space D,,, is the universal covering,
80 the modular transformation f on T(1, 2) induces a transformation f,
on Dy,,. The definition of §, and f shows that

S =(s1-2) G5
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(This follows also from the general results about automorphisms on
Torelli spaces in the autbor’s paper [7].

REMARK, The fixed point set of f, on Torelli space is of course the
projection by ¢, of the fixed point set I7 of f. Notice that the fixed
point set of f, is the set {(1, 2) € D,,,:z=1/2). This is in exact agree-
ment with the description of 7/ given in Theorem $.3.

Now recall that the fiber H;*(E,) is a geodesic disc Im e) whero
je EXr(=)(cQ(Xy)). Consider tho function g:A - U given by
g=mnodo0e.
(A is the uait disc, ey is as in Definition 2.5, and =, is projection to the
first factor).

LEMMA 5.10. g {5 an even analytic function on A, and therefore
g =0.

Proor. By Lemma 5.5 wo know that j& E(—) on X, is induced
from the quadratic differential sn(z 4 </2)dz%. Of course g is holo-
morphic since each component map ey, §,, =, is holomorphic.

Now, equation (3.2) of Section 3 says (since / & E(—)) that

Re) =ef(— 1) let Yroe(t) = (v 2).
So

g~ 1) =modroe(—~1)
=m0 ofoefn)
=m ofyodeefl)
=mofyx 2)
=m(s,1-2)
=r =m0 0est) =g(t),
as claimed. u}

The function g gives the values of the first coordinate function (<)
(obtained from the §;-given coordinato system) on the fiber Hj'(§h
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Now, the fiber H-)(E.) wes seen (Theorem 5.7) to be the fiber of the
patural projection ®:T(1,2)— T(1,1). Hence the first coordinate
function g(via ¥,) of the fiber F~(E,) is the constant function g:A > U,
g(f) =, 1€ A. Tndeed, in a local coordinate system given by ¢y around
E, the fiber ﬂ-l(E,,) is described by {(x, z): v fixed, z varies). (For recall
that =g o =com o). This motivates the following

DEFINITION 5.11.  Let y= g — g be the difference of the first coord-
nate functions on the fibers above &, of Hyand & respectively. We will
say Hy and ¥ colncide to nh order approximation at £, if

70 = YO = ¥(0) = ... = ¥(0) = 0.
This is justified because y: A+ U is a holomorphic function measuring
the proximity of the fber of & to the fiber of 7 at &,

THEOREM 5.12.  Hy and H coineide up to first order approximation all
along their common target set TV,

This follows from Lemma 5.10,

ReMARK. The 8nalytlc second coordinate function 4 =mye¢yoe 0n
the fiber Hj'(£,) satisfies the equation A{—f)=1—h({f) in a manner
similar to Lemma 5. 10,

Wo now want to develop the function-theoretic consequences of the
comparison between Hy and H as annouaced before.

TuBorEM 5.13, With g:A -+ U as in Proposition 5.10 we have

Sl ([ EED | dxdy
g0 == Cnlzn-1) JJ [snzF /2] 2z = Iz~ 69
(here 5o € U, sn is lhe classical Jacoblan elliptic function with periods |
and ). Hence as g'(0) =0, we get

[[ ertmumersmts — e dxdy =0 @y w0} 67
[

ProoP. Recall the perturbation formula for the solution of Beltrami
equations (see Ahlfors [1]).
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If w(z, ) is a Beltraml differential for all values of the (real or complex)
parameter ¢ near ¢ = 0 and
Wz, 1) = (2) + te(z, 1)
wherevand e aro in L. and [e(z, #)|lo—+0 as (-0 then the g.c.
solution wh(s) (V) bas a t-derivative at ¢ = 0 given by

WP(O = _'11‘(« - I)II V(Z)'m—_llyztb dx dy, (z=x+ iy). (5'8)
Cc
For our application set

ot
wz ) =1 i Mz)
where / = sz + x/2). Then recall , o §, ([it]) = WP(1,)} 80 we get
8(t) = whinh (z;)

and hence the results follow since we( 7,) = g'(0) =0. O

We wish to point out the interesting fact that the vanishing integral
identity (5.7) has been obtained as a consequence of our Teichmiiller
theoretic results involving Hy, etc. We will do some classical analysis
below to derive (5.7) in a less mysterious fashion.

PROPOSITION 5.14. Leét We,y = m + a1, (m, n) € Z X Z and define
1
bz, 7)= 3

maen(z+ Wan) (2 — 1+ Woia) (Z— 5+ W)
This double series converges uniformly and absolutely in compact z-sets

(any fixed x € U) to a value (< ) independent of z.

Proop, Let z vary in some compact subset K in C. Wo will, for the
present, keep K disjoint from the lattice points Wy,,. It is easy to see
by estimating the terms that the series converges uniformly and absolutely
in K,

Theroforo 8(z, <) is a holomorphic function of z on

O — (W : (o, 0) € 2%,

Now, at one of the isolated singularities, 88y z = Wy, o, there are
only threo terms £,y With (z — ¥, ) in the denominator, and in each



26 SUBHASHIS NAG

of these terms 1/(z — Wa,, ») Occurs only to the first power. Since, all
the rest of the terms have a finite holomorphic sum near z = Wy, & We
see that the siogularity of 8(z, ) at wx,, », ¢80 at most be a simple pole.

But, by rearrangement of terms, we sce

8z+ L, ) =6z1
8(z + = <) = 6(z, ®)

and

Thus 68(z, <) is meromorphic doubly-periodic (1 and ) function of 2
with at most one simple pole in each period parallelogram, From
elliptic function theory this implies the proposition since no nonconstant
elliptic function can have order less than two. ]

Now we will use a perturbation argument similar to the proof of
Theorem 5.13 to actually evaluate the double-series.

2in

THEOREM 5.15. The value &(<) = K_—IT;
. —

1ty

hence we get the iden.

¥ 1
maen 2+ Weuy 8) (z -1+ Wiy n) (‘ -+ wml)

2i
='r(TiT)' (Wan n = m + n1),

forallze Qandx € U.

Proor. Define a one-parameter (¢) family of Beltrami differentials on
C by
u(z, £) = #; (thus p is constant for cach ¢).
Then notice
wi(z) = (z+ 1/l + 1),
Direct calculation shows

W) = 5 HOE) by = 5 — -

But, via the perturbation equation (5.8) we have

1)) 1
W) = - sz(z— DE= "
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Let Pa,o be the ‘period parallelogram’ with vertices We.s Wasy o
Wavqs oy 88d Wa, o4y Then, breaking up U to a sum of M‘wem after

interchanging sum and integral that

U z(x—_rl)(T—“) dxdy = &x)-(area of P,,) (using Proposition 5.14)

Using the two equatioas for we(x) wo get then

8ue)-(area of Py }) (—‘('%))- G-
implying
0(;):%@«(&!«0!?“)";(?—0- O
LeMMA §. 16,

” exp(— {arg m(z + 1/2).‘(‘—_'%4-?‘—_“ (sm with periods | and «)
C

'RTMTF)” exp (— larg ain (x + «f2)) dx dy
Pos

] 1+ ¢

Proor. Notice that since s is elliptic with perlods 1 and « we can
break up the intogral on the left-hand side into a sum of integrals over
the period paraliclograms P.,, (as in the previous proof). The result
then follows immediately. a]

To give a direct proof of the identity (5.7) we are now reduced to
showing the following.

THEOREM 5.17. Let sn be the Jacobian elliptic function with perlods
| and « and Py, be the fundamental period parallelogram. Then

[[ e (—t arg sinta + <)) dudy = .
ah
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Eguivalently, ” cos (arg sn z) dxdy = ” sin (arg sn z) dxdy = 0,
P P

PrOOP. Recall sn (z 4+ §) = — sn z (see equation (5.3)). Break up
Py, Into the two parallelograms

T C+d +P <+
P =/ / md P, = /
0 4 1
Sin(:e’J;l H + ]J the result follows as the last two integrals
cancel. ]

In view of Lemma 5.16 and the above we have established the identity
(5.7) by classical methods.

REMARK. Every complex torus with two punctures admits ap invo-
lution which interchaoges the pusctures and has four fix-points on the
surface, The quotient surface is a sphere with five distinguished points
and indeed the Teichmuller spaces T(1, 2) and T(0, 5) are isomorpbic.
Using elliptic functions to vniformize the torus one can study this
isomorphism and carry over the involutory f and associated results from

(1, 2) on to TY0, 5).

We only mention here the interesting vanishing integral that corres-
poads to identity (5.7) from this study. We have deduced:

3 dEAJE
_(T.{_r:b—no,foranykec—(o.:l:l)
LIIE_III BE -
and other similar results,
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