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Linear expeaditurs models with additive and multiplicative b dastic vari are
considered apd Bayesian estimati i based on inf¢ ive priors are
suggested. Marginal and ditional p for of fnterest and Bayes'

i for s of di models are also oblained. A Bayesian com-

parison of 1he two heteroscedastic structures has algo been carried out.

1. INTRODUCTION

In most ric specifications of household expenditure relationships
heteroscedasticity of expenditure observations is well recogoised. Many differ-
ent functional forms of heteroscedasticity have been suggested in this context
(Theil 1951, Kempthorne 1952, Prais and Houthakker 1955, Jorgenson 1965,
Battese and Bonyhady 1981, Surekha 1980, Surekha and Griffiths 1984b). In
most cases the variance of the dependent expenditure observations is assumed
to be a function of certain known exogenous variables.

Two important types of heteroscedastic specifications in a gemoral linear
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model,
m=xf+w t=12,...,T, [(H))

where y; is the ith observation on a dependent variable, x, is a %-dimensional
row vector containing the sth observation on k explanatory variables, # is an
unknown coefficient vector to be cstimated, and the u, are independent normat
random variables with zero mean, are the following. First,

V() = V(w) — o= (z:)", (1.2)

where the z( are (I X p) vectors of observations on known exogenous variables
with first element unity, aod x is a (p X 1) vector of unknown parameters’;
and second,

Viy) = V() = o} = exp (zi), (1.3)

where the z, are as defined above and Y is a (p X 1) vector of unknown para-
meters. In both cases z; may or may not be related to the regressor x and the
order p may or may not be cqual to k (generally p < k). The model with
variance (1.2) will be referred to as the additive mode! and following Harvey
(1976), the modec) with variance (1.3) will be referred to as the multiplicative
model.

Sampling theory estimators have been suggested by Harvey (1974, 1976)
for the additive and multiplicative models respectively. Special cascs of the
multiplicative model have been estimated by Geary (1966), Park (1966),
Kmenta (1971). Goldfeld and Quandt (1972), whereas, for the additive model,
Glejser (1969) has suggested a two step estimated generalised least squares
estimator and Rutemiller and Bowers (1968) bave suggested a maximum likeli-
hood estimator based on the method of scoring. Howcver, for the purpose of
estimating expenditure relationships neither of the two variance specifications
has been used. Although a special case of the additive model in which the
variance of expenditure observations is assumed proportional to the square of
its mean has been proposcd and estimated from sampling theory point of view
by Theil (1951). Prais and Houthakker (1955), Jorgenson (1965) and Battese
and Bonybady (1981).

The present study has two main objectives. The first is to suggest a Bayesian
cstimation technique for both types of models and illustrate it for an expendi-

1. For e, to _be meaaingful, « cannot be identically equal 1o zero and, also, we may necd
to lmpose certein other restrictions on =, or « to ensure of positive a,.
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ture model on the basis of the data obtained from the Macquari University
Survey of Consumer Expenditures and Finances 1966-68. The reason for
suggesting Bayesian estimation is two fold. The first of which is based on the
results of a recent Monte Carlo study by Surekha and Griffiths (1984a) which
suggests that the Bayes' estimators are more efficient in terms of their MSB
than a wide range of classical estimators. Secondly, Bayesian posterior pro-
bability density functions (pdf) of par of interest are more informa-
tive than the point or interval estimates. Thies point will be more obvious from
the empirical results we have presented in Section 4.

The second objective of this study is to consider a Bayesian comparison of
the two models on the basis of their posterior odds using non-informative
priors.

2. BAYESIAN ESTIMATION

In order to carry out Bayesian estimation we need to specify a prior probabi-
lity density function which is combined with the likelihood function by means
of Bayes' theorem to yield a posterior pdf for the paramcters. The marginat
postariors are obtaincd by integrating the nuisance parameters out of the joint
posterior. In most econometric studies prior information available on regres-
sion coefficients and other variance p s of a heteroscedastic model is
rather vague and this can be represented in the form of Jeffreys’ non-informa-
tive priors (sce, Jefireys 1961). We vse these prior pdfs in our study.

2.1 Additive Model

q

Let us first consider the additive model. Given independent normal
errors uy, the likelihood function for « and B, in matrix notation, is

POIB €, ) = (@ny TR a;T | Dy | I,

exp [— ﬁ {n‘ + (3= BYX'Da X@ — B) }] @.Ly
Whoro & = (1, s . ., 8y,
8,=%‘.. j=12....p-1

3= 8. ..\ ),
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r=1 1 = -1
DAﬂDiag[(l+ z 3;11() .(l+ I B,z,,) genns
=1 j=1
p=l -¥
(l + I 3;1;1-) ]:
J=1
wt= (Y — XBYDAY - XB),

v=T—k, and
B = (X'DaX)"X'DsY. (2.1.2)

Since « and 8 are location and scale parameters respectively, we assume prior
independence, and take the prior pdf? as p(a, B) = p(a)p(B). Following Je@reys’
rule for multiparameter case prior pdfs for « and P taken are taken as propor-
tional 1o the square root of the determinant of Fisher's information matrix.

This yields

pla) < [ Iof (=) 2,
« | Z’DiZ i1y
pB) = | Inf (BY[',
« [ ZDZ I,
« constant;
hence  pla, p) « | Z'D3Z 14, (2.1.3)
where DY = diag ((z)a)", {zy@)7%, . . ., (2p0)Y). (2.1.4)

1t is easy to see that
§6.<4.M x 5 | ZDaZ P @.L3)

and that «, and 3 are a priori independent (see, Wilks 1962 : 57-58). We find
that p(a}) ec (I/ad) is the usual improper prior for the variance in the staodard
regression model whereas p(3) ec | Z’D4Z|'M is a proper pdf. Although p(3)
is a function of Z’ matrix which is a part of the sample information, it is a
ooninformative prior. As it has becn discussed by Jeffreys (1961), Box and

2. A uniform prior on § and a resulted in en fmproper posterior pdf for 8 and 3, Seo
Surekha (1980).

3. For a proof see, for example, Surckha (1980) and QOriffiths e7 al. (1979) which discuss
the case k = p = 2gad k = p = 3 respectivoly,
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Tiao (1973) that & noninformative prior does not imply no or zero informa-
tion, rather it refers to little information relative to the information contained
in the likelihood function (see, ¢.g., Surckha 1980 : Chapter 5).

By using techniques of integral calculus, the joint posterior pdf for (B, «§, 3)
obtained from (2.1.1) and (2.1.5) by use of Bayes' Theorem is

P8, a2, 8Y)ex | Z'DaZ ' | D4 PP agiTem,
o[- g [+ @ - Brxoare - |- @16

This joint posterior distribution in (2.1.6) is of more than two [(k + p), k > 2,
p 2 2] dimensions as such it is hard to conceptualise. Therefore, to make
infercoces about the parameters of interest we proceed in the following manner
to obtain marginal and/or conditional posteriors.

Integrating af out of (2.1.6) yiclds

p(B, 8/¥)ec | Dafi1| Z'DZ I [vs* + (B — BYX'Dax(p — BT (217

The conditional distribution of 8, p(3/8,Y) conditione! on 3, is a multivariate
t-distribution. Using the properties of the f-distribution we can derive the
marginal posterior pdf for a single Bi(i = 0, I, ..., k — I) by integrating the
rest of B,'s out. This gives

P(B, 3]Y) gD [ D, 12 c,_,m | X'DaX [0 | ZDaz I,

—B - +1)i2

where ¢y is the ith diagonal element of (X’D4X)™1. Further, we can obtain
pBIY) &5 | Dy PV] X'DaX |-\ | Z'DaZ |0, 2.1.9)
Ifk=p=20rk=p=3,itcan be casily shown that the joint posterior
pdf p(3/Y) is a proper density but its moments do not exist irrespective of
X = Z or not. In such a situation 8 can be integrated out of (2.1.8) to oblain

the marginal posterior for each of B, i = 0,..., k — 1. Next, from (2.1.6),
integrating out P yields

Plek 417)  (af" 0% | Dy XDaX 1| ZDaZ I exp | - %]

(2.1.10)
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This indicates that the conditional distribution of [a}/vs*) given v is an inverted
x* distribution and its momeats exist providing v > 2k. Also by transforma-
tion of variables, we get

Pla, 37 "-M»-n 3‘""' | D4l | X'DaX |- | Z'DaZ |10,
232 -
exp[~ S| =t -t @111
J

If the order p is oaly 3, it is obvious from (2.1.6) 1o (2.1.9) that the marginal
posterior for a §;, §) or an a; can be obtained by at most 3 di ional nume-
rical integration. However, if p > 3, to reduce the computational burden
there is 2 need to look for some kind of method for approximation of the
posteriors (for example, Johnson 1967, 1970, Box and Hill 1974, Zellger and
Rossi 1982 and Surekha and Griffiths 1986).

2.2 Multiplicative Model

Given the model in (1.3), the lielihood function for fand yis

pUFB,¥) = 2y {,,,,[_ ?]

exp [— % St o - xhy ]} (2.
!

Proceeding as in the case of the additive model, a noninformative prior for
Band yis obtained by ing prior independ i.c. p(B, Y) = p(B) p (v),
where

p(B) o | Inf (B) P = | e %Y xjx, ', o constant (22.2)
!
and
p(Y) o [ Tof (y) |1 = | 27z, 1 o constant, (223)
t

and thus from (2.2.2) and (2.2.3)
P(B, Y) oc constant, (2.2.4)

Note that Jefireys’ uniform prior assuming that cach of the Bj's, v,'s are
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mutually independent and that — oo By, vy €00, i=0,1,...,p—1,
J=0,1,....p — 1, will be identical with the Invariance prior as specified
in (2.2.4). Note that this prior in (2.2.4) is an improper density.

If welet Y = (yq, Y*), then
Vip) = k%t T, (22.9)
where k® = e and 2/ is 7, without the first element unity. The joint posterior
(B, k%, Y*/Y) can be obtained from (2.2.1) and (2.2.4) and simplified asin the

case of the additive model. For the parameters of interest we obtain the
following postetior pdfs :

PR YY) & | Daf'P [y + (B — 5)’x "DuX (8 — )y (2.2.6)
This yields

PBN®, ¥) g™ | X'DuX 'Y [x + W#]-W'. 22

which is a multivariate s-distribution with parametors v and &;
p(re1Y) « =7 | X'DyyX |-/ | Dn 1118, (2.2.8)
where
Du = disg[e=17", ¢i7, ..., 27" )
W= (Y- XPDu(Y —XB), v=T-—k
and
B = (X'DuX)" X'DuY. (229)
Propertiea of multivariate t-distribution can be used to obtain
P, Y*/Y) from p(B, Y*/T).
That is,
P8 y°IY) & UMD | Dy U | X DyX [ gt

[1 + ——“’;, f’:)' ]'("mm, (2.2.10)
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where ¢; in the ith diagonal clement of (X'DuX)™. From the joist posterior
PIB, k%, Y°]Y), B can be integrated out, i.e.,

A 1IN [ D DX P ey ep [ -3 ], @any

p( :‘:‘ ly. .{-)x( I;; )-lum) exp [— ;;: ], 2212

which is an inverted y*-distribution with T — k degrees of freedom (Box and
Tiso 1973:89). In this case also, as in the case of the additive model, for
p = 3 the marginal posteriors for each of the parameters can be obtained by
at most trivariate numerical integration of the posteriors given in (2.2.10) to
(2.2.12). However, if p > 3, we must uso some method of approximating the
joint posterior.

3. A BAYSESIAN COMPARISON OF THE ADDITIVE AND THE
MULTIPLICATIVE MODEL

Let H4 and Hy represent the hypothesis that the undeslying model is an addit-
ive or a multiplicative model respectively. A Bayesian comparison of thete
two hypotheses entails a comparison of their respective posterior probabilities
plHIY), i = A, M, on the basis of their predictive pdls

p(YIH), i = A, M. That i,

_ PHAY) _ [ _oYIHA pHA
Kuw= ety = [ Ry | [ 2oy } 6
where
L __rH pH)
PHIT) = X AUYH pHY * 3.2

P(H)), i = A, M is the prior probability for the hypothesis Hy, i = A, M. The
predicative pdfs p(Y/Hi), | = A, M are given as

MYIH) =1 { p\YIB,&y, 8, Ha) pif. oy, HA) dag,db, a8, (3.3)

and
PIYIHW) = (| | p(YIB, Yo Y% HM) p(B, vy, Y*/HN) Yy, dB, dy®  (3.4)
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The first factor in (3.1) is called the Bayes factor and the second factor is
referred o a3 the prior odds. The computation of posterior odds K4, win (3.1)
gives only an indication of which hypothesis is preferred and does not necess-
arily involve a decision to accept or reject a particular hypothesis. For exam-
ple, if the prior odds equal ooe and p(Y/H4) & p{Y/Hu) or K4, a is greater
than one, then we can simply say that the data favours Hy relative to Hu.

The predictive pdfs for the two models as in (3.3) and (3.4) can be comput-
d by the similar procedure as used in Section 2.1 and 2.2. However, a major
point of differenco is that non-informative prior pdfs for the parameters which
are used for the computation of posterior odds must be proper (see, o..
Leamer 1977, Surckba and Griffiths 1984b). Therefore, we restrict the range
of f,, log =3, ys 2nd ¥* to be finite. Without loss of generality we also assume
that the range of P is samo in both hypothesis and aiso range of log a} is same
as that of y, Further, for simplicity assume B, =, and v are 2 dimensional
vectors. That is,

-M g <M 1=0,1

~N<logul, o <N,

—-P<ICPH (3.9
where My, My, N and P are sufficiently large 10 that they are outside the region
for which the likelibood functions are appreciable. Noting that p(8) =

/R | Z'D4Z]M d5, the joint prior pd{ for the two models can bo written as
follows :

P02, YA = m zpaz[" )
and
1
P8, Yo Y H) = oMM, NP (3.7)

Following as in (2.1.6) to (2.1.9)

vz (mydonn g POIY, Ha) dd
28 M, M; NR

S(Te}
=%m jr'l Daf | X'Dax| 8 | Z'DazZp dd

KYIHY) =

(3.8)
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(sco, Box and Tiao 1973 ; Chapter 2).
Simitarly, following as in (2.2.6) to (2.2.7),

LOi2) (m)-trevm

HYIHu) = 6. MM NP I‘p(Y'I Y, Hu) d&y*

14
C(vi2) (my-trnam
=6 MM, N.Pal CIXDuX [ Dy dy®  (39)
-p

Assuming equal prior odds, i.e. p(Ha) = p(H.) the posterior odds are given by

P18 Daltt | X'DaX [P | Z'DAZ M0 48
3

P
R L £ IXDuXIR | Dyt dy
(.10)

Although M,, M), N all cancel out and R is well-defined, bowever, a
small difficulty remains because of the unavoidable arbitrariness in the choice
of the limits of integration (—P to P) for y* as the relative weight on Hy can
be made a1 small as one pleases by choosing P sufficiently Jarge (ses, e.g.
Surekha and Griffiths 1984a). We can partly overcome this problem by choos-
ing the limits of intcgration so as to include the cfiective range of integration
with respect to the posterior density of y* and also large enough to include
the total range over which likelihood function is dominant,

4. BMPIRICAL RESULTS—APPLICATION TO AN EXPENDITURE
MODEL
Assume the model in (1.1) represents an expenditure function
Yoo B+ Bixi+ un, (4.1)
where y, is the anoual expenditure on food for the rth household and x, is the
total annual houschold expenditure on all items, The u, are normsl random

unobservable error terms with mean zero and heleroscedastic variances. We
will consider both the additive heteroscedastic model

Piy) = V(u) = af (1 + 3x), (42
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Tinli a

ivo heter ic model

where 8 = « /a,, and the

Viy) = Vi) = k* ev*™n 4.3)

where k® = eY. Note that in (4.2) and (4.3), it is assumed that z, is equal to
our only regressor x,. For the analysis of the expenditure data it seems &
reasonablo assumption. The data were taken for the city of Perth (W. Australia)
and we chose households of size 3.4 All observations on x, and y, were divided
by & constant = 1000 (or the ease of handling data.

By using Simpsons rule for numerical integration®, marginal posteriors for
By aod B, have been obtained from equations (2.1.8) and (2.2.10) for the
additive (4) and multiplicative (M) models, respectively. Marginal posteriors
for 8, &y, a, of the additive mode) were obtained from the equations (2.1.9),
(2.1.10) and (2.1.11), respectively, For the multiplicative model, p(k*/y) and
P(Y*[y) were obtained from (2.2.11).

The posteriors p(By/ ¥) and p(B,/¥) in Figures I and 2 for the additive model

b 4)

EL Y Sy I 13 ) ) e

Rigara 1. Margical postorior pdf for 8, : additive and multiplicative models.

4 Similar snalysls can be carried out for data on say other city aad for snother house-
hold size also.

$. Por details see Zellner, A. (1971), An Introduction to Bayesian Infe in E les,
New York, Wiley, Appendix C.
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pif.y)

B ew o B

|
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4
3
©
~

Flgers 2. Margioal posterior pdf for B, : additive and muluplicative models.

have slightly unusual humps. Oae possible explanation for this is the sensitivity
of p(B,/ Y) 2nd pif,/ ¥) to certain values of & We obtained conditional posterior
pdfs and posterior means of B, and B, for a large number of 3 values and we
fouad that for a set of values of 8 (between .01 and 1.0) there were very sharp
changes in the values of the conditional meaas of Pg and B,. These were found
to be in the range which is reflected in the bumps in the figures (see Table I).
For the multiplicative model, p(8/ ¥) and p(B./¥) are approximately normal
as is to be expected with a non-informative prior and a large sample-size. The
prior and posterior pdfs for 3, given in Figure 3, indicate how sample informa-
tion has revised our prior belicfs about 3. Similarly, the marginal posterior
pdfs for «,, a;, k* and y* were derived and relative to the priors, they were
quite informative. As the range of p(y*/¥) is of interest in determiniog posterior
odds, it is presented in Figure 4,

1f one was interested in obtaining some summary statistics of the marginal
posterior pdfs then one can obtain Bayes® estimates® for all parameters of
interest, Thesc are given in Table 2, Note that for 3, it is the median of the
posterior p(8/Y) which has been taken as the Bayes® estimate of 3 because, as
mentioned carhier, the posterior mean does not exist. Similar situation was
encountered in Oriffiths ef al. (1979). The estimate of Y, was obtained using the

6. 1f theloss function Is quadratic, posterior mean Is the Bayes' oatimate and if low
function is sbsolute, posterior median Is taken as the Bayes® estimate.



ADDITIVE AND MULTIPLICATIVE HETEROSCRDASTICITY

Table 1

Posterior Means for the Addilive Model

38

Bo Bt
Unconditional 0.357 0.175
Conditional on 3 =
00 0.81% 0.104
0.00005 0.819 0.104
00005 0.818 0.104
0.01 0.802 0.108
0.05 0.747 0.123
0.1 0.698 0.138
1.0 0.4717 0.196
1.5 0.443 0.204
20 0432 0.208
5.0 0.397 0218
100 0.384 0222
150 0.397 0.224
6
5
4
=
<
0
=
2
aQ
3 4 5 66

Figare 3. Marginal prior and posterior pdf for 3.
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251

20

olry)

p(T7y)

-02 0 02 04 06 08 10 12y
Figare 4. Masglnal posterior pdf for y*.

Table 2

Bayes' Estimates for Parameters of the Additive and Maitiplicative Models

Model By By % L] oy ke Yo Y

A 05571 0118 0.133 04 006
M 0481 0.200 0.038 -336 0404

relationship Y, = log k®. For the remainiug parameters posterior mean was
taken as the Bayes' estimate. Since the data set considered is only illustrative
of the technique suggested in this paper, no significant conclusions can be
drawn about the expenditure behaviour of the City of Perth on the basis of
the sign and values of the parameter estimates, s, a,, 3, v, and Y*.

On the basis of these marginal pasteriors s well as Bayes' estimates for §'s
and the variance parameters a,, 3, Yo 8nd ¥* no conclusions can be reached
about the type of expenditure function to be chosen. In order to compare these
two models on the basis of this given data we compute posterior odds from
(3.10). The range of Y*(—P to P) which is wide enough to cover the effective
range of the posterior deasity of Y* was found to be (—1 to 1) (See Figure 4).
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Assumiog equal prior odds, the posterior 0dds as in (3,10) was found to be

Koy o PUHD _ 012235128 x 108
4 M= p(YiHw) T R0.62591508 x 0% *

where R = a[ p(8)dd = 0.1696545 x 10

hence Kam = 115, {4.4)

which suggest that odds arc slightly higher in favour of the additive model.

5. CONCLUSION

We have illustrated how Bayesian methods can be easily applicd in the analysis
of simple expenditure functions with two types of heteroscedastic variance
structures. Our numerical example has been restricted to the case where therc
is only one exogenous variable X, = Zi which also influences the vatiance of
the error term. Ao additional exogenous variable could be added at the expense
of trivariate rather than bivariate oumerical integration, but for more than two
variables in the variance function we would nced to resort to some methods
for approximating posteriors. The same problem does not arise with the
pumbers of exogenous variables which appear in the mean function (x's),
because the B,'s, can be integrated out analytically.

RerereNces

Barrese, G. E. and BoNYRADY, B. P. (1981), Estimation of houschold dif fuge~
tions : Aa appli of a class of b dasti ion modals. £ le Record
57 : 80-85.

Box, G. E. P. and HiLL, W. 1. (1974). Correcting johomogeneity of variance witb power

{c i ighting. Tech ics 16 : 385-389.

Box, G. B. P. and Tuao, G. C. (1973). Bayesian Inference In Statistical Analysis. Addison-

Wesley, Mass.

1 fon afel

Grany, R. C.(1966). A noto on residual and
sion. American Statistican 20(4) : 30-31.

GLusir, H. (1969). A new (est for heteroscedasticity. Jownal of American Statistical Associa-
tion 64 : 316-323.

doprip, S. M. aad Quanor, R. B. (1972).  Nox-li Methods in I
North Holland, Amsterdam.

Grrrrris, W. E., DRYNAN, R, G. and SUREKRa, K. (1979). Bayesisa estimation of a random
cocfficionl model. Journal of Economeirics 10 : 201-220.

In regreos-




38 JOURNAL OF QUANTITATIVE ECONOMICS

HaARvEy, A. C. (1974). imation of in & h dasti lon model,
Papar presented at the European Mecling of 1he Bconometric Society, Grenoble.
(1976). Bstimating regression models with mulilplicative bolcroscedasticity. Econo-
mairica 84 ; 460-465.

Juremeys, H. (1961). Theory of Probabliity, B4. 3. Clarendoa, Oxford.

JomnsoN. R. A. (1967). Aa i ton for posterior distrib The Annols of
Mathematical Statistios 38 : 1899-1906.

____(1970). Asymptolic expansions associated with posterior distributions. The Annals of
Mathematical Statistics 41 851-864.

B (1963). I E. diy Rel of Danish Wage and Salary Earners.
Tho Statistical D [of h

Kompthorne, O. (1952). The Design and Analysis of Experiments. Wiley, New York.

KueNTa, J. (1971). Elements of Econometrics. The Macmllian Company, New York.

Laasen, B. B. (1978). Specification Searches : Ad-hoo Inference with Non-Experimantal Data.
Wiley, New York.

Prais, S. J. and HoutAakker, H. S. (1985). The Ana'yalt of Pamily Budgeis. Cambridpe
Universlty Press, London.

RuremiLLer. H. C. snd Bowers, D. A. (1968). oa dastic regrossi
model. Jownal of the American Statistical Association 63: 552-351.

SunskAA, K. (1980). Contributions to Bayesiao Analysis in Heteroscedastic Models. Un-
published Ph.D. Thesis, University of New Bogland, Armidale, Australia.

SumexHa, K. and GrirrrrHS, W. B. (19842). A Monte Carlo compariton of some Bayesian
and sampling theory estimators In two hateroscedestic error models. Communications
in Statistics, B 13 : 8:-108.

__and (1984b). A Bayesian C ison of Di ! A jons in
Heteroscedastic Brror Models. Paper presented atthe 29th NBER-NSF semiasr on
Bayesian Statistics snd Economelrics at Rutgers, New Brunswick, U.S.A. Forthcom-
iog, Statistica.

_____and (1986). A note oo posterior approximation in a b ic model.
Economics Leiters 19 : 249-252.
Taew, H. (1951). Estlmates and their variance of of certain b dastl

disturbances. Review of International Statistical Institute 15 : 141-147.
ZBLLNER, A. and Rossi, P. (1982). Bayesian Analysis of Dichotomous Quantal Response
Models (mimeo). Graduate School of Business, University of Chicago, U.S.A.



	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058

