RESEARCH NOTES

A NOTE ON KOMAMIYA—JOSHI'S BOUND FOR MINIMUM DISTANCE CODES

T. V. HANURAY

Indian Statistical Institute, Calculta

Summary

The superiority of Hamming's upper bound for the number of alphabets in a minimum distance code over that of Komamiya—Joshi's bound in all practically important cases is pointed out in this note.

1. Introduction

Let C_n denote the set of all sequences of length n in binary symbols 0 and 1. For any two elements.

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$$

and $\beta = (\beta_1, \beta_2, \dots, \beta_n)$

the Hamming distance (1) $\delta(\alpha, \beta)$ between α and β is defined to be the number of positions in which α and β differ from each other. Defining the norm of α by

$$\|\alpha\| = \sum_{i=1}^n \alpha_i$$

it is easy to see that

$$\delta(\alpha, \beta) = ||\alpha + \beta||$$

where $\alpha + \beta$ is the vector obtained by co-ordinatewise addition modulo 2 of the vectors α and β .

For any given positive integer d < n, a subset M(n, d) of C_n such that no two elements of M(n, d) of C_n are at a distance less than d is called a d-minimum distance code. Let M(n, d) denote thenumber of elements in M(n, d).

When d is odd, say d=2t+1, Hamming gave an upper bound for M(n, d) which is now known as Hamming's shipere-packing bound and is given by the inequality

$$[M(n,d)] < \frac{2^n}{\binom{n}{2} + \binom{n}{2} + \dots + \binom{n}{2}}$$
 (1)

It is known that such a code corrects any combination of t or fewer independent errors when n symbols are transmitted over a noisy channel.

Komamiya (2) gave another bound for M(n,d) and the same was rediscovered by Joshi (3) by an idependent and similper method. They

prove that
$$[M(\hat{n}, d)] < 2^{n-d+1}$$
 (2)

We prove in this note that the inequality (1) is sharper than (2) in all practically important cases. More specifically, we prove that

$$\frac{2^n}{\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{l}} < 2^{n-d+1} \tag{8}$$

for all odd values of d = 2t + 1.

and

$$\frac{2^{n}}{\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{l-1}} < 2^{n-d+1} \tag{4}$$

for all even values of d = 2t, provided

 $n \geqslant 2t + 8$ and t > 1.

To prove (3) observe that (8) can be written as

$$2^{2t} = 2^{d-1} \le \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t}$$
 (5)

Evidently, for a given 't', if the above is true for a particular value of n, then it is true for all higher values of n. Since $n \ge d = 2t + 1$ in this case we need only prove that

$$2^{2l} < {2l+1 \choose 0} + {2l+1 \choose 1} + \dots + {2l+1 \choose l}$$

= $\frac{1}{2}(1+1)^{2l+1} = 2^{2l}$

which establishes the inequality (8).

To prove (4), we write it as

$$2^{2t-1} = 2^{d-1} \le \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t-1} \tag{6}$$

As before if for a given 't' the above holds good for a particular value of n, it holds good for all subsequent values of n.

It can be verified directly that

$$\binom{2t+1}{t} < 2^{2t-1}$$
 (7)

for t=4.

40 J. L. S. A.

Let (7) hold good for a particular value to of t. Then

$$\binom{2(t_0+1)+1}{t_0+1} = \binom{2t_0+8}{t_0+1} = \binom{2t_0+1}{t_n}$$

$$\frac{(2t_0+2)(2t_0+8)}{(t_0+1)(t_0+2)}$$

$$< 4 \cdot \binom{2t_0+1}{t_0} < 4 \cdot \frac{2t_0-1}{t_0} = 2^{2(t_0+1)-1}$$

Hence by induction, (7) is true for all $t \ge 4$.

Putting n = 2t + 1 in (3) and combining with (7), we have

$$2^{2l-1} < {2l+1 \choose 0} + {2l+1 \choose l} + \dots + {2l+1 \choose l-1}$$

for $t \ge 4$ and n = 2t + 1, and hence for all $n \ge 2t + 1$.

It can be verified directly that (a) for t = 3, (6) holds good for all $n \ge 2t + 2$ (b) for t = 2, it holds good for all $n \ge 2t + 3$.

This completely establishes (4).

To complete our assertion we note that

$$\left[\left. M\left(n,\,2t\right) \right. \right] < \left[\left. M\left(n,\,2t-1\right) \right. \right] < \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{l-1}}$$

by (1), where as

$$\left[\left.M\left(n,\,2t\right)\right.\right]<2^{n-2l+1}$$

by (2), and by what we have proved above, it follows that Hamming's bound is better than Komamiya—Joshi bound for all odd values of d, and for even values $d \neq 2$ it is better for all $n \geqslant d + 3$

We may remark that while n should necessarily be greater than 2t, in practice it is much larger. Hence the restriction that $n \geqslant 2t + 3$ is not a practical limitation.

REFEBENCES

- Hamming R. W. (1950) Error detecting and error correcting codes. Bell System. Tech. J., 29, 147-160.
- Komamiya, J. (1954)—Application of logical mathematics to information theory. Proc. 3rd. Japan. Natl. Convr. Appl. Math. 1953, p. 437.
- Joshi, D. D. (1958)—A note on upper bounds for minimum distance codes. Information and control 1, 280-295.