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Summary

The superiority of Hamming's upper bound for the number of
alphabets in & minimum distance code over that of Komamiya—Joshi's
bound in all practically important cases is pointed out in this note.

1. Introduction

Let C,, denote the set of all sequences of length n in binary symbols
0 and 1. For any two elements.
a={(%,a -, a,)
and B=(8;.8s ... Bo)
the Hamming distance (1) 3(a, 4} between a and 2 is defined to be the
number of positions in which « and # differ from cach other. Defining
the norm of « by

||«||=Ea-
-]

d(a, ) =|le+pfl
where @ + f is the vector ubtained by co-ordinatewise addition modulo
2 of the veetors « and B.

it is easy to sce that

For any given positive integer d <n, a subset M(n, d) of C, such
that no two clements of M(x, d) of C, arc at a distance less than dis
called a d-minimum distance code.  Let 3(n, d) denote thenumber of
elements in M (n, d).

When d is odd, say d = 2¢ + 1, Hamming gave an upper bound for
M(n, d) which is now known as Hamming's shpcre-packing bound and
is given by the inequality
on

M(n, d e
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It is known that such a code corrects any combination of ¢ or fewer
independent errors when » symbols are transmitted over a noisy
channel.

Komamiya (2) gave another bound for M(n, 4) and the same was
rediscovered by Joshi (3) by an idependent and similper method. They
prove that [ M(h, d)) < 2"~4+! (2)

We prove in this note that the inequality (1) is sharper than (2) in all
practically important cases. More spccifically, we prove that

on

T 0 g eminn (8
FETGETEaH) )
for all odd values of d = 2¢ + 1.
and
2 <21I—d+l (4)

(e)+ (1) + -+ (2}
for all even values of d = 2{, provided

n > 2+ 3and I>1.

To prove (3) observe that (8) can be written as
=2 DN+ () (5)

Lvidently, for a given ‘¢', if the above is true for a particular value of
7, then it is true for all higher values of . Since n>d =2+ 1 in this
case we need only prove that

F )+ () + e (1)
=11y =¥

which establishes the inequality (8).

To prove (4), we write it as

2 =2 () H (D) e+ (D) (8)

As before if for a given ' £ the above holds good for a particular value
of n, it holds good for al subsequent values of n.

It can be verified directly that

(1) <! ™
for t = 4.



40 L LS A

Let (7) hold good for a particular value {g of 2. Then
2t +1) + 1 _(‘Zl,,+8 U1
( 1 )_ L+1 _( tn )
(26 + 2) (24 + 8)
(o + 1) (% +2)
s (21,.’4- l)<4' o= 1 _ A+ 1)—1
o

Hence by induction, (7) is true for all ¢ > 4.

Putting # = 2 + 1 in (3) and combining with (7), we have
BT ot (2

for t >4 and 2 =20+ 1, and hence forall n > 20 4+ 1.

It can be verified directly that (e) for { =3, (6) holds good for all
% > 2+ 2 (b) for £ = 2, it holds good for all v > 2t + 3.

This completely establishes (4).

To complete our assertion we note that
on
Mn, 2 M@n2A-1)]< ———g————
(3. 2] < A 2 =01 < gy

by (1), where as
(M (n, 2] < 274
by (2), and by what we have proved above, it follows that Hamming's

bound is better than Komamiya—Joshi bound fur all odd values of
*d’, and for even values d # 2 it is better for all n >4 + 8

We may remark that while » should necessarily be greater than 21,

in practice it is much larger. Hence the restriction thatn > 20 4 3 is
ot a practical limitation,
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