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Sankhy? : The Indian Journal of Statistics 

1990, Volume 52, Series B, Pt. 2, pp. 219-230. 

SOME ACCEPTANCE CRITERIA FOR SINGLE 

SAMPLING MULTIATTRIBUTE PLANS 

By ANUP MAJUMDAR 

Indian Statistical Institute 

SUMMARY. Several acceptance criterion are considered for the comparison of cost and 

discriminating power. A linear cost model for non-destructive testing for discrete prior distribu 

tion of process average has been formulated. The general practice of formulating sampling plans 

separately for each of the characteristics have been reviewed with some proposed alternatives. 

1. Introduction 

There are many situations in industry where products are inspected for 

more than one attribute characteristics. Often in these situations it is reason 

able to assume that a defect with respect to any of the characteristics occur 

independently of others. For example a metal closure may be inspected for 

surface defects such as 'print peeling', coff centre', 'dirty facing' and functional 

defects such as 'damaged' or, for example, steel tapes may be inspected for 

two quality characteristics such as surface finish (whether good/bad) and 

coil demension (whether off specification or not). The defects in rubber 

tread and fabric prep in cycle tyre can also be considered as independent. 
We consider the problems of acceptance sampling in these situations. 

We suppose that there are r attribute characteristics for a product. A 

defect with respect to any of the characteristics occurs independently of 

others. The situation also permits us to take a sample of size n from a lot 

of size N and inspect for all the r characteristics in any order. This of course 

implies that no inspecting is destructive. If x% be the number of defects of 

i-th kind in the sample 

P(xl9x29...9xr) 
= h P(xt). ... (1) 

For a process average (pl9p29 ...9pr) the probability of obtaining x% can be 

expressed as 

P{xt) = b{xh n,pt) = 
(* ) pi X\l-Pi)n~Xi- ... (2) v 

X% 
' 

We assume _p<'s are small enough to assume poisson condition, i.e. 

b(xi9 n, pi) 
=* g{xi9 mt) 

= 
e^m**/^) ! 

Here m% = n.pi. ... (3) 

AMS (1980) subject classifications : 62N10. 

Key words and phrases : Poisson condition, discrete* prior distributions. 
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The purpose of the present study is to compare the effect of different 

acceptance criterions on OC function and cost. However most of the results 

are restricted to the case of r = 2. 

2. Sampling scheme 

Scheme A. We first examine the following acceptance criterion and 

observe some of the properties of the OC. Plan A (n, cv c2, ..., cr) have 

the acceptance criterion : 

Accept if %) ^ c? ; reject otherwise 

i 
where #(i) 

= S Xj, i = 1, 2, ..., r. ... (4) 

The OC function under poisson condition is given by 

ci V^D *r-*(r-i) 

PA(cv c2, ..., cr : mv m2, ..., mr)= 2 g(xv mx) S g(x2, m2)... 2 g(xr, mr) 

(5) 

Theorem 1 : For i < j, the discriminating power of the OC for the i-th 

characteristic is more than or equal to that for the j-th characteristic. 

Proof : To compare the change in OC function for changes in pi we 

compare the PA\ obtained by differentiation ?(5) with respect to m\. Thus 

?PA\ 
= 

PA(cv c2, ..., cr : mv m2, ..., mr) 

?PA(cv c2, ..., ct?1, ci+1? 1, ... cr?l : mx 
... 

mr) for c? > 0 ... 
(6) 

and 

?PA? 
= 

PA(cv c2, ..., cr : mv m2, ..., mr) for c$ 
= 0 ... (7) 

Thus the OC function is a decreasing function of pi. OC function decreases 

with decrease in c?. And Cj = 0 implies Cj 
= 0 for all j < i. It therefore 

follows from (6) and (7) 

-PA?>-PAl+l. 
... (8) 

This proves the theorem. 

The above property of the plan A therefore allows us to order the charac 

teristics in the order of relative discriminating power. 

It is also worthnoting that although the sample size has been kept same 

for all the characteristics the poisson OC would satisfy (8) for different sample 

sizes for different characteristics. 

Scheme C and D. Sampling scheme 0 is the natural extension of 

single sampling for single attribute. In industry it is a general practice to 
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determine (%, c$) pairs for sample size and acceptance number for each i. 

For mathematical convenience we consider the case % = n for all i and define 

the G kind sampling scheme. G(n9 cl9 c2) ..., cr) with the acceptance criterion : 

Accept if x% < C{ for all i ; reject otherwise. Under poisson condition the 

OG can be expressed as 

r 

PC(cl9 c2, ..., Cr : ml9 m29 ...9mr) 
= U G(ci9 mt) ... (9) 

i 

H 

G(Ci9mi)= ___ g(xi9mi). ... (10) 

The design and optimality of multi-attribute sampling plans have so far been 

considered for such plans whose OG can be expressed by (9) under poisson 
condition. However it is difficult to design such plans which would satisfy 

(8). Thus sampling scheme A has atleast one logic in its favour. Before we 

proceed to compare the cost of A and G we consider one more sampling 
scheme. We define D kind sampling scheme D(n9 c) with the acceptance 
criterion. 

r 

Accept if S Xi < c ; reject otherwise. Note that 
i=l 

PD(c :m1,m1, ...9mr) 
? 

G?c, S mA ... (11) 

Theorem 2 : For r=2 we define a plan B(n, cl9 c2) with acceptance criterion. 

Accept if x2 < cv x1-\-x2 C c2 ; and reject otherwise. 

PA(cv c1-\rc2 : ml5 m2)+PB(c2, cx+c2 : mv m2)?PC(cv c2 : ml9 m2) 

= 
PD{cx+c2 : ml9m2) ... (12) 

Proof : PB(c29 cx-\-c2, ml9 m2)?PC(cl9 c2, ml9 m2) 

= ? P(x2) P{xx < Cl+c2-x2)- 1 P(x2) 2 P(xx) 
. a?2=o ?c2=o ^=0 

02 C-%'tC2 Xa 

= S Pfa) S P(Xl) 
X2=0 Xi*=Ci+l 

Cl+C2 
= 2 P(x? P(x2 < c1+c2?x1) 

ci+l 

?l+?2 
.-. LHS of (12) = S Pfo) P(ce2 < c2~xx) 

= 
P(^+^2 < c_+c2) = RHS of (12). 

We will use this result for cost comparison in section 4. 

B2-12 
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3. Cost model 

Let A be the set of a^'s for which we declare the lot as acceptable and ? 

be the complementary set. X? denotes the number of defectives of ?-th 

characteristic in the lot. Let the costs be 

C(x) = n S0+h xtSt+(N-n) A0+ S (Xt-x^At 
?=l i=l 

and x = 
(xv x2, ..., xr)eA ... (12) 

C(x) = n S0+ 2 xtSi+(N-n) R0+ 2 (Xt-x^Ri 

X == 
\pC\, >%2, } *?f) ? A . ... ^J-?y 

The interpretations of cost parameters are as follows. S0 is the cost of 

inspection per item in the sample for all the characteristics put together. Sf 

the cost proportional to the number of defectives in the sample. The cost 

of acceptance, AQ associated with remainder of the lot is usually negligible or 

zero. Ai is the cost of accepting an item containing defective for i-th charac 

teristic. We assume the loss due to use of defective item is additive over all 

the characteristics. This means if an item contains more than one defects, 

say for i = 1 and 2 the loss will be the sum of damages for both the charac 

teristics put together. The assumption is reasonably valid under many 

situations. However proportion of items containing more than one category 
of defects will usually be small. 

Costs of rejection consists of a part 2(iV?n)R0 proportional to the number 

of items in the remainder of the lot and another part ^(Xf?Xf) Ri propor 

tional to the number of defective item rejected. If rejection means sorting, 

RQ will give the sorting cost/item for all category of defects put together. Rx 

denotes the additional cost for items found with defective of i-th category 

(for example, cost of repair) and is additive over different category of defects. 

Moskewitz etal. (1984) have considered similar cost model when decisions 

are taken separately for each of the characteristics. However the above 

formulation is due to the author reported in 1980. (See reference) and is 

applicable to any acceptance criterion. Denoting the hypergeometric proba 

bility by 

^ 
=(;)(;r-;)/p,)f? 

' <"> 
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The average cost for lot of size N with (Xi, ..., Xr) defects become 

2 c(x)U P{XilXi)+ 2_c(z) ? P(xijXi). ... (15) 
xeA 1 xeA l 

If the lot quality is distributed as binomial, i.e. 

P(Xt) = 
(^ ) Pi ^{l-pif-** i = 1, ..., r. ... (16) 

The process average (pv p2, ...,pr) is denoted as p then average cost of p 

can be easily shown as 

K(N, n, p) 
= n(S0+S St pt)+(N-n) [?0+2 At pt) P(p)+(i?0+2 Rt Pi)Q(p)] 

... (17) 

P(p) denotes the average probability of acceptance at p and Q(p) 
= 

1?P(p). 
If there are q states for the process average such that at j-th state 

P(j) = 
(p[J),~,P(rJ)) ... (18) 

with probability wj and 

S w, 
= 1. ... (19) 

Then the overall average cost become 

K(N, n) 
= 2 K(N, n, pW) wh ... (20) 

Equation (20) is a general cost model for r characteristics assuming indepen 

dence. For r = 1 and q 
= 2 the model is identical to the cost model developed 

by Hald (1965) for discrete prior distribution. 

For our present discussion we will consider the case of two quality charac 

teristics r = 2 and q 
= 2. Introducing the cost functions for j 

= 1,2 

K8(P{1)) 
= 

S0+ 2 SiPiW . ... (21) 
i=i 

Ka(pW) 
= A0+ 2 AiP?W ... (22) 

i=i 

Kr (pW) 
= Ro + S RiPiW ... (23) 

i=i 

X?(pW) = min[Za(pnir^>)] .- (24) 
we assume 

W) > ̂ (p(i)) 
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Let Ka(pM) < Kr(pM) and Ka(p ) > Kr(p ) 

then Km(p<*>) = 
Za(pW) for j = 1 

= 
Kr{pW) forj = 2. ... (25) 

Further let KS9 Ka, Kr and Km denote the expected value of the corres 

ponding cost function defined in (21), (22), (23) and (24). 

Denoting K = KiN, n)/N sampling inspection should only be taken 

recourse to if 

K-Km < min [Ka?Km, Kr?Km]. 

The regret function R{N9 n) is expressed as 

R(N, n) = [K(N, n)-KM{N, n)]l(Ks-Km) ... (26) 

Km(N, n) is the average minimum unavoidable cost. This works out to be 

R(N, n) = n+(N-n) [vx Q(p )+v2p(p )] ... (27) 

where v, = ti* | Ka(pW)-Kr(pW) | j{Ks-Km) for j = 1, 2. 

If R0 
== 

S0 and Rt = Si for all i ; Ks = 
Kr and vx = 1. 

4. COMPABISON OP COSTS 

We will consider the case for r ? 
2, q 

= 2. Let 

p(D =(pl9p2) 

and p<2> 
= 

(_?;, i>2). 

Let p 
= 

^i+^2, #' 
= 

_?_+_?2> 
' = 

fl_p', w = 
np,p 

= 
^/p and p' 

= 
p;/_?'. 

4.1 Comparison of scheme A emd D. For a given N the optimal plan 
Ain, c[,c2) satisfies the following inequality 

RAc2 {n, cl9 c2-l) < 0 < 
RAc2 

(n, cv c2) ... (28) 

RA ( ) denotes the regret function values. Under poisson condition 

vti(c*m>')B(Ci,c*p') l < v2g{c2+l, m') B(cv c2+l, p') 

v1g{c2,m)B(cvc2,p) 
^ 

v1g{c2+l,m) B(cl9c2+1, p) 
'" } 

and an optimal D(n, c2) satisfies 

RDCo (n, c2-1) < 0 < RDCo (n, c2) ... (30) 2 2 
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which under poission condition works out as 

^2 9^2, W)/v! g(c2t m) < 1 < v2 g(c2+l, m')\vx g(c2+l, m). 

Here B(c, n,p) 
= X b(x, n, p). 

... (31) 
3=0 

Theorem 3 : For an optimal plan D(n, K) the RA (n, K?1, K) < RD 

(n, k) if 
(p'ilPi)K>(p'lp)K+1- 

- (32) 

Proof : [RD (n, K)-RA (n, K-l, K)]?(N-n) 

= 
(v2e- '(myt\K \)-Vl(e- mf?K !). 

= v2 g(K+l, m') [(K+l) K)^(m')^1] 

-Vl g(K+l, m) [(K+l) mf/(m)^1]. 

Since (n, k) satisfies (30) a sufficient condition for RD?RA ^ 0 is given by (32). 

Usually p[ > p1 and p'2 > p2. If now p =? p' then (32) implies 

(PilPi) > (PUP*) i-e- P<P' 

It is worthnoting that K is an increasing function of N. And if for some 

K = K0 (say) the inequality (32) is satisfied then for all K > K0, (32) will be 

satisfied. Thus for p ^ p' we can order the characteristics suitably to for 

mulate an A plan cheaper than the optimal D plan for sufficiently large lots. 

Theorem 4 : For p 
? 

p1 there always exist a plan D(n, K) cheaper than 

the optimal plan A for any given lot size. 

Proof : To prove this we first show that for p 
= 

p and for all 

i = 2, 3... K 

[RA(n, K-l, K) > RD(n, K)] =^ [RA(n, K-i, K) > RA(n, K-l, K)] 
... (33) 

Let a = v1 e~m mf and b = v2 e~m' (m^)K then LHS inequality implies 

a > b. Now 

[RA (n, K-i, K)-RA(n, K-l, K)]/(N-n) 
i-i i-i 

= Vl S g(K-j, mx) 0(j, m2)-v2 2 g(K-j,m\)G(3,m2) 

the j-th term of this series when multiplied by (K?j) ! gives 

J ? 
a 2 (ljx !) (m^m^x mfl?b 2 (1/x !) (m2lm[) (m[Y~K 

?C=0 x=o 
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Since a > b and m2\mx 
= 

m'2\mx and m\ > m^ the j-th term is a positive 

quantity and thus (33) holds. 

Next we note that the optimal plan A satisfies (29) which is identical to 

(30) for p 
= 

p'. Thus 

v2 g(K9 m) < vx g{K9m). 

This implies 

RD(n9 K) < RA {n9 K-19K). ... (34) 

From (33) and (34) we conclude that the plan D(n9 K) is cheaper than the 

optimal plan A(n9 K?l9 K) and hence the theorem is proved. 

Thus for p 
= 

p' we prefer D plan to A plan. And for p ^= pf we prefer 

A plan to D plan. 

4.1 Numerical example 1 : Note that under poisson condition the OG 

function of a plan l){n, c) at {pl9 p2) is given by that of a single sampling plan 

for single characteristics at_? 
= 

px-\-p2. The regret function is dependent on 

only four parameters p9 p', vx, v2. Hence the tabulated optimal plans for single 

characteristic with the above parameter, can be used as optimal D(n, c) by 

matching p, p', vx, v2 values. 

I** (2>i> ft) 
= 

(-002' 005) and (Pi P%) 
= 

(-02> -03)> vi = 1, v2 
= ?-7 

Using the table of optimal single sampling plan (r 
= 

1) for p 
= .007, and 

p' =.05, vx = 1, v2 = 0.7 (See Hald, 1965) for lot size (N) 
= 6000, we get 

n ? 285, and (7 = 6. The exact value of D(n*, K*) under poisson condition 

works out as D(286, 6). 

The regret function value (equation 27) i__D(286, 6) 
= 359.3678. Here 

p ^__ p'. To verify the inequality (32) we note that for K > 6 plan 

A(n, K*?1, K) will have lesser regret function value. The actual 

__?_4(286, 5, 6) works out as 359.2855. 

Example 2 : We choose (px,p2) 
= 

(0028, .0042) and (p'x,p'2) 
= 

(02, .03), 

N = 6000, vx = 1, v2 = 0.7. Here p 
= 

p'. The optimal A plan works out as 

_?(286,5,6). To see that this is optimal we work out RA{287, 5, 6) 
= 359.5697, 

i__?(285,5,6) 
= 359.5410 and _B_?(286, 5, 6) 

= 359.5306. i?_?(286, 4, 6) 
= 

362.9882, 54(286,3,6) 
= 396.5396, ?__l(286,2,6) 

= 597.0290, i?_4(286,l,6) 
= 

1397.9816, i__?(286, 0, 6) = 3438.4856. Also, RD(2S6, 6) 
= 359.3678. Thus 

the inequalities (33) and (34) are verified. 
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4.2 Comparison of C kind plan with other plans. 

Theorem 5 : For a given lot size 

RA(n, cv c1+c2)+RB(n, c2, +c2)?RC(n, cv c2) 
= 

RD(n, cx+c2). ... (36) 

Proof : From (12) we obtain 

QA(cv c?+c2, mv m2)+QB(c2, cv mv m2)?QC(cv c2, mv m2) 

= 
QD(c1+c2,m1,m2) ... (37) 

RA(n, cv cx+c2) 
= 

n+(N?n) [vx QA(cv cx+c2, : mv m2) 

+v2PA(cv cx+c2, : m?, m2)] 

and similar expression holds for regret function of the corresponding B, C and 

D plan. Combining (37) and (12) we immediately get (36). 

4.3 Comparison of plan C and D. Case 1 : p 
= 

p'. We shall first 

show that it is possible to construct an equivalent plan D(n0, K0) for any given 

C(n, cv c2) such that the OC function will have approximately same values 

ais (Pi'Pz) and at (PvP'?) 

Since QC(cv c2, : mx, m2) is a function of m alone for a given cv c2, and p. 
we denote this as QC(m). QC(m) nas the same properties as a distri 

bution function. We shall call?PC'(m) the OC density and ??mrdPC(m) 
= 

E(mr) the OC moments of order r. We shall now prove that 

?1 c2+:rl 
Theorem 6: E(m) = 2 2 b(xvx,p) ... (38) 

xx=o X=-Xi 

cl c2+xl 
E(m2) 2 2 2(aH-l)&(ff1,#,?>). ... (39) 

Proof : PC(m) = ?iq, mp). 0(c2, m(l-p)) 

= 
I,g(x1,m.p) 2 g(x2, m(l? />)) 

where x = 
xt+x2. Using 

g(xv mx) g(x2, m2) 
= 

g(x, m) b(xv x, p) 
we get 

?PCf(m) 
= 

?Sg'(x, m) b(xt, x, p), 

S denotes the summation with respect to xx and x over the domain indicated. 
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Since 

oo 

J* m g' (x9 m) d m ? ? 1 
o 

? m2g' (x9 m) dm = ? 
2(#+l) 

o 

00 

o 

the result follows. 

We can however express these in terms of binomial moments. Let 

c 

BK(c n9p)= ___ BK_x(x9 n9 p) and B0(c9 n9 p) 
= 

b(c9 n9 p) 
then s=o 

Elm) 
= 

(pf)-1(c2+l)^(ppf)-1B2(c2+cx+S9p) 

E(m2) 
= 

2(c2+2) (ca+l)p'-i-2pp/ (c2+cx+3) B2(c2, c2+Cl+2, p') 

+^{PP')-I{p-1-P'-1) B,(c2, c2+cx+3, p') 

-2(p/>')-1(p-1-/>'-1) BB(c29 c2+29 p'). 

The derivation of these expression has been omitted. From the Theorem 6 

it follows that for p 
= 

p' a simple and rather accurate approximation of the 

OG of any G kind plan can be obtained from the OG of the plan D(n0, K0) by 
equating the mean and the variance. This gives 

K0+l = E2(m)IV(m) ... (40) 

n0 
= 

nE(m)IV(m) ... (41) 

so that K0 and n/n0 are uniquely determined from the given (cx, c2, p). Usually 

njn0 comes out to be < 1, clearly 

RD(n0, K0) < RG(n, cx, c2). 

Case 2 : p < p''. 

Theorem 7: Let F(m, cx, c2) 
= 

G(cx, mp) G{c2,m(l?p))?G(cl9 mp') 

G(c29 m(l?p')) Then F(m9 cl9 c2) < Ofor cx > c2. 

Proof : If cx 
= 

c2 
= c, then 

j- G(c9 mp) G{c9 m{l-p)) 

= 
?mg{c9 mp) G(c, m(l?p))+mG(c, mp) g(c, m (1?p)). 

The ratio of absolute values of the 2nd term to the 1st term 

f 2 (mpy-c\x ! ] / [ 2 m(l-p)x^/x\]9 
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If p < .5 this ratio is greater than 1 and Cr(cl5 mp) G(c2, m(l?p)) is an increasing 
function of p and hence F(m, cx, c2) < 0. 

F(m, c+1, c)?F(m, c, c) 

= 
g(c+l, mp) G(c, m (l-p))-g(c+l, mp') G(c, m(l-p')). 

The ratio of absolute values of 1st term to 2nd term for cx 
? 

c+1, and c2 
= c 

< ( 2 (mp'f^/x ! ) / ( i (mpf-'i/x ! ) * 
#=0 ' / \#=o 

' 

< 1. 

Thus F(m, c+1, c) 
? 

F(m, c, c) < 0. This proves the theorem. 

Theorem 8 : For c2 ]> cv F(m, cv c2) undergoes almost one change of sign 

from ~ve to+ve. Writing 

G(cx,mp')G{c2,m(l-p')) 

~ 
G(cx, mp) G(c2, m(l?p))?m(pt--p) g(cx, mp) G\c2, m(l-p)) 

+m(pr-p) g(c2, m(l-p)) G(cx, mp) 

we note 

ci 1 
c0-i 

F(m)\A = 2 m 2 
[{(1-p)2 p 

1 
?(c2-i) ! cx 1} 

*=o 

-{pei'(l-p)e*l(Cl-i)lc2\}] 

+ 2 {m\l-p)x?x !} p'Vcj ! 
x=c2?Ci~l 

where A = 
(e"m m x) m(p'?p) > 0. 

We note 

(a) The 2nd series function is > 0. 

c -* 

(b) If for any values of i, the coefficient of m 2 in the first series=0, then 

[(!-/>)//>]' 
= fa ! fa-?) ! /te-i) I Ci D< ^-i+l/Ci-t+1)?. 

Thus (l?p)lp < (c2- i +l)/(c1?i+1) < (c2?*)/(ci"*) Hence the coeffi 

cient of m > 0. 

(c) For i =s 0, the coefficient of m 2 
=0. 

B2-13 
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From these it follows that F(m) undergoes atmost one change of sign and 

F(m) 
= 0 will have atmost one real positive root. This proves the theorem. 

We now construct two D kind plans using \cx, c2, p) and (cl9 c2, p') and 

call them D(n0,K0) and D(n0,K'0). If now 

(a) F(m) <[ 0 for m = MtPi+Pt) and for m = w(ft+ft) ^hen 

QD(K0 : nQ(px+p2)) 
== 

QC(cx, c2 : mx, m2) 

PD(K0 : n0{p[+p2)) < PC(cv c2 : mv m2) 

for no < n, RD(n0, K0) < RG(n, cx, c2). 

(b) F{m) < 0 for m = w(#i+ft) and i\m) > 0 for m = 
n(p[+p2) then 

QD(?l0, w0(:Pi+ft)) < QG(ci> c2> : mi> ̂ 2) 

PD(KQ9 n0(px+p2)) < PC^, c2 : m?9 m2) 

For w0 < n9 RD(n09 K0) < RC(n9 cl9 c2). 

(c) If F(m) > 0 for m = w(_Pi+ft) an(i -^M > 0 for m ? 
n(p[-\-p2) 

then for both Z)(w0, K0) and D(w?, iQ the regret function will be higher than 
tbe regret function of the corresponding C plan. 
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