SOME RESULTS ON QUADRICS IN FINITE
PROJECTIVE GEOMETRY BASED ON
GALOIS FIELDS

D. K. RAY-CHAUDHLURI

1. Introduction. In a paper (5) published in the Proccedings of the
Cambridge Philosophical Society, Primrose obtained the formulac for the
number of points contained in a non-degenerate quadric in PG(n, s), the
finite projective geometry of n dimensions based on a Galois ficld GF(s). In
§ 3 ol the present paper the formulae for the number of p-Nats contained in
a non-degenerate quadric in PG(n, s) are obtained. In §4 an interesting
property of a non-degenerate quadric in PG(2k, 27) is proved. These propertics
of a quadric will be used in solving some combinatorial problems of statistical
interest in a later paper.

In finite projective geometry PG(n, s} of n dimensions based on Galois
field GF(s), where s is a prime power, the points can be taken as (n + 1)-
tuples v = (x4, ¥y, ..., %) where x, Xy, ..., ¥, are elements of GF(s) and
the (n + I)-tuple px = (pxa. px1, - . ., pvy) is regarded as the same point as
x for any non-zero clement p of GF(s). The null (# + 1)-tuple (0,0,...,0)
is not regarded as a point. The set of points x which satisfy an equation

xC=0

where Cis a matrix of order (2 + 1 X k) with elements in GF(s) and has
rank £ k=1,2,...n+ 1, is taken as an (n — k)-flat. In what follows
for any point x of PG(n, s) we shall use X to denote a row vector arising
from the co-ordinates of x. A quadric Q in PG(n, 5) is the set ol all points x
which satisfies an equation

Ly x4x' =0

where 4 is a triangular matrix of order (n + 1 X » + 1) with elements in

Received December 9, 1960. This paper is based on the writer’s I’h.1). thesis submitted to
the University of North Carolina for a degree in Statistics. The work was completed at the
Case Institute of Technology. The writer is grateful to Professor R. C. Bose for suggesting
the problem and for his gnidance.

This research was supported by the United States Air Force through the Air Force Office
of Scientific Research of the Air Research and Development Command, under Conteact No.
AF 49(G38)-213. Reproduction in whale or in part is permitted for any purpose of the United
States Government.

Part of this work was carried out at the Statistical Laboratory, Case [nstitute of ‘Technology,
Cleveland 8, Ohio.

129



130 D. K. RAY-CHAUDHURI

GF(s) and X’ is the transpose of the row vector X. If the characteristic of the
field GF(s) is not equal to 2, then the equation of Q can be taken as

(1.2) xBx’ =0

where B is a symmetric matrix of order (n 4+ 1 X n + 1). In this case the
quadric Q can be regarded as the set of self-conjugate points of the polarity
defined by the symmetric bilinear form

(1.3) xBy’ =0

where ¥ = (Yo, ¥1. Y3, - - . » Yn)-

However, when the characteristic of the field GF(s) is 2, the equation of
Q cannot always be written in the form (1.2) and hence Q cannot be regarded
as the set of self-conjugate points of a polarity defined by a symmetric bilinear
form. For this reason we shall use (1.1) as the equation of Q.

Any non-singular matrix B of order (n + 1 X n + 1) defines a mapping
of the points of PG(n, s) onto itsell. Under the mapping induced by B, the
point x is mapped into the point y where

y = xB.
Such a mapping will be called a non-singular mapping. A quadric Q in PG(n, s)

is said to be degenerate if there exists a non-singular mapping which takes Q
into a quadric Q' with the following equation

xCx’ =0
where C is a triangular matrix with all elements in the last row and last
column equal to zero. A quadric @ in PG(n, s) is said to be non-degenerate

if it is not degenerate. A point « is defined to be conjugate to a point 8 with
respect to (w.r.t.) Q if

(1.4) o4 + A = 0.

The relationship of conjugacy is symmetrical. The polar space T(a) of a
point a with respect to Q is the set of all points which are conjugate to «
w.r.t. Q. The polar of a is the (n — 1)-flat determined by the equation

(1.5) a(d + 4K = 0.

If the quadric Q is non-degenerate, (1.5) will determine an (n — 1)-flat. The
polar space T(Z;) of a p-flat Z, w.r.t. a quadric Q is the set of all points
which are conjugate to every point of 2, w.r.t. Q. Two flats £, and 2, are
said to be mutually conjugate w.r.t. Q if every point of Z, is conjugate to
every point of 2, w:r.t. Q. If @ and 8 are two points which are mutually con-
jugate w.r.t. Q and o« and B’ are images of « and 8 under a non-singular
mapping B, then a' and g’ are mutually conjugate w.r.t. ¢’ where Q' is the
image of Q under the mapping B. It should be noticed that with our definition
of conjugacy, in PG(n, 2™) all points are sell conjugate and in PG(n, s), s
odd, only the points on the quadric are self conjugate.
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It has been shown by Primrose (5) that every non-degenerate quadric
in PG(2k, s) contains lincar spaces of dimeunsionality (2 — 1) and docs not
contain any linear space of higher dimensionality. So with respect to the
maximum dimensionality of a lincar space contained in the quadric, the non-
degenerate quadrics in PG(2%, s) belong to only one type. However, the
non-degencrate quadrics in PG(2k — 1,5) belong to two dilferent types,
hyperbolic or clliptic. If a non-degenerate quadric in PG(2k — 1, s) contains
(k — 1)-Nats and does not contain wny linear space of higher dimensionality,
then the quadric is said to be a hyperbolic non-degenerite quadric. If a non-
degencrate quadric in PG(2k — 1,s) contains (& — 2)-fats and does not
contain any hinear space of higher dimensionality, then the quadric is said
to be cliptic. Primrose (5) uses the words unruled and ruled quadric, for
elliptic and hyperbolic quadrics. Tallini (8) uses the names elliptic and hyper-
bolic quadrics.

2. Some results on the polar spaces are stated below in the form of lemmas
and theorems, for convenience of reference. These results are cither well
known or can casily he proved.

Lemsa 2.1, If a point a is conjugale to the points 3y, Bz ..., B, W.r.t. @
guadric Q, then a is conjugate to the linear flat determined by the points 8y, B2,
< B

Lessa 220 The polar space of a p-flat X, is the intersection of the polur spaces
of ap, 0y, ... a, where an, ay, ..., ap are (p + 1) independent poinis in X,

LEMMA 2.3. Lelao, a1, . . . , a, be independent points on a guadric Q in PG (n, s).
Then the p-flat =, determjncd by thesc points is contained in Q if and only if the
(p + 1)-points are pairwise conjugate w.r.t. Q.

THEOREM 2.). Let =, be a k-jlat contained in a non-degencrate quadric Qn tn
PG(n,s). Let Soxy be an (n — k — 1)-flat not intersecting . Then

(a) T(Z) is an (n — &k — D-flat.

b)Y T(Z) M Zagmr is an (n — 2k — 2)-flat and Qu NN T(X) M Ep iy 15
a non-degeneralc guadric Qn_ax—2 0n the (n — 2k — 2)-flat T(X,) M Xppey which
is elliptic or hyperbolic according as Q. is elliptic or hyperbolic.

THEOREM 2.2. Let X, be a k-flat contained in a non-degencrale quadric Qn in
PG(n, s). Let S, be any lincar flal which is contained in Q. and conlains Xy.
Then =, is contained in T(X:), the polar space of =i

Proof. Let X, be determined by the (k + 1)-independent points aq, ay,
az ..., ar and Z, be determined by the (p + 1) independent points ao, ai,
@2, - Qry Aigs ,ap. Any point a of X, can be represented as p PR BN
where Aq, A Ae, ..., A, are clements of GF(s).

By Lemma 2.3 & is conjugate to each of the points ap, ay, . . . , a,. Therefore,
we have
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ald + A')a = ( 2 )\,u,) A4+ 4 () =0,i=0.1.2,... .k

So « is conjugate to every point a,, i = 0, 1, ..., k. By Lemma 2.1 a is con-
jugate to Z, the k-fAat determined by the points ae ay,...,a. Hence
a € T(Zy) and

X, C T(Xp).

3. A projection and its use in determining the number of p-flats
contained in a non-degenerate quadric in PG(n,s). Let O be a point
in PG(n, s) and x be an (# — 1)-fHat not passing through 0. Let P be a point
other than 0. The line OP intersects o ata point P, P is called the projection
of P on = through 0. The prajection of a set .1 in PG{n, s) on n through O
is defined to be the set of all points which are projections of the points ol .!
on = through O. The projection of .1 on x through O will bz denoted by Sy, (. 1).
If O and = are assumed 1o be fixed, Sy, (.1 will be written as S(.1). Il Cis
a set of points containing O, then the projection of the set € — 1O} through O
will be written as S(C) for convenience.

Lemya 3.1, Let P be a point on a non-degenerate quadric Q, in PG(n, x) and
T be the tangent space al P and w be an (n — )-flat not passing through P. In
the following any projection is on = throngh P. Then

(2) S(Q. N T) is Q42 a non-degenerate quadric on the (7 — 2)-flat 7N\ w.
(b) If X, is a p-flat containing P and contained in Q,, then
S(%) = 2o a (p — DAl
and
S():p) C Qn—!-
(c) If 2, is a p-flat not containing P and contained in Q, N\ T, then
S(2,) = X, e pflat
and
S$(2p) C Qu-s.
(d) If X, is a p-flat conlained in Q, dut not in T, then
S(2p) = 3, a p-flat
and
S(Z,) & Qu-.

Proof. (a) By Theorem 2.1 Q. N\ TN x is a non-degenerate quadric Q,_»
in PG(n — 2,5). Hence it will be sufficient to show that

3.1) S(@G.NT)=QNTNm

(3.1) follows immediately from the definition of projection.
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(b) Since P € =, and

3, CQn
by Theorem 2.2
s, CT.
So we have
S CO.NT.

It follows that
S(E)CSQ.NT) = Qna
Now 1o prove (b) it is sufficient to show that
(3.2) S(X) = 2,0, a (p — 1)-flat.
It is easy to cheek that
S(=) = S,Nr
Fience (3.2) follows from the fact that Z, is not contained in .
(c) Let X540 be the (p + 1)-Aatdetermined by Pand Z,and 3 = 2,/
It is easy to check that
S(2,) = 3,
Since
5, CT and =, CQs
by Theorem 2.2
S, CONT.
So
5 CoUNTNT= Qs
(d) Let .4y and =’ be defined as in (c). In this case T, cannot contain
P. I{ possible, suppose X, contains P. Then X, is a p-flat contained in Qn

and contains P. So by Theorem 2.2 X, must be contained in 7, the polar
space of . But this contradicts our hypothesis. Now, as in (¢), we have

S( :p) = :I‘I

To show that S(=,) C Q-2 it is sufficient to show that

(3.3) S TN
(3.3) follows immediately (rom the fact that
QT

Projection of a class of sets. Let A be a class of sets in PG(n, s). Let P be a
given point and = be an (1 — 1)-flat not passing through P. The projection
of the class A on = through 0 is defined to be the class consisting of the sets
which are the projections on = through P of the sets of A and is denoted
by SQ0).
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LeMyma 3.2, Let A be a class of distinct p-flals passing through a point P in
PG(n, s) and = be an (n — 1)-flat not passing through P. Then there exists a
one-to-one correspondence between the two classes U and S().

Proof. Let 2 be any p-flat in the class . Let @ be made to correspond to
S(©). We shall show that this correspondence is one to one. It will be sufficient
to show that for any two different sets @ and @’ of the class 9

(3.4) S(@) »= S(@').
If possible, suppose (3.4) is not true. Then
S(@) = S@).

Since @ # @' there exists a point R belonging to 2 but not belonging to Q.
Let R’ = S(R), the projection of R. Then R' € S(@'), P € @. So the line
PR’ is contained in @'. Obviously R is a point on the line PR’. Hence Ris a
point of the p-flat @' which is a contradiction.

THEOREM 3.1, Let P be a point of a non-degenerate quadric Q. in PG(n, s),
T(P) be the tangent space at P and x be an (n — 1)-flal not passing through P.
Let G, , denote the class of p-flats contained in Q, and passing through P and
a5 be the class of all p-flals of Qu. Then there exists a one-lo-one correspondence
between the classes G, and N,_s, s and hence the number of elements in each
class is the same.

Proof. Since each p-flat of G, , passes through P, owing to Lemma 2.2, it
will be sufficient to show that
3.5) S(Gay) = Hairpor.
We shall show that (3.5) is true if for Q.—2 we take the non-degenerate quadric
QN T(P)Nx in PG(n — 2,59).
Let Z, € G5 and S(3Z;) = Q, @ € §(G,,). By part (b) of Lemma 3.1

Q= 2oy C Q-2
Hence Q € fa_s, p—1. It follows that
(3.6) S(Cup) C Uporpa.

Conversely let Z,_y € W,_2,1. Let =, be the p-flat determined by P and
2,-1. Then using Lemma 1.3 it can easily be seen that £, C Q. and

5(2;) = Zp1
Hence
(3.7) -3 € S(Cap) and H,_sp-y C S(GC. )
(3.5) follows from (3.6) and (3.7).

TueOREM 3.2. Let N(p, n) denote the number of different p-flals contained in
a non-degenerate quadric Q. in PG(n,s). Then
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&(p, k), forn =2k p< k-1,
N(pon) = {®:(p, k),  Jor n =2k — 1, Q. elliptic and p < k—2,
&y(p, k), forn =2k — 1,Q. hyperbolicand p < b — 1,
where

I (SM—NI)_])
b(p, k) = 11_:'“—( =7y h<E-L

B (AIH  eprol _ bpbr
@1(9:k)=£1'(: +(i"”"’—1s ).P<k—2,
B (BN gepbrml s )
Oi(p, k) = I:_Ia s (S?l—l —+l; ) <k — L

The expressions for N{(0, n) were obtained by Primroze {§).

Proof. First we shall cstablish the following equation.

. _Np-1L,n=2NO. (s —1)
38 Nipon) = T :
Let P be a point of Q.. From Theorem 3.1 it follows that the number of
p-flats contained in Q. and passing through P is N(p — 1, n — 2). Let us
count the points in the p-flats contianed in Q,. Every p-flat contributes
(st — 1)/(s — 1) points and the number of p-flats contained in Q, is
N(p, n). Hence this collection of p-flats contains
S =
Novm ——
points which are not all different. In this collection every point will be repeated
as many times as there are p-flats of Q, passing through a point. Through
every point of Q, there pass N(p — 1,n — 2) p-flats and the number of
points of Q, is ¥(0, #). Hence the collection of p-flats of Q. coutains ¥ (0, n)
N(p = 1,n — 2) points. Hence (3.8) lollows.
Primrose (5) has obtained the following formulae:

1

st

s0.0) =5

%1 k=1
(3.9) &(0,) = %

- M-l gl
2o == oL

Applying the difference equation (3.8) repeatedly and using the formulae
(3.9), we get the required expressions for ®(p, k), #1(p, k) and $1(p, k).

‘TREOREM 3.3. The number of p-flats conlzined in a non-degenerale guadric



136 D. K. RAY-CHAUDHURI

Qi1 PG(n, 5) which pass through a given k-flal X, contained in Quis N(p—k—1,
% — 2k = 2), where N(p, n) denoles the number of p-flats conlained in ¢ non-
degenerate quadric of the type (clliplic or hyperbolic) of Qn.

Proof. Let T(Z,) denote the polar space of 2, and Z,_,_;bean (n — k —~ 1)-
flat which does not intersect Z,. Let G, denote the class of p-flats contained
in Q. and passing through Z,. Let D, denote the class of (p — k — 1)-fAats
contained in QN T(2,) N 2. By Theorem 2.1 it is known that
ONT(ZIN S,y isa non-degenerate quadric Qe-z-2 in PG(n — 2k — 2,
5). Hence to prove the theorem it will be sufficient to show that there is a
one-to-one correspondence between the classes €, and Dy, of p-flats.

Let 2, € Gy, Then

(3.10) 5 C %
(3.11) 2iMN 2eioy = ¢, the null set.
From (3.10) and (3.11) it follows that

2, @ Zacrene

So 2, M Z..r-1 has dimensionality at least equal to (p — k — 1). Since
SN Zaogor = 3, the null set,
the dimensionality of 3,/ Z,,-; cannot exceed (p — & — 1). Hence
Z,NZy e is a (p— k— 1)-Rat , ). Since
L CZ,C0.
by Theorem 2.1 £, C T(Z,). So
ZN 2t CUNT(E) N Zainy = Quonere
So
Zpr-1 € Dy,

Let us make =, of G, correspond to Z,_;—; of Dry It can easily be seen
that the correspondence is one to one.

4. Nucleus of polarity of a quadric

LeMMA 4.1. Let o and B be two poinis of PG(2k, 2%) not lying on a non-
degenerale quadric Q. in PG(n, 2). The line af inlersecls the quadric in a
single point if and only if the points a and 8 are mutuolly conjugate.

Proof. Sufficiency. Assume that « and 8 are mutually conjugate. Any point
on the line a8, the line determined by the points « and 8, other than a, can
be represented as 8 + a where A is an element of GF(2"). The number of
points at which the line of intersects Q. is equal to the number of solutions
in ) of the equation.

@ B+r)4(F +2) =0
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where the equation of Q. is

(4.2) xix’ = 0.

Since a and g are mutually conjugate points not belong to Q., we have
a(4 + A =0,

(4.3) ade’ £ 0and
84 £ 0.

Using (4.3) and the fact that every element in GF(2") has a unique square

root, we can see that (4.1) has exactly one solution in A.

Necessily. Assume that of intersects Q, at the single point y,. Suppose a
and v, are mutually conjugate. Then vy, belongs to T(a). Also, since the
characteristic of the field GF(27) is 2, « is sell conjugate and belongs to
T(a). So the line ay; belongs to T(a) and B, being a point on the line ay,
belongs to T'(a). But this contradicts our hypothesis that « and 8 are not
mutually conjugate. So a and v, are not mutually conjugate. Since « and 7,
are not mutually conjugate, « is not a point of Q, and v, is a poiut of Q., we
have

ala’ £ 0,
4.4) vidy, = 0 and
a(d + A *0.

Using (4.4), we can see that the point ys = a + Ay is a second point at
which the line af intersects Q, where

N ada
a(d 4+ A4
But this contradicts our hypothesis. Hence a and 8 must be mutually con-
jugate.
‘THEOREM 4.1. For every non-degenerate quadric Qu in PG(2k, 27) there exists
a point S not lying on the quadric such that cvery line through S inlersects the
quadric Qu in a single point. The point S is called the nucleus of polarily of Qu.

Proof. Let Qu’ be a non-degenerate quadric in PG(2k, 2™). Then according
to Dickson (4) there exists a ingul g which transforms Qa’
to Qu with the equation

.\'§+xm+xm + .t rawe =0,

Since the incidence properties in a projective geometry are invariant over
non-singular mappings, it will be sufficient to prove the theorem for Qu. Let

- 8=(100...0).

We shall show that S possesses the required properties with respect to Qu.
Obviously S is not a point of Qu. Let R be any other point not in Qu. It is
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casily seen that S and R are mutually conjugate. Then by Lemma 4.1 the
line SR intersects the quadric in a single point. Let R' be a point of the
quadric. It is easy to see that S and R’ are mutually conjugate. If possible,
suppose the line SR’ intersects the quadric in another point R” of Q. Since
Sand R’ are mutually conjugate, the point S occurs in T(R'), the polar space
at R'. Also T(R’) contains R’. So the line SR’ is contained in T(R'). Hence
R occurs in T(R') and R’ and R” are mutually conjugate. R’ and R” are
points of the quadric and are mutually conjugate. So by Lemma 2.3 the line
R’R’ is contained in Qu. So S is a point of Qu which is a contradiction.
For the case k = 1, Theorem 4.1 wus obtained by Qvist (6) and Bose (3,
pp. 158).
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