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A NECESSARY AND SUFFICIENT CONDITION FOR SECOND
ORDER ADMISSIBILITY WITH APPLICATIONS TO BERKSON’S
BIOASSAY PROBLEM
By J. K. GHOsH AND BiMAL K. SiNHA'

Indian Statistical Institute and University of Pittsburgh

A theorem is proved which gives a neoemry and suﬂ'mem. condition for
improving, up to oln 7, the mean sq d error of the likelihood
estimale @ by using an estimate of the form 6 + d(d)/n. An application in
made to a bioassay problem of Berkson.

1. Introduction. Recently in the multiparameter setup, Amemiya (1980) has con-
firmed Berkson's observation (Berkson, 1955, 1980; Berkson and Hodges, 1961) that the
minimum logit x* estimate is often a better point estimate than the maximum likelihood
estimate (mle) in the sense of mean squared error. This has been done by computing
numerically the Taylor expansion of the mean squared errors up to o(n"?) for many
parameter values. However, as observed by Amemiya, it is an open question whether this
result holds for all values of the parameters.

To attack this problem it is convenient to start with the one-parameter case and work
with the Rao-Blackwellised verswn [] of Berksons estimate (Amemiya, 1980, equation
(74)). Since 8 is of the form 8 + d(8)/n, § being the mle and d(#) a continuously
differentiable function, the comparison of mean squared errors up to o(n ) is relatively
easy. Moreover, as noted in Amemiya (1980) and Ghosh and Subramanyam (1974), § has
a smaller mean squared error (up to o(n"?)) than Berkson's estimate. This special case
suggests the following more general problem for one-parameter families satisfying the
usual Cramér-Rao regularity conditions. Does there exist a function d(8) such that

2
(.1 E;{§+d(ﬂ 0} < Eof -0 uptoo(n™ forall,

with strict inequality for at least one 87 In (1.1), LHS = a,(8)n ' + a:(0)n% + o(n "9,
a:(8) > 0 and RHS = a,(8)n"" + ax(@)n"% + o(n™?), aa(#) > 0, and (1.1) requires a.(8)
= a;(§) for all 4.

If the answer to (1.1) is “no", we shall say § is admissible up to o{n"?). In (1.1) as well
as in subsequent calculations, we shall use the method of Taylor expansion adopted in
Amemiya {1980) and Ghosh and Subramanyam (1974). For a discussion of the nature of
approximation involved, see Amemiya's Section 3. Henceforth, admissibility will mean
admissibility for mean squared error loss up to o(n ~?).

In the sume vein as (1.1) ene may want to study the admissibility of § in place of § and,
more generally, that of & + c(6)/n where ¢ is any given function i in the clas of estimates
of the form § + d(ﬂ)/n ¢ and o will always be d to be conti ly differentiable.
The restriction to estimates of the form § + d(§)/n can be justified by invoking the second
order efficiency of the mle; see Efron (1975), Ghosh and Subramanyam (1974), Ghosh et
al (1980), Pfanzagl and Wefelmeyer (1978).

Let b(8)/n be the bias of 6 + ¢(8)/n up to o(n™"). Then b(8) = ba(8) + c(8) where
bo(@)/n is the bias of the mle up to o(rn™'). Let I1(8) be the Fisher information per
observation. Assume by (§) and I(8) are continuous and /(#) > 0 for all §.

The main result on admissibility can now be stated. The proof is given in Section 2.
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TreoREM. (i) 8 + c(8)/n is admissible iff for some — © < fo < o

j F{()] exp[—rb(u)l(u)du} df = »
. s,

. Y
r F{C)] exp{f bl (u) du] df = oo,
and = ]

Gi) If 6 + ctd)/n is inadmissible then one can choose d(.) so that 6 +did)nis
admissible and better than 6 + c(8)/n up to o(n™.

The condition (1.2) suggests that for admissibility the bias term b(#) should be negative
as ¥ — ® and positive as § — —o, i.e., the estimate should behave like a shrinker at least
as far as bias is concerned. See in this tion the better esti constructed via (2.7}
and (2.8) in the proof of the theorem.

To give an application of the theorem we shall consider Berkson’s problem of estimating
6 on the basis of observations on independent random variables R, having the binomial
distribution B(n, m), { = 1, -« -, k, with

(1.3) m = (1 +exp(—0 — B8d))}"",

where 8 is known; R, rep the ber of resg g n trials at dose level d,.
it follows from the theorem that the mle § is always mndmmslble and that the Rao-
Blackwellised version 8§ of Berkson's estimate is admissible for k = 4 and inadmissible for
k < 4. These results are discussed in detail in Sectlon 3.

Returning to the special problem of paring § with 6, we prove directly that in
g I neither dominates the other. This theoretical result along with the Berkson-
Amemiya calculations suggest that the mle can be improved by Berkson's estimate within
a bounded interval {6,, 6:) but generally not beyond. That this phenomenon holds quite
generally is the content of the corollary in Section 2.

2. Main Results, It is easy to check by straightforward Taylor expansion that
2 v A 2
E,{J+ ad _ o} - E.[0+—C(:) - o]

= {g%8) + 28(N b + 22°(8)/1(8)}/n* + o(n"?),

where g(8) = d(8) — ¢(6). Hence, the condition that § + d (§)/n dominates § + c(d)/n is
given by

2.1)

2.2) g0 +2g(0)b(0) +2g°(8)/1(8) <0 forall §,
with strict inequality for at least one 4.

Proor OF THE THEOREM. (i) We first assume (1.2) and show that this implies that
(2.2) has the trivial solution g(8) = 0. Toward this end, let

2.3) q(8) = I1(6) exp{JN b(u)I(u) du}.
"

Note that (2.2) implies, for ~o < a < 8 < ®,

B ’ g “(8)
2.4) I g’w)q(o)dasz” —g(ﬂ)b(ﬂ)q(ﬂ)do—J’ Tor q(6) d0}
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which, on integrating the second integral by parts, is
=2Vg(B)q(B)- Vg (BY/I(B) +2VF(alg(a)- Vg (a) /I{a).
Proceeding as in Karlin (1968), it can be shown that (2.4) implies g(8) = 0 whenever

- o
j I'(6)/q(8) df = » =J' I'(0)/q(0) df.
(N --

Since (1.2) is equivalent to the above condition, our proof that g = 0 is complete.

Conversely we shall show that if (1.2) is violated, then (2.2) admits a non-trivial solution
£(0). Assume first that the second condition in (1.2) is violated. Let () be a negative
function which is continuous and integrable over (—w, x) ¥ —® < x < . Clearly a solution
of

26(0) . 260 ¥(6)a(6)
@5 Y w tEene - o

will solve (2.2), provided g(8) # 0 on (—, «), Writing h(8) = 1/g(8), we get

oy =) (V09
(2.6) h(8)b(6)I(8) — h'(8) 3 {—1(0) 1(0)}.
It is well-known and easily checked that a solution of (2.6) is
q(9) 1{* [P _
2.7 h(8) W[K+§[_[q(u) yiu)t du |, K=0.

Thus we have found a non-trivial solution of (2.2).
In case the first condition in (1.2) is violated, define

_g® [ 1" [P
(28) ) I(o)[x+2£[q(u) \Hu)}du], K=o

Then it follows that g{8) = 1/k(8) satisfies (2.2), which proves part (i) of the theorem.
(i) We now show that in case (1.2) is violated y can be chosen so that the new improved
estimate satisfies (1.2) and hence is admissible.
Consider first the case where only one of the two conditions in (1.2), say the second, is
violated. For some —o < #; < 8y < §; < o, let

Y(0) = -, I%(0)/q(8), ~w<8<6
=-70'(60)/q(8), &:<f<w
where 0 < y; < 1 < y,. Take X = 0 in (2.7) which defines A; note that d = A~ + ¢. Let

(2.9)

)
(2.10) q* =18 exp{j (d+ b)] du].
%

Then we have to check (1.2) with ¢° in place of q. Clearly, by (2.7) and (2.9),
q* = const. g {n(8))¥"*, —w<f<h,

(2.11)
< const. g {const. + n(8)}¥"*%, g <8<,

where n(8) = {%a I*(4)/q(u) du.
Hence, writing A, =1 —2/(1 + y;) fori = 1,2,

M |H
nat. {const. + ()™ |”

2.12)
(2.12) "

* 1'(8) (n(o0)™ "
di= ) ————
PR 9 = const. il + co! .
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a5 8 — @ or @ = —o, This disposes of the case where only the second condition in (1.2) is
violated.

Analogously, if only the first condition in (1.2) is violated, defining y(8) as in (2.9) with
0<y2< 1<y and A as in (2.8) with X = 0, admissibility of the better estimate is
guaranteed.

F‘inally. suppose that both conditions in (1.2) fail. Let y > 0, § = —yI?/q, K = 0, and
define gi' andg:' by the RHS's of (2.7) and (2.8). Then g, and g, are, respectively, positive
and negsuve luti of (2.2). It foll that g = g, + g2 is a solution of {2.2) also. That
§ + {c(d) + g(§)}/n iz admissible foll from ightforward calculations similar to
(2.11) and (2.12). This completes the proof.

ReEMaRK. If both conditions are violated and we use the g defined in the previous
paragraph then the improvement achieved, i.e. the LHS of (2.2), can be written down
explicitly in the form

rw T “rw '
A0 = ([‘ &l {f.am ) ]+[”""[ : i ) ]

2 I*u) j‘l‘(u) )
- (I/q)? .
+y(/q) .-q(")du , q(u)d"

To justify this, use the fact that g, gz satisfy (2.5).

COROLLARY. Given any two numbers a < b, one can improve 6 + c(f)/n by an
estimate of the form b6+d(b)/nfora<@sb.

To prove this, one may take y to be a negative constant XK', K = 0 and use (2.7) replacing
—o0 by a or (2.8) replacing « by b. In either case we get a better estimate than 8 + ¢(8)/n.
The improvement can be shown to be substantial if | K’ | is large. Many other choices of
 are possible.

. Berkson’s le. Consid tho y model (1.3). As before let § denote
the Rao—Blackwelhsed minimum logit x* estimate and denote its bias and that of 6 by
b(6)/n and bo(8)/n up to o(n™"). Then, by (1.3), see (Berkson, 1955, Section 3),

I=Z2m(1 ~m), b = Em(l — m)(2m, — 1)/20,
b =3m(1l — m)(2m — 1)/I* — (27 — 1)/2I.

Since I ~ const. exp(—|8]|) as @ ~ w, bo — t% a8 § — *o, it follows that (1.2) is
violated at both ends. Hence from the theorem, §is mnde|ble Snmdarly. since

bl — F(k — 2)/2, as § — oo, the th implies that § is inadmissibl issible) if
& < 4(k > 4). An analysis of the same sort shows that if k = 4, then #is admissnble
To veturn to the Ber} A iya problem of i 9&nd § directly, note that
(b%(0) + 2b"(O)/ (O (8) = (E(m — 1))*-(6 + k*/2 — 4k)/2(1 + 0(1)} a8 f—
= {3m;)% (6 + £%/2 — 4k)/2(1 + o(1)} as f§— —o
and
{b3(8) + 2b4(8)/1(0)}14(8) = (Z(m — 1))}*.(6/4){1 + o(1)} as 8-
= {Zm)*.(6/9){1 + o)) as §— —o.

This shows that if & = 8, 3(6:, 6:) such that for 8 & (6, 62) § ia better than §; while for &
=7,3(8%, 83) such that for 8 & (8}, 83) § ia better then 4.
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