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ON THE VALIDITY OF THE FORMAL EDGEWORTH
EXPANSION

By R. N. BHATTACHARYA! AND J. K. GHosH

The University of Arizona, the University of Pittsburgh
and the Indian Statistical Institute

Let [Yalagzi be & 32q ofi.id. i ional random vectors, and
let fi. -+, fa be real-valued Borel measurable functions on R=. Assume
that Zo = (fi(Ya), - -+, fa(Ys)) has finite momenis of order 3 2 3. Ratesof
convergence 1o normality and asymptotic expansions of distributions of
statistics of the form Wa = n}{H(Z) ~ H(y)] arc obuained for functions H
on R* having continuous derivatives of order 5 in a neighborhood of v =
EZ,. This asymptotic expansion is shown (o be identical with a formal
Edgeworth expansion of the distribution function of Wa. This settles a
conjecture of Wallace {1958). The class of statistics considered includes all

appropriately smooth functions of sample An application yields
asympiolic expansions of distributions of maximum likelihood estimators
and, more g i iai contras esti of vector p

y.
under readily verifiable distributional assumptions.

1. Introduction. Consider a sequence of independent and identically distri-

buted m-dimensional random vectors {¥,}.,,- Let fi, - - -, f, be real-valued Borel
medsurable functions on R™. Consider the statistic
(1 W. = n(H(2) — H(u))

where H is a real-valued Borel measurable function on R*, and
1
(1.2)  Zo= (MY YD), z=—n—Z.‘=.Z'. p=EZ,.

Note that all functions of sample moments are of the form H(Z). For example,
H(Z) becomes the bivariate sample correlation coefficient if one takes m = 2,k =
S S0) = P G = M) = 0 fl) = () fily) = 2 (for y =
(yu)‘ ylll))‘ H(I) = (zll!_I(IDIUI)(III)_(Ith)l)—.(llﬂ_ (zll))l)»l fof 7= (I”’. . zlll)
belonging toa neighborhood Nof u=(EY,'™, EY,™, E(Y, V), E(Y, ™), (EY,"Y,™)
contained in the set [ze R*: 2 > (2}, 2 > (2#VP, —1 < H(z2) < 1]; H may
be defined arbitrarily outside N.

It is well known (sec Cramér (1946), page 366, and Wilks (1962), page 260)
that if Z, has finite second moments and H is continuously differentiable in &
neighborhood of g, then W, has a limiting normal distribution with mean 2¢ro
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and variance
(-3 = Th vl
where ¥ = ((v,,)) is the dispersion matrix of Z, and
aH| N vy f .. plh
(1.4 1, = (D HYp) = a:sf*) - lgigkiz= (" 2.

Throughout this article it is assumed that o® is positive. As a first refinement of
asymptotic normality one has

THEOREM |, If Z, has finite third momenis and if all third order derivatives of H
are continuous in a neighborkood of p = EZ,, then
(1.%) sup,, , |Prob (W, € B) — {rp.{v) dv| = O(n7})
for every class & of Borel sets saiisfying
(1.6) UPsy L s $(v)dv = Oe) (¢]0).
Here 3B is the boundary of B, (3B)" is the t-neighborhood of B, and
(1.1 $a(v) = (2ra%)"t exp{—v'/(2¢")) —o v .

It is important to note that the mean H(x) and the variance ¢%/n of the asymp-
totic distribution of H(2) are nor the mean and variance of H(2). Indeed, in
many common examples (e.g., the /-statistic, the sample correlation) the mean
and higher moments of H(2) may not even be finite. This feature of the problem
shows up in a more serious manner when one attempts an asymptotic expansion
going beyond (1.5). 1t is common practice among applied statisticians 1o calcu-
late “approximatle moments” of W, by expanding H(Z) around p, keeping a cer-
1ain number of terms, raising 10 an appropriate power and taking expectations
term by term.  This is the so-called delia method. These “approximate moments™
are sometimes used to obtain a formal Edgeworth expansion of the distribution
function of W,. It was conjectured by Wallace (1958) (also sec Bickel (1974))
that such a formal expansion would be valid if suitable assumptions were made.
Oae of the principal aims in this article is to prove that a more preciscly formu-
lated version of this comjecture, as described in the following paragraphs, is
valid. As pointed out by Wallace, such a formal expansion is easier to compute
compared to the alternative procedure of reducing a multivariate Edgeworth
€Xpansion o a univariate one.

Denote the derivatives of H at by

{1.8) Uty =Dy Dy - D)) VS iy eemiiy Sk,

whete D, denotes differentiation with respect 1o the ith coordinate. A Taylor ex-

pansion of W, yields the statistic

(1'9) W.' = M(z'..l l,(z‘" — Fm) + i Z(.ilu(zm — y'“)(z‘” — FU:) + .-
!

T B B0 — ) o (2 = i)
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Since W, — W' = o,(n~"*~""), one may expect that an asymptotic expansion of
the distribution function of W' may coincide with that of W,_. Also, it is easy
to check that (if Z, has sufficiently many finite moments) the jth cumulani «,
of W,’ is given by

(1.10) 5= K0+ o(nme) jal,
where
(1.11) 2,=Tiin,, ir j=2,

=o' 4 it i j=2,

and b, 's depend only on appropriate moments of Z, and on derivatives of H
at g of orders s — 1 and less. We refer to &, , as “approximate cumulants” of W'
(or W,). The expression

(112)  expit. + ﬂ;l (Be — &) + T3en %‘I)i z,,_} exp{—o/2}

is an approximation of the characteristic function of W’ (or W,). Expanding
the first exponential factor onc may reduce (1.12) to
(1.13)  exp{=a"?2}[1 + T n~"x,(in)] + o(n~t*-"7)

= doll) + o(ne-0),

say, where x,'s are polynomials whose coefficients do not depend on n. The
formal Edgeworth expansion W, , of the distribution function of W, is defined by

d
(114) poaw) =1+ Zirn, (= )] guto)
T, {u) = {1 f.(v) dv.

Note that the Fourier-Stieltjes transform of ¥, _ is &, ..

To state the next result let |-|, { , ) denote Euclidean norm and inner product,
respectively.

THEOREM 2. Assume that, for some integer s 2 3, all the derivatives of H of or-
ders s and less are continuous in a neighborhood of p = EZ, and that E\Z,|" is finite.

(8) If, in addition, (i) the distribution of Y, has a nonzero absolutely continuous
component (with respect to Lebesgue measure on R®) and (ii) the density of this com-
ponent Is siricily positive on some nonempty open set U on which f,, - . -, f, are con-
tinuously differentiable and 1, f,, - - -, f, are linearly independent (as elements of the
vector space of continuous functions on U), then

(1.15) sup, |Prob (W, € B) — {, ¢, .(v) dv| = o(a~=-17),

where the supremum is over all Borel sets B,
(b) If, instead of (a), it is merely assumed that

(1.16) lim supy,_.. |E(exp(i(r, ZD)}I < 1,
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then the relation
{17 3UP,. , IProb (W, € B) — |, ¢,.u() 40 = o(a~t+-m)
Molds uniformly over every class <& of Borel sets satlsfying (1.6).

ReMARK 1.1. Theorems | and 2 extend in a straightforward manner to vector-
valued H(z) = (Hy(z),- - -, H,(z)) provided that the dispersion matrix M = IV’
of (¢(Z,. grad H,(p)), - - -, {Z,, grad H,(p))) is nonsingular. Here I is the p x k
matrix whose rth row is grad H,(x) = (D,H (p), - - -, D, H (u)). In this case one
must replace ¢, . by

(1.18) [1 + D a~2,(—D)]gu(x) xeR»,

where ¢, is the normal density on R” with mean zero and dispersion M, #, isa
polynomial in p variables (whose coefficients do not depend on n), and —D =
(=D, -+-, —D,). There is virtually no difference in the proofs for vector-
valued H, apart from an additional complexity in notation.

RemARk 1.2. Let G denote the distribution of Y,. If the density g, say, of
the absolutely continuous part of G is such that U, = {y: g(y) > 0} is open and
G(U,) = 1, then one may replace (ii) in the statement of Theorem 2(a) by (ii):
Jo -1 s are continuously differentiable on U,. For, in this case, the functions
L. fyv <+ +. /i are linearly dependent as continuous functions on U, if and only if
LAY -+ -0 fu(Ys) are linearly dependent as elements of the L’ space of random
variables, and, as explained in the first paragraph of Section 2, one may always
replace {1, f;, -+, f,} by a maximal lincarly independent set {1, f,, .-, /)
(1S kK g k).

REMARK 1.3. Assuming, in addition to the hypothesis of Theorem 2(a), that
fi'1 are analytic, Chibishov (1972) proved that an asymptotic expansion

Prob (W, e C) — §c[1 + Tt nmq(x)]¢u(x) dx = o(n*~"")

holds uniformly over all measurable convex sets C (intervals, in case H is real).
For the special casc of polynomial A he was able to prove that this expansion
was uniform over all Borel sets. For many applications (sec, ¢.g.. Theorem 3)
analyticity of f,'s is a severe restriction. Also, he was not concerned with the
problem of identifying this expansion with the formal Edgeworth expansion.

Remarx 1.4. Note that in Theorem 2 we only require E|Z,|* < oo, whereas
an algebraic computation of the moments of W' yields expressions for «, .
(1 S/ S ) as polynomials in n-i whose coefficients are (polynomial) functions
of moments of Z, of orders up to s(¢ — 1). This apparent anomaly is resolved by
the fact that the “approximate cumulants” &,., 1 5 j < s, only involve mo-
menis (of Z,) of orders s and less so that (1.14) is well definod. In the course of
proving Theorem 2 it is first shown that under tho hypothesis of Theorem 2(b)
thers oxists an asymptotic expansion of the distribution function of ¥, in the
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form

(1.19) F.(0) + o(n—-"7),
Fuw) = §2o 1 + Dt nq (v)]gnalv) dv,

where ¢,'s are polynomials. The coefficients of ¢, (1 5 7 5 s — 2) are polyno-
mials in the moments of Z, of orders s and less, and the coefficients of these last
polynomials are constants which do not depend on the distribution of Z,. It is
next shown that, in case Z, has finitc moments of all orders,

(1.20) gL e) = x, (= 2} gtv) lsrgs-2.

It follows that x,’s (1 < r 5 s — 2) depend only on those moments of Z, which
are of orders s and less, and the same is, therefore, truc of £, . (1 S /59 In
view of (1.11)—(1.13), and (1.21) below, the jth moment of ¥, , (j 2 0) differs
from that computed from &, , (using the familiar relations between moments
and cumulants) by o(a=*-"7). In other words, under the hypothesis of Theorem
2(b) it is a valid procedure to compute moments of the asymptotic expansion by
the so-called delta method in which W’ is raised to a power, expectations 1aken
term by term (formally) and terms of order o(n~*-"'?) neglected. Expansions of
moments as well as expectations of other smooth functions of W’ (and of W,
if it has enough moments) are valid solely under moment conditions on Z, (se¢
Gétze and Hipp (1977)), and these expansions may be obtained by integrating
the smooth function with respect to the formal Edgeworth expansion ¥, . even
when the distribution function of W_ does not admit an expansion. Finally, the proof
of the identification (1.20) depends crucially on the following importsnt com-
binatorial result of James (1955), (1958), and James and Mayne (1962):

(.21 £, = O(n—i-7) jegd.

which holds if E]Z,|#**-¥ < oo. There may, however, be statistics whose cumu-
lants satisfy (1.10), (1.11), but not (1.21). Consider such a statistic T, assume
(for simplicity) that it has finite moments of all orders, and dofine, for each
r 2 3, the polynomials x, , by

exp {""-.- + ('T')’ (£1.. — o) + Lja i’l’ll r,_.} exp{—o2}

(1.22) = exp(—a*2[1 + Tyt n#x, 0] + o(n"")
=, + o(n-te-4ny,
say. Define the formal Edgeworth expansion of type (r, s) by

2 =1 B () et v

It is oasy to see from (1.22) that the polynomials x, , have no constaat terms, and
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$..+(0) = 1. It follows that there exists a smallest integer r, such that
(1-24) a7 log $... L), = ofn=t2%) if j>u.

I now the distribution function of the statistic 7, has & valid asymptotic ex-
pnsion given by (1.19), then the same procedure as used in verifying (1.20)
leads to the conclusion: F, = ¥,,  ifandonlyifr 2 r,.

Remark 1.5. Theorem 2, incidentally, justifies the remark made in Ghosh
and Subramanyam (1974), page 356, that their E'(T, — 6,)" is the second mo-
ment of #n Edgeworth expansion.

AN APPLICATION, We now apply Theorem 2(a) for vector-valued H (see Re-
mark |.1) to obtain asymptotic expansions of distributions of a class of siatistics
mcluding maximum likelikood estimators and the so-called minimum contrast esti-
maiors for vector parameters.

Let }Y,},,, be a sequence of i.i.d. m-dimensional random vectors whose com-
mon distribution G, is parametrized by § = (8'", - . ., §'*') belonging 10 an open
wbset © of R*. For cach & let f{y; 6) be an extended real-valued Borel measur-
sble function on R=. For nonnegative integral vectors v = (v'", ..., V") write
Pl= v 4 oo Pl = Ly and let DT = (D))" -+ - (D,)**”" denote
1be vth derivative with respect to 8. We shall write P, to denote the product prob-
ability measure on the space of all sequences in R and regard Y. 's as coordinate
maps on this space. Expectation with respect to P, will be denoted by £,. The
loltowing assumptions will be made:

(A} There is an open subset U of R= such that (i) for each 8¢ © one has
G{U) =1, and (ii) for each v, 1 < |v| < s+ |, f{y; ) has a uth derivative
D*fiy: 6) with respect to # on U x 6.

(A)) For each compact X c © and each v, | < |v| S 5, sup,,. 5 £,,|D°AAY
0P < eoi and for each compact K there exists ¢ >0 such that
S0Py x E,.(mlx,,_,"‘, DAY )y < ooif [y =5+ 1.

(A) Foreach 6,8, £, D, f(Y,;6,)=0for1 5 r< p. and the matrices
(1.25) 1(6,) = (("‘EI.D:Dv/(YI; ) .

D(8) = (Eo (DAY ) D, [(¥3: O.))
are nonsingular,

(A) The functions K(0), E(D*f(Y,; 8)- D"'f(Y,:8)), | < ). V| § 5, are con-
tinuous on 8

{A,) The map # — G, on © into the space of all probability measures on (the
Bore) sigma field of) R™ is continuous when the latter space is given the (vari-
uion) norm topology.

(A) Foreach 8 ¢ 8, G, has a nonzero absolutely continuous component (with
respect to Lebesgue measure) whose density has a version g(y: 6) which is strictly
pasitive on U. Also, for each § and eachy, 1 5 |v| § 5, D*f(y; 0) is continuously
diflerentiable in y on U.
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Now write

(1.26) L®) = T3 AYi0). L) = v, 6),
and consider the p equations

(12n o= _:I_D,L_(o,) + _,". TP (0 —8)D,D, L8 + ...

+ 2 B ES b0 10y + R 40)

_ 1
—'"'DvL-(a)' ISrg,.

where x* = (x4 ... () for x = (27, ..., x¢”) e R*, and R_ () is the
usual remainder in the Taylor expansion, so that

(1:28) RO S CLUD — O max,icvss 0Pty gy ID°L(B)].

The statistics §, considered below are measurable maps on the probability space
into some compactification of .

THEOREM 3.

(8) Assume (A)—(A,) hold for some s 2 3. There axisis a sequence of siatistics
{6.}.x, such that for every compaci K  ©
(1.29) infyg0x Po(I6. — 8 < dyn-Hlog n)t, 8, solves (1.27))
=1 —o(rtv7),
where d, is a constant which may depend on K.
() If (A))—(A,) hold, then there exist polynomials q, , (in p variables), not de-

pending on n, such thai for every sequence (0_]_,, satisfying (1.29) and every compact
K C © one has the asympiotic expansion

(1.30)  sup,,x [P(m(f. — 8) € B) — §,[1 + Lizhn=7g, o ()),,(x) dx]
= a("-ll-lll!)

uniformly over every class <8 of Borel seis of R* saiisfying

(1'“) ’“Pl,cl Py, , SIII)' ¢'(x)dx = 0(‘) as ¢ 0.

Here M = I°X0,)D(8,)-'(8,), where K(8,), D(8,) are defined by (1.25). Alsw, the
coefficlents of the polynomials q, ,, are themseives polynomials in the moments of
D L,(8), 1 g |v| S 5. under P,, and are quently bounded on 3

r

REMARK 1.6. Theorem 3 is actually proved under the wesker hypothesis
(A)—(A,) and (in place of (A)) (A,)": the distribution of Z, under P, satisfies
Cramér’s condition (1.16), for each §. Under this latter condition, and for one-
dimensional parametery, relations aimilar to (1.30) were established (with analo-
gous rogularity assumptions) for the class of intervals, in place of goneral <&
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satisfying (1.31), by Pfanzagl (1973b, Theorem 1) and Chibishov (1973b).
Planzag] also provided a verifiable condition (sce [21], page 1012) under which
his distributional ption may be checked. The situation is more complex
in the multiparameter case. For this case Chibishov (1972, 1973a) was able to

ve 2 result analogous to (1.30) for the special class of all measurable convex
xts (which, of course, satisfies (1.31); see {4], page 24) under the additional as-
sumption that D*f{y; 8), 1 § |v] < s, be analytic in y. In the preseat context
this assumption is severely restrictive. Note that assumption (A,) provides a
simple verifiable sufficient condition for the validity of (A,) (see Lemma 2.2
and Remark 1.2). Finally, it is also possibls (sec the proof in Section 2) to re-
place the continuity conditions in (A,) by ‘boundedness’ conditions (as, e.g., in
Pfanzagl (1973a)).

Remark 1.7. Under assumptions (A,)—(A,) with s = 3 one may easily prove
(using Theorem | for vector H, instead of Theorem 2) that the error of normal
approximation is O(n-1) uniformly over every compact X C © and every class
A satisfying (1.31). However, for the special class of all Borel measurable
convex sets such a result has been proved by Pfanzagl (1973b).

ReEmMARK 1.8. Assume that for some s 2 2 ono has (A,), (A,), E DAYy
g)' < oo for 1 < u| £ 5. and £, (max,_,.q, |D"f(Yi 0)|) < oo for some & > 0
and all v with || = 5 + 1. Then one may prove using (1.27), (1.28) and the
law of the iterated logarithm that there exists an a.s. () finite integer-valued
random variable N(.) such that with P, probability one for # > N(.) one has

(1:32) H D, L_(o,), < d,n-¥(log n
H DL(8) — E, DAY 09| S din¥loga) 25 s,

IR..(0)] 5 10 — O)*[d, + d,n~*(log n)!}
for all @ satisfying |0 — 6, S lsrgp,

for any positive constant 4, and a suitable constant d,. Using the Brouwer fixed
poiat theorem, as in the proof of Theorem 3(a), one can then show that there
exists a sequence of statistics {6}, such that for every d > 0 with P, proba-
bility one

(133) 6. — 6, < dn-i(logn)  and 6, solves (1.27)if > N(.).

If, due to some additional structure (e.g., convexity or concavity of L () as a
function § for every a, a.s. (7, }), the oquations (1.27) have at most one solution
for cach n (a.s. (P'.))- then of course one may define 5_ to be this solution when
it exists and arbitrarily (measurably) if it does not, and such a §, will satisfy
(1.33) with P, probability one (strong consistency) and, under the hypothesis
(A)}—(A,) will also admit the asymptotic expansion (1.30). Finally, we consider
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the so-called minimum contrast estimstors (see Pfanzagl (1973b)). It is known
(see [21], Lemma 3, which admits extension to p > 1) that for such estimators
4. say, one has, under ccrtain regularity conditions,

(1.34) $UPpyex Puflds — Bl > d(8))nN(log n)t) = o (")

for every compact K ¢ 6. Here &' is bounded on compacts. Since 4. minimizes
(or maximizes) L, (f) il follows that (1.29) holds. Augmenting thesc regularity
conditions, if necessary, so that (A )—(A,) bold one has (1.30). Conditions not
significantly different from (A,)—(A,) are generally included among these regu-
larity conditions. Finally, the reason for not restricting the context of Theorem
3 to minimum contrast estimators is that in its present from this theorem also
applies to problems, e.g., in mathematical ics (see Bhattacharya and
Majumdar (1973)), in which 4, is not a statistical estimator.

Among the carliest results on asymptotic expansion of some special functions
of sample moments we refer to Hsu (1945) who obtained an asymptotic expan-
sion for the sample variance.

For relations with questions concerning asymptotic efficiencies-of statistical
estimators we refer to Pfanzagl (1973a), Ghosh and Subramanyam (1974), and
Ghosh, Sinha and Wieand (1977).

Some of the results of this article in weaker form were anpounced carlier in
Bhattacharya (1977). It may be noted that the entirc Section 4 of that article
([2]) was based on joint work by the authors.

2. Proofs. For proving Theorems I and 2 it will be assumed, without any es-
sential loss of generality, that the dispersion mairix V of Z_ is nonsingular, For, if
V is singular, then 1, f(Y,), - -+, fi(Y,) are linearly dependent when considered
aseclements of the L’ space of random variablcs. Then there oxist a maximal inte-
ger &’ and distinct indices i, -« -, i, among 1, 2, - - ., k such that Lfeo o]
are linearly independent. Defining 2, = (/£ (Y.). - [ (Y,)) one can define
a function H’ defined on R™ and as smooth as M such that H(2) = H(Z)where
2 = (1/n) T} 2,. In view of the positivity of ¢*, &’ 3 I.

Throughout the lotters ¢, d will denote constants (i.e., nonrandom numbers
not depending on n, x, z, 4, or V).

Let x(r) denote the jth cumulant of (1, Z, — wy = 5, iz, — a)y", and
introduce the Cramér-Edgeworth polynomials

(2.1) 2 i) = Ty {me Zudd) L tpl) }
G+, 2y
x i) = #y,(1) teERN r=1,2,...,
where the sum 3¢ is over all p-tuples of positive integers (ji, - <-, J,) satisfying

Zla jy=r. Letting D, donoto differentiation with respect to the ith coordinate,
write

(2.2) D= (D ..., D).
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Tha #{~D) is a differential operator. Write
@3 $4(2) = (2x)(det V) exp(—i<z, V5],
£.u(2) = (1 + Dt 0P (—D)J$,(3) 1eR.
Define the functions
g.(2) = m[H(p + n~i1) — H(y)), h(z) = T LY,
24 h()=1X 120  dnd 7 l,,,z“’x"' + e

1 p--nn Z l']n

+(J— n

L ity

raalgmy
=(r", ..., ) eR.
Note that 4,_, is a Taylor expansion of g, and write

(2.5) W,=g(nHZ ~ p), W) =h(mHZ — ).

Define the maps

@6 T@= (@M g @), T = (0 - 2N ()
where p = 1 or s — 1. Assume without loss of generality that /, > 0. For the
following di ion n, is an integer such that for n > n,the map T, (T) is a
¢~(C*) diffeomorphism on the set

@7 M, = {jz] < ((s — 1)A log n)}}

onto its image. Here A ia the largest eigenvalue of V.

LEMMA 2.1. Assume p, = E|Z|" < oo and that all derivatives of H of orders s
and less are continuous in a neighborhood of y = EZ,, for some s 2 3. Then there
exist polynomials q, (in one variable), whose coefficients do not depend on n, such
that uniformly over all Borel subsets B of R' one has

(2.8) Sipamem €0,a(2) d2 = (4 dF (4) + o(n—t-"1),

where

29) Fuu) = 2o [1 + Sz nmrng ()}¢ iv) dv weR.
Also, for all nonnegative integers j

(2.10) Swo 9u/(2)6,.0(2) d2 = {2, wh dF (u) + o(n~-27),

San AI_(2)6, {2) dz = §=_w! dF (u) + o(n~=¥").
PRooF. By the change of variables x = T,-'T(z), the first integral in (2.8),
when restricted to the set M,, becomes
211 Sy mrarirg £l T Ty(X)) /Dy g T-'T(x))] dx -
Now the elements of the Jacobian matrix of T{z) and those of the inverss of this

matrix, as well as their derivatives of orders s — 1 and less, are bounded on M,
by constants independent of n. Hence a Taylor oxpansion yields

212)  (TTL)Y — 2 = (T ()Y — (TT(x)™
= D n~p(x) + R(|x]) - o(r"7),
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where p,’s are polynomials in k variables and R is a polynomisl in one variable
whose coefficients do not depend on n; and the factor o(n~"~") does not involve
x. Using (2.12) and the fact that (T'Ty(x))" = x'* for | 5 i gk — 1. one
reduces (2.11) 10
(2.13) Siagne BinT rowy [+ Zinmp, (x)]dy(x) dx O(II""""‘) .
where p,*’s are polynomials {(in k variables) whose coefficients do not depend on
n. Since T,7'T(M.) D {Ix] < ({s — §)A log AP} if n > n,. (2.13) reduces to
Supmen [1 + D307, (X))@ (x) dx + o(a= ") .
Recall that A(x) = ¥ 1, x# = (I, x) and wrile
G (u) = §nen [T+ Z030 0777, (x)]4(x) dx 4eR.

The Fourier-Stieljes transform of G is

(1 + B tp (= iD)g () = (1 + Sizh meq.in) exp | -2
where ¢,”'s are polynomials (in one variable) whose coefficients do not depend

on n. Define
9.0 = [0 (—4) 80|/ #uk)

1o complete the proof of (2.8). The first relation in (2.10) is proved in the same
manner, while the second follows from the first and the inequalities
(2.14) WPy, 19212) — K (2)| S dynmr-" Ylog my 1,
Sizewa Moi2)6, (2) d2 = o(n=1" %) jzo0.0
proof OF THEOREM |. Let Q, denote the disiribution of a{2 — p)and let @,
be the k-variate normal distribution with mean zero and dispersion matrix V. It

follows from a recent result of Sweeting (1977), Corollary 3 (also see [4], pages
160-162) that

(2.15) 10A) — $(A) S 6, 47p,n1 + 68, ((3A)+),
€= AR p,a 0= EZp.

Here 2 is the smallest (and A the largest) eigenvalue of V. Fix Be. s, where
%' satisfies (1.6), and in (2.15) take

(2.16) A={reR': g(1)eB).
Since g, is continuous,
(227 BAC {zeR: g (2)€dB).

Now if 7 ¢ (3AY, then there exists 7/ such that g (/)¢ 3B and |z — r'{ < «. I,
in addition, z€ M, (see (2.7)), then [g (1) — g.(2')] § d't. where &’ is an upper
bound of |grad g,| on M, (the e-neighborhood of M,). Since the ®,-probability
of the complement of M, is o(n="*="?), it follows that

(2.18) O,((24Y) S Ou({0.(2) € (3BY"]) + o(a=="7) 0 <eS T
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But by Lemma 2.1 (relation (2.8)) one has
D, ([9.(5) € (3B)")) = §,, cuaman €,.4(2) d2 + 0(n~>-2m)
(2-19) = funs Pov) dv + 0(n""-"7)
= O(c) + o(n-v-"1")
ifp, = E|Z,|" is finite. Taking s = 3 and using (1.6), (2.18)and (2.19) the right
side of (2.15) is estimated as O(n-1) uniformly over _#. Again use Lemma 2.1,
this time for B itself, to complete the proof of Theorem 1.

ProoF OF THEOREM 2. We first prove part (b) of Theorem 2. From a general
result on asymptotic expansion under Cramer’s condition (1.16) (sec [4). Corol-
lary 20.2, page 214) and the estimates (2.18), (2.19) it follows that
(2.20) SUPa, , 1Q(A) — §. €, (3) d2| = o(n=-"7)
where <7 satisfies (1.6) and A is defined by (2.16). Now use Lemma 2.1 to esti-
mate the integral. It remains to identify F, and ¥, , (see (1.14)). First assume
\hat Z, is bounded. Since W' = h,_(aH2 — ) is a polynomial in a2 — p)it
follows [rom the asymptotic expansions of moments of Q,. i.¢., of the derivatives
of its characteristic function at zero (sec {4], Theorem 9.9, page 77), thal

@21) EWS = {n W 2)6,(2) d2 + o(n™+-0) jzo.
By Lemma 2.1 (second relation in (2.10)) one then has
22 EW = {2, ul dF (u) + o(n™") jzo.

On the other hand, the expression (1.12) differs from ¢, , by o(n="*-*) uniformly
on a compact neighborhood of zero, say {}1j 1}, Also, according to a result
due to James (1955), (1958), and James end Mayne (1962), the cumulants of
W, satisly

a.n) Kpa= O(nmtim0n) iz3,
s0 that, the “approximate cumulants™ &, , (see (1.11)) satisfy
(224 Bjn= &0+ 0(nmY) jzl,

1aking 2, . = 0 for j > 5. Hence (1.12) differs from the characteristic function
of W/ by o(n~""-"?) uniformly on {|s]| S 1. Therefore,
(225) Py, [ o(1) — Elexp{itW )] = o(n~7"7).

By the familiar inequality of Cauchy for derivatives of analytic functions, de-
rivatives of , , at zero differ from those of E(exp|[itW,’}) by o(a-t-® 1), proving

(2.26) EW) = (2w d¥, (4) + o(n~1-11) jeo0.
Together (2.22) and (2.26) imply
(2.27) §oa u! dF (4) — {2 u! dT, (u) = o(n-1-"7) jz0.

Since neither F, nor ¥, involve terms of order o(n~'*-"?),
(2.28) §=a ! dF () = {2 u! dF, (4) jz0.
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Now the Fourjer-Stieltjes transforms of F, and ¥, , are (extendable to) ontire
functions on the complex plane whose values and derivatives of all orders coin.
cide at the origin. Hence F, = ¥, ,, completing the proof of Theorem 2(b) in
case Z, is bounded. We now proceed with the general case. Recall the poly.
nomials x, defined by (1.13) and write

(2.29) 249) =[x, () $uk) ] $u9)
=coeff.of m™ in ¢, ..

Both g, and ¢, are polynomials in the cumulants of Z, of orders s and less. De.
noting the vector of all these cumulants by y, write ¢,(r.), §.(r,) to denote this
functional dependence. For ¢ > O define the truncated random vector Z, to
be equal 10 2, if |Z| < c and zero if |Z)| > c. We can choose ¢ so large that
the characteristic function of Z,, satisfies Cramér’s condition (1.16). Let Tow
denote the vector of all cumulants of Z, of orders s and less. Since 2, is a
bounded random vector, 4.(7,,) = §.(r.,)- Sincey,,—y, a8¢ - oo (and gq,, 4,
are continuous iny,), one gets 4,(7,) = 4.{r,). Proof of Theorem 2(b) is complete.

In order to prove Theorsm 2(a) it is now enough to show that, under the given
hypothesis,

(2.30) Prob (aY(2Z — p) € A) = {, &, .(2) dz + o(n—-"1)
uniformly over all Borel subsets 4 of R*. By a result of Bikjalis (1968) this will
follow if we can show that there exists an inleger p such that Z, + ... 4 2,

bas & nonzero absolutely continuous component with respect to Lebesgue meas-
ure on R'. The following result shows that this is true with p = k.

Lemma 2.2, Assume that G has a nonzero absolutely contii comp (witk
respect (o Lebesgue measure on R™) whose densily is positive on some open ball Bin
which the functions f, (1 £ I g k) are continuously differentiable and in which 1.
S -/, are linearly independent as elements of the vector space of continuous
functions on B. Then Q,** has a nontero absolutely continkous componenl.

Proof. To show that the distribution of Z, + --- + Z, = (T (Y} -
51 £2(Y)) has & nonzero absolutely continuous component under the given hy-
pothesis define the map (on R™ into RY)

Fyw o) = (TRAO) -+ TYAD)

Y=y ™eR 155k,
The Jacobian matrix of this map will be denoted by J, .. This matrix may be
displayed as J, . = [A4, 4, --- A,], where A, is a k X m matrix whose ith row
is (grad fiXy,). Clearly, it is enough to show that J, . has rank k at some
(7 -+ +»)») with y, in the open ball B for all /. We shall prove this by induction
on k (keeping m fixed). Suppose then, as induction hypothesis, that Jogrm{@i o
g, _,) has rank k, — 1 for some k, — 1 2 1 and for some (@, -+ a) with a;
in Bfor all j. Noto that the submatrix formed by the first (k, — 1) rows and
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(ks — 1)m columns of J,_ (a,, -+ -, a,_,,y) i8 Jy,_, @) =<+ a, ), while its last
m columns are given by A, (), and the first (k, — 1)m cloments of its last row
are formed by grad f, (a,), - -, grad F/XCNNY

Let £, ---, B, _, be (k, — I) linearly independent columas among the first
{ky — 1)m columns of J, _ (which exist by the induction hypothesis). Let C,,
G-+ Cabethe (k, X k,)submatrices of J, . formed by augmenting E,, E,. - - -,

£,,- by the first, d, -, mth col of A,(y). respectively. If rank of
(01 “++1@y,_y. y) is less than &, for all y in B, then the determinants of
C,. -+, Co must vanish for all y in 8, i.c..
9, 3, .
d,g_‘v(”’.l+~--+d., Q;f?:o for i=1,---,m, and yeB.
Here d; is (— 1)* times the determi of the submatrix of J, . comprising the
columns £, - - -, £, _, minus the jth row. Since d,  # 0. by induction hypothe-

sis, lhe above relations are equivalent to saying that the gradient of (the nonzero
linear combination) Yivd,f,(y) vanishes identically in B. This means that
Y. d,f, is constant on every line segment contained in B; since B is connected,
this means that there exists 8 number d, such that Tied, f(y) = d,for all y in B
contradicting the hypothesis of linear independence of 1, £, - - -, f,, in 8. Hence
there must exist @, in Bsuch that J, _(a,. - - -, ay,_\» @) has rank &,. The proofl
is now completed by noting that the hypothesis of linear independence of |, f,
in B implies that grad /, does not vanish identically in B8, so that the induction
bypothesis is true for k, — 1 = 1. ]

The above lemma improves Lemma 1.4 in [2]. The main idea behind the
proof is contained in Dynkin (1951), Theorem 2.

Proof of THEOREM 3. We shall need an estimate of tail probabilities due to
von Bahr (1967). Let [Z},,, be a sequence of i.i.d. random vectors each with
mean y and dispersion matrix V. Let A denote the largest eigenvalue of V.
Then, if £]Z,)* < oo for some integer 5 > 3,

(2.31)  Prob (|n¥(2 — )| > ((s — 1)A log n)i) < dn=t-"7(log n)~**
where Z = n-Y(Z, 4 - .. + Z,), and d is bounded on any bounded set of values
of A,

Fix8,€©. In view of (2.31), the assumptions (A,)—(A,) and inequality (1.28)

imply that there are constants d,, d,, d, such that

P > dyn~¥(log n))) 5 dy(log )~+n=1-"

Isrsp.
@3 p, (H D*D,L(8,) ~ E,D*D,L{8,)

% D,Ly8y)

> dn¥(iog )
S dlogn)i-uia 1 hlg -1,
PifIR. . (0)] > |6 — 8,'(d; + d,n~H(log n)}}) < dy(log n)~ a="=DA,
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Therefore, on a sel having P, probability at least 1 — d,(log n)=**y~- one
may rewrite (1.27) as

@33) (0= 0)=U0) + 0" [ 8+ Tosrussns (0 — 0, 00D, 1,0,
a0 - o],

where », is &8 random matrix and 4, is a random vector each having norm less
than d,n"¥(log n)! and s, is a random vector of norm less than one. Note that
there cxists a sufficiently large positive constant d, and & (nonrandom) integer n,
such that if n > na, and |8 — &, < dyn~i(log n)), the right side of (2.33) 1s less
than d,n-)(log m)t. It then follows from the Brouwer fixed point theorem (see
Milnor (1965), page 14) applied to the expression on the right side of (2.33)
(regarded as a function of § — 8,) that there exists a statistic 5_ such that

(2.34) Po(lf. — 8, < dyn¥log m}1, 4, solves (1.27))
21 - d.(lOg n)-.,x"—u-nn

To obtain an asymptotic cxpansion of the distribution of 4,, first define

@35 fAN =D logflyi8),  Z2=f(Y)  lgss
Consider the random vectors Z, = (Z,'")q,, <, Whose coordinates are indexed
byv's. Thedimensionof Z_isk = 31.,("*:""). From the definition of §_ one

has, outside a set of probability at most o(n~'*-"7),
236) 0= ,‘, D,L(0) = 2% 4+ Eik, = Zen(d, — 6y + R, (6
v.

l<srgp.

where the rth coordinate of e, is one and other coordinates zero. Now consider
the p equations

(2.37) 0 =24 Bl —', 29 — Gy = P, 2, 1) l<rgp,
V.

in the p + k variables 8, 2. These equations have a solution at § = 6, z = u,
where p = EZ,, i.e.,

(2.38) e =0 Isrgp,

o = E, D" log fiY,; 6,) 25pss

Also, since I(6,) is nonsingular, the p vectors (D, X8,, u; 1), - - -, (D, P(By, u: 1))
1 S 7 < p, are linearly independent. Therefore, by the implicit function theo-
rem, there is a neighborhood ¥ of u and p uniquely defined real-valued infinitely
differentiable functions H, (I £ i < p) on N such that 8 = H(z) = (H(z), ---,
H,(z)) satisfies (2.37) for z€ N, and 6, = H{p). By (2.32), |2*» 4 R, (4.)| <
d,n~¥(log »)} with P, probability 1 — o(n==a"). Therefors, by (2.36) and the
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uniqueness part of the implicit function theorem, with P,; probability | —
o{n~*~"") one bas

4, =HZ2) with Zn=2n for 25,
(2.39) =274 R, (8) for v=e,

lgrsp.

Therefore, by (2.32) and (2.34), there are constants d,, d, such that

P (IM(H(2) — H(w)] — M0, — 6] < dylog ny*n==7)
(2.40) = P (IH(Z') — H(2)| = IR, (8.)] S dlog n)**n=")

& | — dflog n)y-*n-te=mn

In view of (A,) (and Remark 1.2) Lemma 2.2 applies, so that Theorem 2 yield!.
for vector H (see Remark 1.1),

(2.41) Po(m\(H(2) — H(m)) € B) = §, ¢, (x) dx + o(n*-" )

uniformly over all Borel sets 8. Here ¢, is given by (1.18) with M =
1-(0,)D(8,)1-(8,), where K6,) and D(6,) are defined by (1.25). This evaluation
of M follows from (2.33), (2.36). or, alternatively, from a computation of
grad H (), t < r & p, obtained from inverting the Jacobian matrix (at (8. p))
of the transformation whose first p coordinate functions are given by the right
side of (2.37) and the remaining coordinate functions by z', 1 £ || < s.
Finally, if .2 satisfies (1.31), then it is simple to check that

(2.42) SUPge , Supn |#n(X) dX S dyps + o(n™""?) 0gegl.

Relations (2.40)—(2.42), with ¢ = dy(log n)*’n~"*-**, now complete the proof
excepting for the uniformity over compacts. By assumptions (A,)—(A,). the
constans d,, d,, d,, are bounded on compact K (since so are d,—d,). The term
o(n=*~" ) in (2.41) is uniform on compact K for B¢ .# due (o the uniformity of
the error of approximation of the distribution Q, of n(2 — ) by its Edgeworth
expansion, assuming, without loss of generality (see Remark 1.2), that the dis-
persion matrix of Z, is nonsingular. Note that we have only made use of (2.41)
uniformly over _# For this it is sufficient (see Theorem 2(b)) that Z, satisfies
Cramér’s condition (1.16). Assumptions (A,) and (A,) now imply that this con-
dition holds uniformly on compacts K in an appropriate sense (see the first ob-
servation in (2] following (1.50), page 11).

There appears to have grown in recent times a considerable amount of applied
work, especially in econometrics, on the formal Edgeworth expansion. See, for
example, Chambers (1967). Phillips (1977), Sargan (1976), and references con-
tained in these articles. 1t may be noted thal the conditions imposed by Chambers
(1967) (Section 2.2) on the characteristic function of the statistic are not sufficient
1o insure the existence of a valid asymptotic expansion. Besides, such conditions
imposed directly on the siatistic are extremely hard to verify, at least in the
context of the present article,
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