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ABSTRACT

It is shown that the generalized inverses characterize the parallel sum. The almost
positive definite (a.p.d.) matrices introduced by Duffin and Morley (2] are of two
types. whose intersection is the class of quasi-positive-definite matrices (Mitra and Puri
|7)). The a.p.d. matrices of any one type form a “saturated” subclass of pairwise
parallel summable a.p.d. matrices.

1. INTRODUCTION

Anderson and Duffin [1] were led to the concept of parallel sum of two
hermitian nonnegative definite (h.n.n.d.) matrices of the same order n X n
from the parallel connection of two n-port electrical networks involving only
tesistors. They have established many interesting properties of the parallel
sum of a pair of h.n.n.d. matrices. The concept was later extended to
arbitrary pairs of matrices of the same order satisfying a “ parallel summabil-
ity" condition, and most of the properties proved by Anderson and Duffin
were shown to be true in such a general context (Rao and Mitra [8]). The
extension not only works for rectangular matrices but is even seen to be valid
for matrices defined on more general fields. In fact Section 2 of this paper is
Wiitten in the same spirit and requires no explicit specification of the field
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involved. In Section 4 we list two “saturated’ subclasses of pairwise parallel
summable a.p.d. matrices. Here a complex field is assumed. Determining
“saturated” classes or subclasses of parallel summable matrices on more
general fields is still an open problem.

Matrices are denoted by capital letters, column vectors by lowercase
letters. If A is a matrix, #(A), #(A), and A’ denote the column span, null
space, and transpose of A. For a complex matrix A, A* denotes its complex
conjugate transpose. Matrices A and B are said to be disjoint [5] if #(A)
and #(B) are virtually disjoint—that is, have only the null vector in
common—and so are #(A’) and #(B’). A square complex matrix A is said
to be an EP matrix if A and A* have identical column spans or equivalently
identical null spaces. A~ denotes a generalized inverse (g-inverse) of A, that
is, a solution X of the matrix equation AXA = A; { A” } represents the class
of all g-inverses of A. Wherever applicable, A7 ' will denote a left inverse of
A, that is, matrix satisfying the conditon A7 'A =I. The right inverse Ay’
similarly satisfies the condition AAR!=1I. For a complex matrix A, A*
denotes its Moore—Penrose inverse [8).

The following lemma is well known (see e.g. [8], [9], and [10}). We shall
however give here a proof which is valid for any field.

Lemma 1.1.  If A and B are nonnull matrices, AC ~ B is invariant under
choice of C ™ iff

A (B)c #(C). MH(A)YC #(C").

Proof. The “if” part is trivial. For the “only if*" part choose and fix C ~
and suppose #(B)Z #(C). Here (I —CC ~)B # 0. This implies the ex-
istence of a row vector b’ such that b"(I —CC ~)B # 0’. Also A # 0 implies
the existence of a column vector a such that Aa # 0. Observe that with a and
b so determined

Aab'(I-CC~)B+0.
Put G=C "~ +ab/(I — CC ™ ); observe that G &€ {C~ ) and
AGB+ AC~B.
The necessity of #(A’)C #(C") is similarly established.

DeriNiTION. Matrices A and B of order m X n each are said to be
parallel summable (p.s) if A(A + B)~ B is invariant under the choice of the
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generalized inverse (A + B)~. If A and B are p.s., A(A+ B)™ B is called
the parallel sum of A and B and denoted by the symbol P(A, B).

A null matrix is clearly p.s. with an arbitrary matrix of the same order.
The following theorem is a simple consequence of Lemma 1.1.

THeoreM 1.1.  Nonnull matrices A and B are p.s. iff
H(A)C #(A+B), M(A)C H(A+B), (1.1a)
or equivalently
M(BYC H(A+B), M(B')C #(A+B"). (1.1b)
Theorem 1.2 lists some known properties of the parallel surn [8].

TueoreM 1.2. If A and B are p.s. matrices of order m X n each, then

(a) P(A, B)=P(B, A);

(b) A’ and B’ are p.s. and P(A’, B’)=[P(A, B)}’ ( for complex matrices
A*, B* are also p.s. and P(A*, B*)=[P(A, B)]" )%

(¢) for a matrix C of order p X m and rank m, CA and CB are p.s. and
P(CA.CB)=CP(A, B);

(@) {[P(A.B)]"}=(A~+B "}

(e) M[P(A, B)=_#(A)N #(B),

(f) P{P(A, B),C)=P[A, P(B,C)] when all the parallel sum operations
involved are permissible.

Tueorem 1.3. Let A, B be p.s. matrices of order m X n each and
P(A, B)=C. Then

(a) either of (i) #(B)C #(A) or (ii) #(B’')C #(A’) implies the other
and

Rank(A — C) = Rank A;
(b) Rank(A — C)=Rank A = A and —Care p.s. and
B=—-P(A,—C)+W.

where A and W are disjoint matrices:
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(c) in general
Rank(A — C) > 2Rank A —Rank( A + B).

Further, if A and C are matrices of order m X n each such that (i) #(C)c
M(A), H(C’')C #(A’) and (ii) Rank(A — C) > 2Rank A —min(m, n), then
there exists a matrix X of order m X n such that A and X are p.s. and

P(A.X)=C.

Theorem 1.3 is proved in Mitra and Puri [6].

A pair of h.n.n.d. matrices A, B of order n X n each are always p.s., and
P(A, B) is h.n.n.d. This was shown by Anderson and Duffin [1] along with
theorem 1.2(a), (e), (f) for this special case. They further showed that if P,
and P, are the orthogonal projectors onto .#(A) and #(B) under the norm
induced by the inner product (x, y) = y*x, then 2P(P,, Py) is the orthogonal
projector onto A(A)N.#(B), and that the Moore-Penrose inverse of
P(A, B) is given by P(A* + B* )P, where P is the orthogonal projector onto
M(AYN H(B).

In the present paper we show that the property in Theorem 1.2(d)
characterizes in a way the parallel sum (Section 2).

Lemma 1.2 is well known. The “if"" part is now folklore. The “only if"
part was proved for the first time in Mitra [5). The proof given here makes an
interesting use of the parallel sum concept.

Lemma 1.2. {A”)C (B~} iff A= B+ D where B and D are disjoint
matrices.

Proof. If B and D are disjoint matrices, clearly .#(B)C #(B+
D), #(B’)C #(B’+ D’). Hence B and D are p.s and P(B,D)=0.
Further

B(B+D) (B+D)=B = B(B+D) B

=B for every choice of (B+ D) ",

since B(B+ D)~D=P(B,D)=0. Conversely, if B(B+ D) B=B for
every choice of (B+ D)~, Lemma 1.1 would imply .#(B)c .#(B+
D), #(B’)C #(B’+ D). Hence B and D are p.s. Further this would also
imply P(B, D)= B(B+ D) (B+ D)—- B(B+ D)~ B= B— B=0. Hence by
Theorem 1.2(b) and (e), B and D are disjoint matrices.
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The < part of Lemma 1.3 below is trivial. The = part was proved for

the first time in Rao and Mitra [8, Theorem 2.4.2). Lemma 1.3 is in fact a
simple consequence of Lemma 1.2:

Lemma 1.3. {A"})=(B" ) = A=B.

2. GENERALIZED INVERSES CHARACTERIZE THE PARALLEL SUM
We shall prove here the following theorem.

TueoREM 2.1. Let A and B be matrices of order m X n each, and let
there exist a matrix C such that

(C-}=(A"+B"}. (2.1)

Then A and B are p.s. and
C=P(A, B). (2.2)
Note that the crucial part in the proof is to establish the parallel
summability of A and B, since on account of the one-to-one correspondence
between a matrix and its class of generalized inverses (Lemma 1.3) and in

view of Theorem 1.2(d), the rest of the theorem will follow as a simple
consequence once this is established.

Proof. Let C, be a matrix of full column rank such that
#(C))=M(A)N #(B).
and D{ be a matrix of full column rank such that
M(D})~ #(A)NH(B).

Let (A~ ), and (B~ ), be particular choices of A~ and B~ respectively. A
typical member of { A~ + B~} is therefore

(A7 )o+(B™ )o+ X,
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where X is an arbitrary solution of
D,XC,=0,
while if (2.1) holds, a typical member of {C ~ } is
(A7 )o+ (B~ )o+Y,
where Y is an arbitrary solution of

CYC=0.

Hence (2.1) implies
#(C)=4(C\)= #(A)O #(B),
A(C")= #(D;)=M(A)NH(B").
Note that this implies in particular that
dim[#(A)N #(B)] = dim[#(A)n.#(B")] =1 (say).

Let A and B be matrices of rank s and t respectively, and C, and D; be
matrices with s-r columns each such that

M(A)=#4(C,:C,), #(A’)=.#(Di:D;).
Similarly, let C; and Dj be matrices with tr columns each such that
#(B)=#(C,:C;), M(B’)=#(D;: Dj).

Then
D
A‘(CI:Q)Fa(D;)- B=(c,:ca)1«‘,,(g;)_
where

F =

U, Uy ) ( Vu Vi )
and F,=
( Uy  Up b Voo Ve
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are seen to be invertible matrices of order s X s and ¢ X t respectively. The
partitioning of F, and F, should be clear from the context. Let us write

1 Ull U12 - Vll Vlz
F _(u“ u’-’)' F"ln(vf' vu)‘

)

) F,NC:G) e (B).

D!
| FNC:G) e (A
o] RG] ).
2/R

(Dl _
Dy}
Hence if (2.1) is true,

D! D!
(D - -1 - - -
C_(Dz)n F,YC,: ), +(D;]n F, l(cﬁc:s)l_le(c )

and
CGC=C = D,GC, is nonsingular. (2.3)
However,
pac=eo( g alla)-ao v Vi)
=yttyvh,
We now show
det(U" +V!')2 0 = detH=+0, (2.4)

where

Uy+Vy Up Vi
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Since

D,
A+ B=(C,:C,:C,)H| D, |,
D,

the parallel summability of A and B would then follow from (2.4).
To establish (2.4) one merely checks that

LHR=E,
where
g yz g v o yn2
L=\yn y2 ¢o|, R=|0 1 o
0 0 1 val g y2
and

Ultsylt o yn
v 1 V]
(1] o 1

and that det L = (det F,) ! % 0, det R = (det F,,) ~ ! # 0, and det E = det({’"
+Viy,

3. ALMOST POSITIVE DEFINITE MATRICES AND TWO SUBTYPES

A complex matrix A is said to be almost definite (a.d.) if x*Ax =0 =
Ax =0 (Duffin and Morely [2]). A is positive semidefinite (p.s.d.) if
Re(x*Ax)> O (Lewis and Newman [4]). A is almost positive definite (a.p.d.)
if it is both a.d. and p.s.d. [2]. A is quasidefinite (q.d.) if Re(x*Ax)=0 =
Ax =0. A is quasi-positive-definite if it is both g.d. and p.s.d. (Mitra and
Puri [7]). The a.p.d. matrices are of two types, I and I1. This classification we
shall introduce at the appropriate place. It was shown in Mitra and Puri (7]
that a pair of a.p.d. matrices of order n X n are not necessarily p.s., while a
pair of q.p.d. matrices of the same order are always so.
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We shall now prove a lemma.
Lemma 3.1. A pair of a.p.d. matrices are p.s. if one of them is q.p.d.

Proof. Let V and W be a.p.d. matrices and V in addition be q.p.d.
Then

(V+W)x=0 = x*(V+W)x=0 = Rex*(V+W)x=0
= Rex*Vx=0 = Vx=0
= H(V)C AV +W).

Similarly (V*+W*)x=0 = V*x=0 = #(V)C #(V+ W). Using The-
orem 1.1, V and W are seen to be p.s.

Every complex matrix V of order n X n can be written as
V. +iV,,, (3.1)

where V,, and V,, are Hermitian matrices. Put for example

V+V=*
v"=_2__

(V*—V
V"“’%'

One can further use the spectral representation to split
V,=V: -V, (3.2)
where V,; and V.~ are h.n.n.d matrices and further
ViV, =0. (3.3)
We similarly split V,, as
Vin= Vi = Vi . (34)

In (3.2)-(3.4) and in what follows the notation used should not be confused
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with that for the Moore-Penrose and generalized inverses of the relevant
matrices [which if used would be denoted respectively by (V,.)* and (V)"
rather than V! and V., etc.]. Similarly the real parts of V* or V™ would be
denoted by (V*), and (V ~),, respectively. The following lemma char-
acterizes the a.p.d. matrices in terms of its four p ts just ted

Let P denote the orthogonal projector onto #(V,:) under the usual
Euclidean inner product (x, u) = u®r. Put Q@=~1-P

Lemma 3.2.  The following two stat ts are equival
(1) Visa.p.d.

(2) (a) V7 =0, and
(b) Q(Vir, = V2 )Q is either h.n.n.d. or hermitian nonpositive definite
(h.n.p.d.), and

Rank[Q(Vii, — Vi )Q] = Rank(V;:, - V,7 ). (35)

Proof. Observe that
(2)(a) e Vispsd. (3.6)
(2) = (1):
x*Vx=0 = Rex*Vx=0 = x*Vix=0 = Vix=0
= x=Qy forsomey
= y* OV —Vin Oy =0
= (V.= V.2 )Qy=0 on account of (2)(b)
= (Vm—Vin)z=0 = Vx=0
= Visad. = Visapd.
Not(2) = not(1): Consider a matrix V =V? +i(V;}, -V, ) which does

not satisfy (2)(b). That is, here Q(V,5, —V,7)Q is neither h.n.n.d. nor
h.n.p.d., or else

Rank[Q( V7, = Vi )Q] < Rank (Vs -V, ) Q.
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In any of these cases, 3y such that y*Q(V,y, — V,,, )Oy = 0, but
(Vim=Viz )Oy»0.
Observe that for such a choice of y if x = Qy
x*Vx=0 but Vx=i(V} -V, )Qy=*0.

Thus V is not a.d.

DerFiniTION. The matrix V is said to be a.p.d. of type 1 if V is a.p.d.
and Q[V,;, — Vi 1Q is h.n.n.d. and the rank condition (3.5) is satisfied. It is

a.p.d. of type IL if Q(V,;, =V, ]Q is h.n.p.d. and the rank condition (3.5) is
satisfied.

Let ¢, and ¥, denote the classes of a.p.d. matrices of type I and type II

respectively, and ¢ denote the class of g.p.d. matrices all of the same order.
The following lemma is easily established.

LeEmma 33. IfV €¥, then V* € ¥, and vice versa.
Lemma 34. €,N€,=¢.

Proof. Let V=V +i(V; —V,-)E¥, and Q be defined as before.
QlVin = Vin 1Q is h.n.n.d., and the rank condition (3.5) is satisfied. If also
Veég,.

Q[Viz -Vin]Qishand. = Q[Vi-V.]o=0
= (Vi =V,n )@ =0 onaccountof (3.5).
Here Rex*Vx =0 = Vx=0 = VE¥.
Conversely, if V is p.s.d., then Rex*Vx =0 = x*Vx=0 = Vix=0

= x = Qy for some y. Hence

VEC = forabitaryy, [V, —V,.]Qy=0

= [Vi-V.]o=0 = Ve¥#ne.
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Lemma 3.5. IfV €W, then B'VBE ¥, i=1,2.

Proof. Let V be an a.p.d. type 1 matrix, P, the orthogonal projecto
onto A(B*V,; B), and Q, =1 — P,. Then

(B*VB),, = B*(V,; )B=(B"VB),.

If Q is the orthogonal projector onto the orthogonal complement of #(V,?),
it follows that

BQ, = 0K
for some matrix K. Then
Qu(B*VB),Q), = K*QV, OK
is h.n.n.d., and Rank Q,(B*VB),.Q, = Rank K *QV, 0K
= Rank QV, QK = RankV,,OK = Rank ( B*VB),..0,.

This shows B*VB is an a.p.d. type I matrix. The case when V is an a.p.d.
type 1I matrix is dealt with in a similar manner.

LEMMA 38. IfV,WEY, then V+WESE, i=1,2.

Proof. Let V and W € €,, and the corresponding Q matrices be de-
noted by Q, and Q, respectively. Then

(V+W), =Vi+W2=(V+W),
and the corresponding Q matrix is given by 2P(Q,,Q;) = Q, (say) using

Anderson and Duffin’s theorem on the minimum of two projections reported
in Section 1 of this paper. The matrix

Qo(V + W)@ = 405(01 + Q1) OV, 00, + Q;) * ©Q:
+40,(01+ Q)" OW,.0:(0, + ;) O

is thus clearly h.n.n.d.
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Further,

QulV+W),,0nx=0

[}

2%Qp(V + W ) Opx =0

= x*Q\V,0x=0, x*QW,,Onx=0

= QV.O(Q1+0Q,) Qx =0,

OV, 0:(0,+Q;) " Q)x=0

= ViQox=0.W, 0x=0 = (V+W),QOpx=0.

Since (V + W), OQox =0 = Qn(V + W), Onx = 0, it is seen that
Rank Qo(V + W ),,,0p = Rank (V + W), Qs

Hence (V+W)e ¥,.

Lt V,W € 6,. By Lemma 3.1, V* W*e ¥, =(V+W)* ¥, =(V+
W)e ¥,

LEmMMa 3.7. IfV €¥, then V* € ¢, and vice versa.

Proof. From Lemmas 2.5 and 2.1 of Mitra and Puri [7] it follows
respectively that since V is a.d., so is V*, and that V* is an EP matrix. Thus

v [I-vv*]=0 = (V*)*[I-vv*]=0
= (V* )‘=(V* )'W'E?‘

= V'€¥, byLemma33.

4. SATURATED CLASSES OF PARALLEL SUMMABLE MATRICES

DEeFINITION. A subclass , (of a class 2) of objects with a property P is
said to be saturated with respect to this property if no further members from
Q can be added to £, without destroying the property.

The class Q in our context is ¥”*", the vector space of complex matrices
of order n X n, and the property P is that of pairwise parallel summability.
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Lemma 3.1 shows that the class € of g.p.d. matrices is not a saturated

subclass of the class of a.p.d. matrices. In this section we shall describe two

saturated subclasses of @ when  is the class of a.p.d. matrices. Determining

a saturated subclass in the wide context of €"*" is a problem still wide open.
We now prove the main theorem of this section.

THEOREM 4.1.

(a) A pair of a.p.d. matrices of the same type are p.s., and the parallel
sum is a.p.d. of the same type as the summands.
(b) €, and €, are saturated subclasses of a.p.d. matrices.

Proof. (a): Let V and W € &,, and the corresponding Q matrices be
denoted by Q, and Q, respectively. Then

(V+W), =V + W2

re

and the corresponding Q matrix is given by 2P(Q,,Q,)=Q, say, using
Anderson and Duffin’s theorem on the minimum of two projections reported
in Section 1. Hence

(V+W)xr=0 = Rex®(V+W)xr=x*V: +W:)xr=0
= x=Q,y forsome y.

Hence also
(V+W)x=0 = [(Vi+Wi)—(Vii +W.2)]Qy=0

= ¥"Qo[(Vir = Vir ) + (Wi, - Wi )| Qoy = 0

= y*Qo(Vim—Vin )Qoy =0, y*Qo(Wp, —~ W, )Qy =0

= Qo(Vimn=Vin JOoy =0, Qo(Wi ~W,7)Qoy =0,

(4.1)

since Qy(Vir, = Vi Q0 = 404(Q; + Q2) " Q(Vis, — Vi )O(Q, + Q,)* Q and
Qo Wi, = W7 )00 = 4Q0(Q) + Q2)* O Wi, ~ W, 0 )0x(Q, + Q)" Q, are
both h.n.n.d. matrices. Also, since Q(V,,, — V- )Q, and Qy(W,}, — W1)Q,

are both h.n.n.d. matrices and both satisfy the rank condition (3.5), Qo(Vim
= Vi )Qo and Qn(Wi, — W, )Q, not only are h.n.n.d., but also satisfy the
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rank condition (3.5). Hence (4.1) implies
(Vi = Vim )x =(Vi2, = Vi )Qoy = 0.
(Wi = Wi )x = (W, = W, )Qoy = 0.

Since (Vi + W )x=0 = Vix =0, W}:x =0, it is seen that (V+W)x =0
=Vr=0 Wx=0 = MH(V)CHV' +W’), H(W’')C AV +W").
Similarly, arguing with V* and W* in place of V and W, it is seen that
MH(V)Y=_MH(V+W), H(W)C #(V+W). Hence V and W satisfy the
conditions of Theorem 1.1 and are therefore p.s.

Since V and W are a.p.d., by Lemma 2.1 of Mitra and Puri (7] both are

EP matrices. Here by Theorem 1.2(b) and (e), P(V.W )= P, is also an EP
matrix. Theorem 1.2(d) therefore implies

P,=P(V* +W*)P, = P*=P*V*+W*)P,
= P?isa.p.d.of type Il (using Lemmas 3.7 and 3.6)
= P, isa.p.d.of typel (using Lemma 3.3).

(b): To show that ¥, is a saturated subclass of the class of a.p.d.
matrices, we show that no a.p.d. matrix which is outside ¢, can be added to
¢, without destroying the property of pairwise parallel summability. Let

V=VI+i(Vo-Vi7)

be an a.p.d. matrix not in €. Since V& € =¢,N%,, (V,,— V. )0+0 =
MH(V,,)Z A (V). Check that

Ve=Vi +i(Vip —Vin) €€,

and V and V * are not p.s.

The following counterexample will show that there could be non-a.p.d.
matrices which are p.s. with each member of €,. Hence ¢, is no longer a
saturated class in the wider context.

Consider the following complex matrix V of order 2 x 2:

v=( Tl -
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o={f *) mo=(_i ) )

Hence the rank condition (3.5) is not satisfied though QV,,Q =0 is h.n.n.d.
This shows V is not a.p.d.. For a p.s.d. W to be not p.s. with V, it is
necessary that W, be a multiple of V} (null matrix included), since if W}
were linearly independent of V., then (V4 W), would be p.d.. and of
course V and W would be p.s. Also W, and V,,, must add up to a multiple
(not necessarily a nonzero one) of V. Hence

Ll

(Vi + W, )0 =0.

This implies W is not a.d. Thus the only p.s.d. W 's that are not p.s. withV
are those that are not a.p.d. This establishes the counterexample.

5. AN APPLICATION—DETERMINING OTHER PROJECTIONS

Let #,, #H, A, and #, be four n dimensional subspaces of a 2n
dimensional vector space such that .#, is virtually disjoint with 4, if i # j.
For example #,, #,, #,, and A, could be subspaces .#, 4" and their
orthogonal complements # *, #* in a 2n dimensional complex vector
space, though not necessarily in the same order, with .# and 4" in generic
position (Halmos [3)). For i # j let P,, denote the projection of .#, along
# ;. Given Py, and P,,, we show how l‘\e remaining P,;’s can be determined.
Clearly

Py=1—-Py,  Py=I—P,.

We show Py = Py(Py, + P3,)~ ", but first we establish the invertibility of
P, + Py,. If there exists a nonnull vector x such that (Py, + Py )x = 0, then
either P,x is nonnull, in which case Pjyx = P3,(— x) is a nonnull vector in
M\ M 3, or P,x is null, in which case x = P,,x = P;;x is a nonnull vector in
M, N _#H ,—both of which are impossible. Since P;, and P,, are seen to be
disjoint, by Lemma 1.2, we have (Py;+ P3,)"' € (P53 }. Also P (P, +
Py) 'Pyy=P(Pyg, P,)=0 and Piy(Pip+ P) 'Pio(Prp + Pay) ' = Pio(Pyg
+ P,,) . Further, the range and null space of Py(P); + P,,)~! are seen to
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be .#, and .# . Hence P,3= P o(P, + Py,)~". Similarly

PM=P21(P21+P0)-I. P14=P12(P12+P4a)_l-
22 = Por( oy + Poy) ™ Py =1-Py;, Pp=1-"Py,
Py =1-Py, Pyy=1—P

6. CONCLUDING REMARKS

We conclude this paper raising a few open problems:

(1) Determine a saturated class of pairwise p.s. matrices (complex or
otherwise).

(2) Let T denote a linear transformation which maps matrices of order
m X n onto matrices of order p X q defined on the same field. Characterize
such T which also preserve parallel summability. Theorem 1.2(b) and (c)
provide examples of linear transformations with this property.
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