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ABSTRACT

We prove that the well known Binet-Cauchy theorem for the permanent function
characterizes the permanent. The corresponding result for the determinant was
obtained by S. Kurepa in 1964.

1. INTRODUCTION

If A=(a,;)is an m X n matrix over a commutative ring and m < n, then
the permanent of A, PerA, is the matrix function defined by

PerA= Zala(l) " Bngm)
P
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where the summation is over all onetoone functions o:({l,...,m} -
{L,...,n} [2,8).  m=n,ie A is a square matrix, then PerA is denoted by
perA. For the interesting history of this function consult [8]. Like its
“signed” counterpart, the determinant function, the permanent function
satisfies an identity which expresses the permanent of a product of two
matrices, one m Xn, and the other n X m, as the sum of products of
permanents of m X m submatrices of the given matrices.

For the determinant function this identity is given by the following

TreoreM 1 (Binet-Cauchy for determinants). If A is an m X n matrix
and B is an n X m matrix, then form < n

det AB= ;det[ah,...,ak_]det(b(h),..., b_y)» (1)

where the sum is over all strictly increasing m-tuples of integers k =
(kys---s ky) satisfying 1<k, <--- <k, <n, a; is the jth column of A,
b, is the ith row of B, [ah,...,a,‘_] is an m X m matrix with the indicated
columns, and (b ,..., by_,) is an m X m matrix with the indicated rows
[7, 6].

For the permanent function there is a similar expression involving a
weight function 1/p(k), where

() = T w0

v(k) is the number of occurrences of ¢ in k=(k,,...,k,) for t=1,...,n,
and X7_,»,(k) = m. The following theorem holds.

TueoreM 2 (Binet-Cauchy for permanents). If A is an m X n matrix
and B is an n X m matrix with m < n, then

1
perAB=;mper[akl,...,a,‘_]per(b(h),...,b(k_)) @)

where the sum is over all weakly increasing m-tuples of integers satisfying

1<k, <+ <k, <n.
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Remar 1. Note that

where (':') is the multinomial coefficient m!/v,l-- | so the formula (2)
can also be expressed by

1

perAB = ;lzkl( ,"i))per[ak..---»ak.] per(hiey-- b)) (3)

ReEMARK 2. It should also be noted that, since trivially det[ah,...,ak_]
= 0 for any m-tuple k with repetitions, (2) reduces to (1) if perA is replaced
by det A. Thus (2) [or (3)] is a “natural” extension of (1).

In the determinant case, if m=n then the Binet-Cauchy formula (1)
reduces to

det AB =det Adet B.

If K is a field of characteristic 0 and if f: M, (K) — K satisfies

f(AB) = f(A)f(B), (4)

it is well known that f{A)=A(det A) where A\:K—K is an arbitrary
multiplicative function on K, ie. A(xy) =A(x)A(y) for all x,y€K[3, 1, 4,
5]. Easy examples show that if m =n then in general per AB # per A per B
(also see [2]).

S. Kurepa [6] showed that if f: M_(K)— K satisties the Binet-Cauchy
theorem (1) for determinants with m <n<m+1, then f{A)=¢(det A)
where ¢:K — K is either identically zero or an isomorphism.

It is the intent of this paper to present a similar characterization of
permanents. We will show that if a nonconstant f: M (K) - K satisfies (2)
the Binet-Cauchy theorem for permanents with m=n and if fE)#0,
where E=(1/n) is the doubly stochastic matrix with all entries 1/n, then
flA) = ¢(perA), where ¢:K - K is an isomorphism of K.

One of our major toals is a special inversion theorem of multinominal
type.
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2. NOTATION

Throughout the paper K will denote a field of characteristic 0, and M, (K)
will denote the set of all n X n matrices over K.

Let Z+=g,l,2....} be the set of nonnegative integers. If a=
(@pees ) EZX Jet fof =y + -+ +ay. T 0, BEZE, et B2 =B - - B,
If s=(sy...,5,)EZ} and |s{=n, let sl=3,| -3 Then ('.' is the
multinomial coefficient nl/s,l --- s |=nl/sl. f B=(B,,..., ) € Z% with
|8| = n, then partition s into & =(s(1),..., &(k)), where inside of each s({),
i=12,...,k, the subscripts j of the s; run from 8, + .- +B,_,+1 to
B, + -+ + B, Then |s(i)| = a, for each i, a=(a,...,a,) € Z% , and |s| =|af
=n.

In order to simplify our notation we will adopt a formal “product”
notation for repeated adjacent identical terms inside n-tuples. Thus

(zl,...,xl,...,r,,...,:,’
L g —

will be denoted by (x11,..., x%) or (x*), where s, is the number of times that
x, appears together inside the n-tuple. If s, =0 then x, does not appear. If
m<n and k=(k,,...,k,) is a weakly increasing m-tuple of integers with
1<k, € - <k, <n, then »,=p(k) for t=12,...,n is the number of
occurrences of ¢ in k. Let »=(»,,...,,); then » € Z%, |»| = m, since k has
m terms, and »l=p,|---»,]. With our product notation k =(k,,...,k,)=
(1",2%,...,n"). If A is an m X n matrix and B is an n X m matrix, the jth
columnofAisdenotedbya,andtheithmwofBisdenotedby b(4). Let
A =[a;,...,a;_]=[a}],...,a%] denote the m X m matrix with the indi-
cated columns, and let B,= (b ..., b; ) = (b}},..., bfz)) denote the
m X m matrix with the indicated rows. If m =n, let s,=», for t =1,...,n;
then A'=[a},...,a}] and B, = (bf},..., b{s)) where |s| =n. In this nota-
tion (1) is given by

det(AB)= Y detA’detB,, (5)

where each », is either 0 or 1, and (3) is given by

per(AB)=$_ L (7)peraperB,. (6)
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Let ] denote the n X n matrix with ones in all its entries then E = (1/5)/.
It will be shown in section 4 that if f: M,(K)—K is a nonzero fonction
satisfying (6) the Binet-Cauchy Theorem for permanents with m =n and
f(E)#0 then f(E)=nl/n". A multiplicative fnction m:K — K will then
be defined by

f(xE) "
A(E) ~ afE)

At times it will be necessary to consider column and row vectors with all
ones or all zeros as entries. Let e denote a vector with all ones, and let 0
denote a vector with all zeros. It will be clear from context whether a column
or row is intended. For example, let UV =[¢!,0*~!], i=1,2,...,n—1, be
the matrices with all ones in the first { columns and all zeros in the last n ~ i
columns. For § = 0 we have U® = (, and for { = n we have U(™ = ], Let AT
denote the transpose of a matrix A. Then the U)T = (¢!,0"~!), i =0,1,...,n
are matrices with all ones in the first i rows and all zeros in the last n —
TOWS.

Ko:{l,..,n}—{l,...,n} is a permutation and if A is an n X n square
matrix, let A°={[a,),...,8,)]. Let ;=L 4, be the sum of the entries in
the ith row of A, and let ¢;=La,; be the sum of the entries in the jth
column of A.

Let ¢, i=1,2,...,n, denote the columns or rows of the n X n identity
matrix or the standard basis in K"

3. AN INVERSION RELATION

Let X be a nonempty set, and let V be a vector space over K. The
following inversion theorem will be one of our major tools.

TueoreM 3. Let ®,¥:X" >V be functions satisfying

Y(rynx)= T (F)0(ad.oxl) (7)

jl=n
forall (z,,...,x,) €X™ Then

®O(x),..001,)= Y, c¥(xh,...,x5) (8)

for unique scalars ¢, € K.
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Proof. For any a € X set (x,,...,%,)=(a,...,a) =(a") in (7) to obtain

¥(a)=| T (';)]ua')www).

which determines ®(a") as ¥(a")/n". For our induction assume that
®(af,...,a) is always uniquely expressible as a linear combination of the
¥(af,...,a%) for |a| =n and 1 < r < k — 1. Then for distinct b,,..., b, €X

consider

¥(bfi,....bft) = T (7)@(bi,..., i), (9)

[s]=n

where s(1)=(s,,.. ,spl)...,s(k)=(s,,_3‘+1,...,s,,), all the B,>0, and
|s(i)| = a;, i=1,2,..., k. Rewriting (9), we obtain

¥(bf) =¥(b,..., bft)

_ Z nl al d>(b“ . )

ajmn !yl |8(i)| =, 3(1)1 (k)]

= T (a)Br---Bpa(bp,....bp)= T (2)82(b*). (10)

la|=n laj=n

The induction hypothesis applies to each a in the sum having some term
@;=0. If a and B have strictly positive entries and |a|=|B|=n, then
accordmg to Theorem 1 of [9] the matrix

is invertible. Rewriting (10) we obtain

/ 1

Yo~ T (5)eme(be)= T (%)8a(b*),

|aj=n laj=n
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where the left-hand sum is over a’s with a, = 0 for some i and the right-hand

sum is over a’s with strictly positive entries &, > 0. This can be solved

uniquely for ®(b®) as a linear combination over K of terms ¥(b?) with

[y]=n- n
According to the multinomial theorem

(xy+ 29+ - +12,)"= Y (2):{115’---‘.\:5; [2].

[s]=n

By taking ®(x,...,x,)=xx5---x, and ¥(x},1y,...,1,)=(1,+1,
+ -+- +1x,)" in Theorem 3, it then follows that

Xy x,= Y, (8%, 4 +sx,)",
|sj=n

where the c, are the coefficients in (8).

4. MAIN RESULT

We now show that the Binet-Cauchy theorem for permanents of square
matrices characterizes the permanent function up to an isomorphism pro-
vided the function is nonconstant and nonzero on E.

Tueorem 4. If f: M (K)— K satisfies

f4B)=— T ()4)A5) (1

ls|=n

with fE) + 0, then either f{A) = nl/n" or else f{A) = (per A), where ¢ is
an isomorphism of K.

The essential parts of the theorem are separated into six lemmas.
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Proof. First consider the case where f is a constant function with
f{A)=c for all A. Then from (11) it follows that

(e

Since ¢ = f{E) # 0, it follows that ¢ = n"/nl.
Next consider the zero matrix and let B =0 then AB = A0 =0 for all A.
Then from (11) it follows that

1
c=— Y

A== T (")AaA0).

nl s

If f{0)+ 0 then

1=$):(2)ﬂm), or nl=Y(5)A4).

But now by Theorem 3 with ¥(a,,...,a,) = nl and ®(a,,...,a,)= f{A) it
follows that f is a constant function with f{A)= f(0)= nl/n". Thus if f
isn’t a constant function, then f{0) must equal 0. It remains to solve (11) for a
nonconstant f.

At this point it will be convenient to introduce a multiplicative function
m(x). Consider the matrix J. Since J% = nJ, it follows that E = E. But then
from (11) it follows that AE)=(n"/nl)AE)?, and from f{E)# 0 it follows
that {E) = nl/n". Now since xyE = xEyE, it follows from (11) that f{xyE)
= (n"/nl)AxE)A(YE), or

tee) = 2t || S Atum)

Let m(x) = fixE)n"/nl = f(xE)/fE). Then m:K — K is multiplicative, i.e.
m(xy)=m(x)m(y). Note that we already have m(0)= f{0)/f(E)=0 and
m(1)= f(E)/f(E)=1.

The following results can be proved using Theorem 3.

Lemma 1. Let A€ M, (K). Then

() f(xA)=m(2)f(A) for all x €K;
(i) f(A®)= f(A) for any permutation o of the columns of f;
(iii) f(AT)= f(A), where AT is the transpose of A.
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Proof. (i): Put A(xE) = (1A)E into (11) for each £ €K to obtain

A =22 5 (1m0

fsl=n

f(E)

nl

¥ (DA(=4)") = f((z4)E),

fsl=n
or

L (s)mAa)= T (7)A)").

ls|=n [#]=n

. From Theorem 3 we can conclude that m(x)f{A) = f{xA).
(ii): If , =XAa,I =L8,q(;) is the common sum of the entries in the ith
°, then

rows of A and
noon
A=|: | =,
(’n s e e f"
Put them into (11) to obtain
) AU .
) 5 qw-22 5 qay),
nl o= n nl =n

Cancel the f{J)/n! from both sides and use Theorem 3 to conclude that
flA%) = flA).

(iii): Note that for any (c,,...,c,) € K" we have
| [cl cl] cl c,.]
CRRIEOSEY ERN B R
€, 't G ¢, C,
Then from (11) it follows that
] C.x C}
%Illgn(?)f c:" c:,,]‘

et )
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Cancel f{7)/n! from both sides. Then by Theorem 3 we have

cl s e cl cl s e cn
: eq: L
cn s e e c. cl K c.

But now for any A € M, (K) it follows that
cl ° e cl
c.n T c.r.

cl “ e cﬂ

m=li
cl s e c.

where c; is the sum of the entries in the jth column of A. Thus we have

fUA) = AT, s0

L2 I (Bra=0F T (),

! [¢|=n [¢]=n

and AT=

Cancel f{J)/n! from both sides and observe that both sums are functions of
the rows of A, ie. a column of AT is a transposed row of A. Then apply
Theorem 3 to obtain f{AT) = f{A). .
Henceforth we will use the result of this lemma without specifically
mentioning its use.
The next lemma involves the matrices U = [¢!,0"~] defined in Sec-
tion 2.

LeMMa 2.

@) fAUD)=0,i=12,...,n-1
(i) m(i)=i", i=0,L,...,n
(iti) f(J)=nl.

Proof. First note that U] = {]. Then from (11)

)

nl

(§)AU®) =m(HAN
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implies that

m(t)=— I (3o

Ly _ o (=)
Tl _ojl(n i It(lz)lzj 8(1)! 5(@)! f(U”)
[s@)|=n—j

=ﬂi i ( ),!(n_,')"“ﬂu(l))

= :—,f(1)+;17 )y (?)i’(n -1)"Ifuw).

j=1

At this point, for convenience write

iﬂ
m(i) - —f(1) =~ z:( Jin=iy~igwo). @
Next we note that UYUT = {J, Then from (11)

(=2 T (2)lswo

Is|=n

=ni L (j)nl 0

=SR2 ()= 00

i=1

Writing

(mt0~ )= E (5t 09
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We obtain from [9]
[AUD)] = AUMAT),  §=1,2,...,n-1. (14)

Now we note that [e",e'2,0%](e",0%,0%) = {,J = Uh+yUDT, Pary.
tioning the s in (11) into three parts (s(1), #(2), 8(3)) with [s(f)] =1, {=1,2,3
we have

m(i,)(J) =n—l' y ( ',') (e, ee®1, glea])
DI+ 5@+ [#(D) = n

X f{[e#, 017X, 1s])

1 n nl o5l ol . ,
“w Z 0L Z S O )

A R

=5 L (Mg fver)fue)

‘il‘;t(n -1, - iz)" —n-n

]
|
™=

n=05=0 Titl(n—1n—mn)l
xf(U('l""g))f(U(ﬁ)).

Therefore,

| mie) =2 10)

1 nstncn nl

ﬂl 'l-l f’-l fllle(n -_ fl -— fg)!

g

X (n -~ ‘1 - lg)""‘_"f(U("))f(U('l*'l))

1 n-1

!
fa L, rﬂ(f:"—rl)!“""“1“2>""‘[ﬂv"ﬂ)l*- (15
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Next we consider U'VU™T = § 1 agin and note that from (13)

()~ 1)

1 "z‘:l nl . n=A 1ol
nl = wi(m—rri (e =)™ [ fuen)]
l"'l " ol . (n=m)

ig
nl a0 n= nl(n—r)" rzl(n—f,—-f,)l 2

X(n- i - ‘2)n_'l—"[f(u("))]2

1 n~-ln—n nl

==X X §048(n — 4, i)~ ey
e O T T The (n=ti-iy) L )
| n!
+ — —_— i ¢\ )y ]2
~ 'g fll(ﬂ-fl)!"(" i —1g)" [ AUm)]*, (16)
1
From (15) and (16) we have
n-1n-n nl
ity - -1 n=rn-rn U(rl) 2
2 fllfgl(ﬂ—fl-fg)! il '2 (" 'l 2) f( )

nelg=1
n—-1n-n nl

-T T i

1
n=lg=1 '1"2'(“ -n-n)l

X(ﬂ _ ‘l _ ‘2)""1"!f(U('x*":))f(U('x)),

and again applying [9), it follows that for i <i+ j<n,
[AUD)]® = AUO)AUG+D). (17)
Now, (17) implies that
AUDY = QUOYAUED) = ... = (UO)FU-D) = AUD)AJ).
Therefore, either f{U")=0, or if AUW)# 0 then AUV)=fJ) for i< j

<n. If k is the least integer such that AU™)# 0 [or AU®) = AJ)), then
AUDY= ]y for k< j< .
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Next we note that [¢,0"~*}(0",¢"~*) = 0. It follows that

or
n—-1
0= T (})in-i"umauep), i=12,...m,
i=1
and once again by Theorem 3 we have

AUMAUE-DP)=0  for j=1,2,...,n—-1. (18)

I n =2k by (18) we would have AU®)? =0, which would contradict
the definition of k. Accordingly, n — k <k, or 0 < 2k — n. For n = 2 we have
k=n=2 For 3 < n assume that k < n. Setting i =1 in (13), we obtain

) 1[n2lin ne
e e P O LU
Rewriting (19), we obtain the following for i=1,2,...,n - 2:
w12

1(n—1"-:‘,

nl ji=k ja=0 ljel(n = ;= ju)!

111{]:(,‘ -1- i)""h"h) [f(.,)]2

f(])2 n-1n-j ﬂ“h(n-l—i)"-h—h

nl fi=k jg=1 jl‘jﬁl(n_jl_jz)!
Ay ezt ol

+ — —(pn=1-4¢)""h
nl h;kjll("‘fx)l(n L=

Finally, note that [el,ei,on—l—(Kel,O{’en—l-‘)=]. Partitioning the s it



CHARACTERIZATION OF THE PERMANENT G
(11) into three parts (s(1), 8(2), (3)) with [s(i)| =1,, i =1,2,3, we have
)= = )} ( ) ([, b gl ])
B (1)1 + o(@)]+ 153 = n
X f([ell(l)l,oli(!)l,ek@I])
1

ﬂ' nt+rnt+rn=n

1""‘(“ 1_‘)" "= 'lﬂu(il+v,))f(U(u r,))

r,lr,l A

- ) + ; __L_,w.(,, —1-i)" T fUW) Ue-w)

1 nzln—n nl
.
nl ) aoy ninl(n—n—-n)

!,":(" -1- i)""x-'nf(U(rl-n,))

xf(U(""s))

1 n2t nl
+.._
n!

3 (n=1-9)" " AU)A).

n=l nl(n—n)!

Now, f{J)=RUY) for k< j<n and RUW) =0 for j <k implies that

U)) A [ratncalin(n=1-i)" "
f(])(l“—)— nl ( nlnl(n—1,-n)! )

n=lg=1

) nl
A ('gkrl( -

where k< r,+ 1, and k<n —1,
Now the equality of (19) and (20) implies that

(n-1-9)" ) (20)

noln=hoplif(n—1—¢)""hTh - 1n-i lil(n—1-4)"" """
fl'jzl("‘fl‘fa)l

’

=k jg=1 flljz'(“"jl—fz)l ji=1jg=1
(21)

where k < jy, + j, < n and k < n — j; on the right-hand side. Equivalently,

k-1 -k .
" ! ir(n-1-i)"""7=0. (2)

r X

hi=2k—n fg=k-j jldal(n = = jo)!
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But 1< n—k <2k implies 0 <3k-n, and 3< n <2k implies 2< k o
1<k—1. An isomorphic copy of the integers is contained in K, and the
left-hand side is a positive integer which can’t be zero in a field of character.
istic 0. Thus k < n — 1 is impossible. Therefore we must have k =n and we
conclude that RUM)=0fori=0,],...,n-1. a

In the next step we consider matrices with blocks of zero columns on the
right.

Lo 3. If f satisfies (11), then

X, .., 0

s - 1|0

xl I,‘_l 0
Proof. Note that

1 1

x) x, 0 0) -
. R N S SRR | (
: Do : =(x,+--- +1,)],
£, 2, 0 - 0][0 e 0T !
7 nei 0 -~ 0

where the second matrix on the right is (€/,0"~*), which has i rows of all one
entries, i =1,2,..., n. Accordingly,

m(z, + +x,)m)=— L (3)Al@e) " (xe)™ 0mn 1))

D i=n
X (Ut = +a)), ()

But the only nonzero terms on the right hand side correspond to
§;+ -+ +,=n and U™ = ], Therefore,

1

m(xl+“'+xl)=ﬁ Z

i+ -r+ay=n

f((xe)" e xe)") @4

sll

for1<ign.
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Now note that

i=12,...,n. Then

nl
min )=—p¥o |.(1)>T‘-, @ (=) (2i6)",077)
18@)|=n-p

1 rn-l nl pl

=— L )X

nl p=1 p|(n—p)l cl+---+.||-psll“"'ll

xf([(:,e)“,...,(x,e)",o"_’])

o oz (5" (58).
)

(n-i)""?

ol i =n sll

But the second term on the right-hand side equals m(x, + - - - +x,) itself, by
(24). Consequently, for 1 <i<n -1 we have

1 n-1 nl
- X

=2 ,_lm"("“”

x| I A1) (5i0)077]) |

14
,l+,_,+,‘_psl slt

and so by [9] it follows that

A5 (2)07])

0= T

14
Bt ta=p sll s,l i

or by Theorem 3

= —f([xle, xle,O"”‘]). a
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If A, is any matrix in M (K) with a zero column, we can prove that
fA,)=0. By Lemma 1 it suffices to show this for a matrix A, with a zero
last column.

Loon 4. IfA, is any matrix in M (K) with a zero last column, {.e. A,
is of the form

a; -+ 6,, 0
A= v
anl ann—l 0
then f{A,)=0.
Proof. Since
cl s cn_l 0
JA,=| : |
cl N cn_l 0

where ¢,=%,a,, then by Lemma 3 and (11) it follows that

¢ v €, O
) (1)Aa0)) =1]] : b =0

nl ln

Therefore,

0= T (3)A(40).)-

Now if ¢ = f{(A,),) is a function of the n rows of A,, then by Theorem 3 it
follows that f{A,)=0. u

The next lemma is concerned with diagonal matrices.

Leva 5. IfD=(xee,,...,2,¢,] is any diagonal matrix, then f{ DA) =
fID)f(A)= f(AD).
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Proof. Using (11) we have

1
DAY=~ T (fl@e)" . (ze) " AAL).

But A[(x:€,)",....(x,¢,)*])=0 if any s,> 1, since then some other s, =0,
which implies the jth row is zero. Therefore,

fllzier.-- 3.@»]”(“) = fID)f(A).

f(DA) 1 nl
nl 1---1

Since (AD)T = DTAT = DAT, it also follows that f{AD) = iD)f(A).  ®

As a consequence of Lemma 5 we have
F 9 0} 1 0
1 *3
fiD)= , .
0 1) \0 1
1 0
X oo X 1
0 %n
E 9 0 Xg 0
0 1/ {0 1
% 0
1
X +ee X
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after appropriate permutations. Let ¢:K ~ K be defined by

x 0
1

$(x) = _ :
0 1

We have just shown that ¢(zy) = ¢(x)¢(y) and that ¢(D) = ¢(x,x, - - - x,)
= ¢(per D). Since xlJ =xJ, we have m(x)f(J) = A)AT)=¥zx")J)=
[¢(x)]"AT) or m(x)=[¢(x)]" =¢(x"). Therefore, ¢(1)=m(l)=1 and
¢(x) # 0 for x # 0. Let T(x) be defined by

1 x

0 1 0

0 (I,

T(x) =

then T(x)T(y)=T(x +y).

Lemma 6. For the above T(x),

) RT(DAT(Y)) = AT(z +y));
(ii) AAT(x))=1.

Proof. (i): Writing T(x) = [e,, xe, +¢€g,...,¢,] and T(y)= (e, +
y€;,€,.6,,...,€,), we have from (11) that

1

AT +9) == L (§)Aller(rer +ea) ™ es... ]

ls|=n

X f{[(er + ves) " t,-..oe80]). (26)

using f{AT) = f(A). In this sum, if any s, =0, then one of the two corre-
sponding matrices appearing in (26) will have a zero row and hence the
corresponding term will be 0. But since each s, >1and s, + sy + -+ +8,=
n, it follows that the only remaining term is

nl

L AT = ATENATW))

AT+ )=
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(if): Note that
o 1] O[a 2 0% 0 o) [ss]0
0 Iu—2 O ln-2 0 1n—2 0 Iﬂ—2
for any nonzero x. Then
AT(x)) = ¢(x")A(T(x))$(x)
x_l 1 «x x 0
=] 0 (l)l 0 01 0 0 1’ 0
O I,._g O In—2 0 ,In—2
1 1 0
-f 0 1 )=f(T(l))-
() In—2

But T(1)T(1) = T(2). Therefore, AT(1)) = AT(2) = ATW)ATQ)) =
ATYAT(- 1) = ATMT(- 1) = ATO0) = AI)=¢(1) =1=f(T(x)) for
all x. [ ]

We now show that if f satisfies (11) then ¢(x + y) = ¢(x)+ ¢(y). First
note that

Then apply f on both sides to get

Ty
010

f J = f{T(y))o(x) = $()-

In—2
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Next note that
[x+y - x+y)
(; 1| 9 ]1- ; .
U 1 1
(:-i-v 0}
- ! I
0 1
Again applying f on both sides, we obtain
¢(:+u)m)=%“§(';)f([(xel)".(uel+eg)".es= ..... ),
¢(x+v)=%”2_ (';)f([(xel)",(ye,+e,)",e§,= ..... e])
1 nl "
=m(nlf(xel,ve1+e,,e3,...,e,,)+ Ef((yeﬁe,) ,ea,...,e,,) .
Thus,
v v O
¢(x+v)=¢(z)+é/(LLl_]
0 In—z
11 0
=¢(x)+3e(v)f| L1 : (@)
In—2
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Since ¢(x + y) is a symmetric function of x and y, it follows that

11 11
¢(z)+1e(v) 1_14_3 =é(y)+ie(z)f| 1 1 0 ,
0 |1, 0 {1,

and consequently ¢(x)c = ¢(y)c, where

For any x # 0 set y =0. Then c =0, since ¢(x) # 0 for x # 0. Therefore,
1 1
11 0

0 |1,

=9,

and from (27) we conclude that ¢(x + y) = ¢(x)+ ¢(y). Thus ¢: K-> K is
an isomorphism.

We are now at the final step in the proof of Theorem 4. Note that if
A€ M,(K) then

Where 7, =¥ a,;, i=1,2,...,n. Then

per A7) = (1= T ((pert

1s|=n
Applying the isomorphism ¢ to both sides, we obtain

#(n-+ r)al= T (§)elper&). (28)

ls)=n
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But we also have

f 0

¢(r - r)nl= o |AD=AA]
0 f.
- T ().
|¢'|=n

It follows from Theorem 3 that {A) = ¢(per(A)). ]
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