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A NOTE ON THE THEORY OF UNBIASSED ESTIMATION

By D. Basu
University of California, Berkeley
1, Summary. It is shown that even in very simple situations (like estimating
the mean of a normal population) where a uniformly minimum variance un-
biassed estimator of the unknown population characteristic is known to exist,
no best (even locally) unbinssed estimator exists as soon as we alter slightly
the definition of variance.

2. Introduction. Let (%, @) be an arbitrary measurable space (the ‘‘sample
space”) and let {Py}, 0 £ @, be a family of probability measures on @. A real-
valued function u = uy of 8 is “estimable” if it has an ‘“‘unbiassed estimator’’.
An unbiassed estimator of u is 8 mapping v = 5, of the ‘‘sample space” < onto
the space of all probability measures over the o-field of all the Borel sets on
the real line such that

W) 7T: = [ { dv, is an @-measurable function of z,

(i) o = fx T, dPs for all 69,

If, for every x € &, the whole probability mass of . is concentrated at one
point, say T, then n. (or equivalently T%) is called a nonrandomized estimator.
With reference to a given loss or weight function w({, 6), which is a Borel-
measurable function of the real variable ¢ for every fixed 8 £ @, an unbiassed
cstimator n, of e is better than an alternative unbiassed estimator . at the
point 8 = 6 if

f‘t P, [: wlt, 6) dn. < fx Py, [: w (t,00) dn..

We consider only such estimators 5, for which 2. w(l, 8) dn. is an @-measurable
function of z for all 8 ¢ Q.

Hodges and Lehmann [2] noted that if, for every 8 £ @, the loss function
w(l, 8) is a convex (downwards) function of the variable ¢, then the class of non-
randomized estimators of u is essentially complete. Barankin |1| and Stein {4}
considered the particular case where w = [t — |’ for s 2 1 and proved, under
a few regularity assumptions, that there always exists an unbiassed estimator
which is locally the best at a given value of § = 8 . Simplc examples may be
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given to show that there need not exist a uniformly best unbiassed estimator
even in the simplest case of s = 2. If, however, there exists a complete sufficient
statistic (3] for 0 and if w is convex (downwards) for every fixed 8 ¢ ©, then there
exists an essentially unique uniformly besl unbiassed eatimator for every
estimable parametric function pe . The convexity of the loss function is cssential
in the proofs of the above results. We demonstrate in the next section how a
slight departure from the convexity of the loss function might destroy all these
results.

3. N i of a best unbi. d estimator. Let us that w(, 8) 2
w(ps , 8) = 0 for all ¢ and 6. That is, we assume that the loss function is non-
negative and that there is no loss when the estimate hits the mark. Let U be
the class of all unbiassed estimators n, of e for which the risk funection

(0| ) = Efw(t,6) | n, 0) = jsc aP [: w(t, 6) dn.

is defined for all 8. We prove the following
TueoREM. If for every fired 6 £ @ the loss function w(l, 8) is bounded in every
Sinile interval |t — po| S A, and %5 o( |t — wa| ) as |t — pg| — o, then

inf r(6]9) = 0.
v )

Proor. Let ' = T, be a nonrandomized unbiassed estimator of u . The
existence of an unbiassed estimator clearly implies the existence ol such a T..
Consider now the randomized estimator n* = n* which, for any z ¢ i, has its
entire probability mass concentrated at the two poiuts ps, and (T, — ue,)/8
+ ue, on the real line in the ratio 1 — & to &, with 0 < & < 1. It is easily
verified that n*” is an unbiassed estimator of e and that

(6o | 'Y} = Efuw(t, 6) | n'”, 6]
Elsw(H/5 + m,, 6) | 60, Ho=T:— u,.

Since w = o( |t — pe,| ) B8 |t — pe,| = @, given ¢ > 0 we can determine 4 so
large that

]

w(t, 00) £ €|t — paoh It — ml 2 A
Let B = sup w(l, 6) < <. Then
1t—Hpi<4

oo | ) = {f.»«u + _/;mm} SCH/5 + peyy 8) AP
S 8B + eB(|H| | 60).

Since ¢ and & are arbitrary and B depends only on ¢ it follows that
infyw 7(8 | ) = 0. Since 8 is arbitrary, the theorem is proved. . )
Now, if w(t, 8) > 0 for { 5 s, , then r(0 | 1) can be zero only if 7. gives
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probability one to ue, for almost all z with respect to the measure Py, . In the
usual circumstances, », then would not be an unbiassed estimator of ps .

THus, this thecorem shows that if we work with a loss function satisfying the
conditions of the thcoremi, even locally best unbiassed estimators would not
exist in all the familiar situations in which we are interested. In particular
cstimation problems, it will be easy to sce that the theorem holds even in the
restricted class U* of all nonrandomized estimators of u. In the next section we
consider the classical problem of estimating the mean of a normal population,
but with a slightly altered definition of variance.

4. The case of the normal mean. Let z = (z;, 2;, -+, z.) be a random
sample from N(8, 1). The problem is to get a good unbiassed estimator of @ with
the loss function
(RO t~6sa

w(l, 6) =
’ [a”’ It — o', it — 6> a,

where a is an arbitrarily large constant.
Let £ and s* be the sample mean and variance, respectively, and let ¢; be the

upper 100 per cent point of the probability distribution of s?, where 0 > & > 1.

Consider the nonrandomized estimator
2

™ - o b, s=a,

(£ — 60)/5 + 6o, £>a.

Since the distribution of s* is independent of 8 and Z, it follows that T is &

function of z and & alone and that 7, for cvery fixed 8 with 0 < & < 1, is

an unbiassed estimator of 6. Also

r(6 | 1) = Elswl(z — 6) /5 + 6, 6} 160

- 2 | i 172
f H (" - 0") #(2) df + 6a"’r1—°’i #(7) di
28y ) 508 '] =8 1>ad 8

< 8t + 8" " E()F — oolm l 09,

where ¢(Z) is the frequency function of Z when 8 = 8,. Thus »(6 | 7%) — 0
as § — 0. Therefore

inf (8| T®) = 0, —® <6< o,
TeU*

where U* is the class of all nonrandomized unbiassed estimators of 6.

When the constant a is very large, the modification to the usual definition of
variance apparently is very negligible, yet this slight change of variance com-
pletely wrecks the theory of unbinssed estimation. Not even locally best un-
biassed estimators exist, let alone a uniformly best one.

In the construction of T, the independence of s* and % is not essential. As a
matter of fact, we can replace s* by any real-valued statistic ¥ whose conditional
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distribution, given #, is continuous. We then replace ¢ by c3(2), where c;(£) is,
say, the upper 1008 per cent point of the conditional distribution of Y given 2.
From the sufficiency of 2 it follows that c;(2) is independent of 8, and the reat
of the proof follows through. Under similar circumstances the general theorem
proved earlier will remain true in the restricted class U* of all nonrandomized
unbiassed estimators of ua .

REFERENCES

[1) E. W. Baranxix, “‘Locally best unbinsed estimates,’”” Ann. Math. Stat., Vol. 20 (1849),
pp. 477-501.

[2) J. L. Hopora axp E. L. Lesauaxs, “S8ome problema of minimax point estimation,”
Ann. Math. Stat., Vol. 21 (1950), pp. 182-107.

[3] E. L. Leumann ano H. Scuerrg, ‘‘Completeness, similar regions, and unbiassed esti-
mation,"” Sankhyd, Vol. 10 (1950), pp. 305-340.

4] C. 8rein, “Unbiased imates with mini variance,’”” Ann. Math. Stat., Vol. 21
(1880), pp. 4061S.




	345
	346
	347
	348

