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1.8 y and introduction. It is well-known that there is a close connection
between linear functionals on an appropriate Banach space and unbiased esti-
mators. In Section 2 we prove some results concerning unbiased estimation of
location and scale parameters. As application of these results we consider the
case of Cauchy density with unknown location [scale] but known scale (location]
parameter. We show that there exists no unbiased estimator for the location
parameter, and none with finite variance for the scale parameters. If the Cauchy
density involves both location and scale parameters, then it is shown that neither
of these parameters has an unbiaged estimator. Some information about other
parametric functions is also given. The present results for the location parameter
case were obtained previously by H. Pollard; we are grateful to Professor Iiefer
for informing us of Pollard’s work.

2. Estimation of location and scale parameters. Let X be a vector-valued
random variable taking values in an Euclidean space E. Let z be the Lebesgue
measure on ( E, B) where B is the Borel field. Let Py* = P, define the distribution
of X under 8 ¢ © and p, the density of P, with respect to u. We shall always as-
sume the family @ = {P, : 8 ¢ ©} is homogeneous, i.e., any two members have
same null sets. Let ro0, = pa/po, . Let R, = {rs.0, : 6 £ O}.

By L?(u), 1 £ p < =, we denote as usual the Banach space of real-valued
measurable functions whose pth power is integrable with respect to u;we shall
only need L'(x) and L'(x). We also need the space L™(x) of all essentially
bounded measurable functions. The spaces L?(P,,), 1 < p < «, are similarly
defined.

Let Ry, © L*(Py,). Then for any parametric function ¢(68) there exists an un-
biased estimator with finite variance under 8 if and only if

(1) |ZT ap(8:)| = C | ZT are;.00l12.00

for all m and all a, - - - , @m where for f & L(Pa,), ||fll2.00 is its L*( Py,)-norm (for
example see (1]). Necessity follows by an easy application of Schwarz inequality
and it is this part that we shall require for applications later.

Suppose now that X is real-valued and pe(z) = po(z — 6); 8 being any real
number. The following theorem relates unbiased estimators and compl of
the family ® = {ps}. (We recall that a family @ = {p,) is complete iff | ¢psdu = O
for all 8 implies ¢ = 0 a.e. (1).)
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THEOREM 2.1. Let po(z) = po(z — 8). If BEo(X) exisls then there exisls an un-
biased estimator of . If Eo( X') does not exist then exist of unbiased estimator for
8 and compleleness of the family ® = [p,} are incompatidble.

ProoF. Let Eo«(X) = b. Then X — b is an unbiased estimator of 6. To prove the
second statement suppose ® = {p,} is complete and, if possible, let T(X) be an
upbiased estimator of 8. Then for each 8, completeness of @ implies T(z) =
T(z + 80) — 8o a.e. (). So T(z) — x is almost invariant as defined in Lehmann
(1959), p. 225, under translations and hence by Theorem 4, Lehmann (1959), p.
225, T(z) = z + k a.e. (u), wherek is a constant. But this implies that Eo(X) =
Eo(T) — k exists contradicting our hypothesis. Hence the theorem is proved.

By exactly similar arguments we have the following theorem on scale
parameters.

TueoreM 2.2. Let p.(z) = o'pi(z/0), 0 > 0. If Ex(X) exists then there exisls
an unbiased eslimalor of o. If E\(X) does not exisl, then existence of unbiased esti-
malor of o and compleleness of the family ® = {p, : ¢ > 0} are incompatible.

If both location and scale parameters are unknown we have the following
result:

Taeorem 2.3. Let ps(z) = ¢ 'pos((z — 8)/c) and let

@ = {pp.:—0 <8< »,0> 0}

be complele. If Eo1 |X| < o, then 0 has an unbiased estimator; if Eo, |X| = o then
6 has no unbiased estimator. There is no unbiased estimator for o.

Proor. The proof for the assertion about 8 is similar to the proof of Theorem
2.1. That ¢ has no unbiased estimator can be seen by considering T'(z)
— T(z + @) where T(X) is, if possible, an unbiased estimator of ¢. Using com-
pleteness and Theorem 4, Lehmann (1959), p. 225, we have T'(z) = const. a.e. (u)
contradicting Ey ,(T) = o.

While completeness seems to be a hard question to settle we do have the follow-
ing which is a known formulation of a famous result of Wiener. We give the proof
for the sake of completeness.

THEOREM 2.4. Let p» = po(z — 8) as in Theorem 2.1. Then the family
@ ={ps:— o < 8§ < o} is boundedly complete (i.e. { ps du = 0 for all § and for
bounded ¢ implies ¢ = 0 a.e. (i) if and only if the Fourier transform po(L) of po does
nol vanish for any L.

Proor. By the Hahn-Banach theorem and the representation theorem for the
conjugate space of L'(n) as L™(u) it follows that @ is boundedly complete if and
only if the smallest closed linear space generated by @ in L'(p) is L'() itself.
The theorem now follows since Wiener’s Tauberian theorem, Theorems 10 C,
10 E, [2], says the latter condition is equivalent to non-vanishing of . everywhere.
(Wiener’s theorem pertains to L.'(x) the class of complex-valued integrable func-
tions but it is trivially equivalent to the corresponding result for L'(x).)

If @ is a family of probability densities of 2 nonnegative rv X involving only a
scale parameter then by transforming to log X we get a family @ involving
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only an unknown location parameter. Hence a theorem similar to Theorem 2.4
can be proved for scale parameter also.

It is clear that given a real valued parametric function ¢(0), finding an esti-
mator ¢ is equivalent to solving

(2) sy =g

where po'(—z) = po(z) and « denotes convolution. If one could define Fourier
transforms for ¢ and y, one would be led to solving
3) BV = &.
Unfortunately the technique of Fourier transforms is not available since ¢ usually
does not lie in L'(p) or L*(u). Even if ¢ € L'(n) or L*(n) it is not necessarily true
that an estimator, if it exists, would have similar integrability properties; e.g. a
necessary condition is that ¢ — O faster than f’ ns ¢ > . (That f’ — 0 as
L — £ is of course the Lebesgue-Riemann theorem.) However, the following
result is not hard to show.

THEOREM 2.5. Let py = py(z — 6) as in Theorem 2.1. and

@ =|p:—® <0< o) C L(n).

Suppose |Bo’| > O n.e. (u). Then a function $(8) has an unbiased estimator belong-
ing to L*(n) if and only if ¢ € L*(r) and ¢(po’)™" is square inlegrable with respect lo
u; an estimator if il exisls is unique.

The theorem is a consequence of Plancherel’s theorem and the fact that if
poe L(u), ¥ £ L*(p) then po’ « ¢ L*(x) and oV = ¢ where ¢ = po’ » . It is of
some interest that the proof of sufficiency in this case does provide a method of
constructing or at least approximating the unbiased estimator in contrast to the
preceding results of Section 2.

We conclude this section with another simple and interesting proposition,
which may be compared with Theorem 2.1.

THEOREM 2.6. Lel po(x) = po(z — 8). If Eo(X?) = oo then there does not exist
an unbiased estimalor of 8 with bounded variance.

Proor. Suppose, if possible, there exists an unbiased estimator T with bounded
variance, i.e., Eo(T — 8)* < k where k < «. By the Hunt-Stein theorem, Kiefer
(1957), there exists ¢ such that

E(X +c—8) <k

But this is impossible since Eo( X?) = «.

We now discuss as application the completeness of the Cauchy densities and
the estimation of the parameters therein.

Let po(z) = » (1 + z°)™" and pe(z) = po(z — 8). Since po(t) = ¢ does
not vanish anywhere, it follows from Theorem 2.4 that the family ® = [p4} is
boundedly complete. By using Theorems 1 and 2 on Poisson transforms, page 123,
Hoffman (1962), one can show that ®, is L®-complete. In fact o stronger result is
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true. The family @ is complete [6). That the family ®r. = {Pre : Poo(z) =
*'o/le* + (z — 6)%)} of Cauchy densities involving both location and scale pa-
rameters is complete follows from this or can be proved by using the first theorem
on page 123 of Boffman (1962). The question of the complet. of the family
®, = {ps : po(z) = 7 'a/(o" + z*)} ia still open.

Since the family ® is complete, it follows from Theorem 2.1 that there
does not exist any unbiased estimator of 8 based on a single observation. We shall
give another proof of a slightly weaker form of this result. This proof has the
advantage of being quite elementary and may be useful for sample size 22 when
the method of plet, fails. For conveni werefer to the following results
as propositions.

ProrostTioN 1. If pi(z) = {1 + (z — 0)"], 0 does not have an unbiased
estimalor with finite variance.

ProoF. Let po(z) = » (1 + z*) ™" and ps(z) = po(z — 6). Since ry,0is bounded
for all 8,  has an unbiased estimator with finite variance for all 6 if and only if it
has finite variance under 8 = 0. Also Ry € L*(P,). Hence we can use (1) to decide
whether 6 has an unbiased estimator with finite variance.

After squaring and simplification (1) becomes

Taled + 2 Zszxq"- a:a08;
S 23 Yigicigm aias{1 + 208,04 + (0 — 6,)T"} + 2T al(14+67/2)).

Y welet6; = m* + jm’,j =1, --- , m, witha > 8 > 1, it turns out that the
left hand side of (1) is of higher order than the right hand side of (1) asm — .
This shows that (1) does not hold and our proposition is proved.

It is worth noticing that with respect to the squared error loss the natural
estimator X of 6 is inadmissible compared with a trivial estimator To(z) = 6o
for all z. This indicates that for this problem the squared error loss is a very
poor choice. Though we have not been able to find a loss function with respect to
which X can be shown to be admissible, we believe that many such loss functions
exist.

It is known that for a sample of size n = 5 from the Cauchy density py =
(1 + (z — 6)")™", the sample median in an unbiased estimator of 8 with finite
variance, but we have not been able to settle the question for 1 < n < 5. In-
cidentally the computation of the right hand side of (1) does not present any
additional difficulties. It is easy to check that the right hand side of (1) becomes
on squaring 2.2 _;a:(1 + 206,{4 + (6: — 8;)T"]". Forn = 7 there exists an
unbiased estimator which is admissible with respect to the squared error loss,
Stein (1959).

PropostTION 2. If pe(z) = 7 '[1 + (z — 8)", then there does not exist an
unbiased estimator for 6" if &5 > 0.

Proor. It is easily checked that Ry © L"(u). It is obvious that if an unbiased
estimator for ¢(8) = 8°** exists then

(4) [#(8))" = Clira.agllon,
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for some C < o where ||f{jw.s, i8 the essential supremum norm of f & L®(P,,).
Now it is easily checked that [[ryolle = sups {(1 + 2*)[1 + (z — 0)")"} = O(6")
230 — . Hence (4) fails to hold when 8§ — « proving the proposition thereby.

Next we consider the case of unknown scale parameter (with known location
parameter), i.e., we consider estimation of ¢ in p.(z) = » 'o/(s* + z%).

ProrosiTioN 3. If p.(z) = = '0/(d* + x*), the scale parameter o does not have
an unbiased estimalor with finile variance.

Proor. Since r,1 = o(1 + z')/(o* 4 z') is bounded for each o, v has an un-
binsed estimator with finite variance if and only if it has finite variance under
o = 1. Since R, C L*(P,), we shall use (1) to prove the proposition. Take m = 1.
Then, after some simple calculations, we have

[teft hand side of (1)/right hand side of (1))' = 26°/(1 +¢") > ® as o — w.

Consequently (1) does not hold and our proposition is proved.

Finally consider the case when both location and scale parameters are un-
known, i.e., pr. = 7 '0/(a* + (z — 8)%). Then, as discussed above, the family
®e.. = |ps.) is complete. Also Eo4|X| = . Hency, by Theorem 2.3, we prove
the following:

ProrosITION 4. If peo(z) = x7%/(6* + (z — 8)?), then neither 8 nor o has an
unbiased eslimalor.
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