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INTRODUCTION.

Statistical variates are in general not independent, but show various degreces
of intercorrelations. This introduces great algebraic and analytical difficulties in many
stasistical investigations. In the first section of the present paper* it is shown with:
the help of matrix algebra how any given set of correlated variates may be transformed
into a set of statistically independent variates. In the second section a new type of statis-
tical co-ordinates (called rectangular ce-otdinates) is introduced, and the same trasforma.
tion is obtained by Vector geometrical methods, It is also shown that tb~ matrix of rec-
tangular co-ordinates is identical with the matrix of - transformation coefficients used in
the first section. This transformation has in practice to be carried out on the sample, and
hence these coefficients are subject to sampling fluctuations. The distributions
of the cocfficients are obtained in the third section with the help of certain auxiliaries
which we call normal co-ordinates. In the fourth section we show that many distri-
butions of statistics related to the multivariate normal pepulation can be obtained easily
by using the rectangular co-ordinates.

SECTION I, NORMALISATION OF VARIATES.

l. The Observational Matrix. Let [x',,%'zy ...... x'a] be the observed values
of the i-th character for the Ist, 2nd,...n-th individual. The complete set of observations

L / ! ]

i — x X312y cecees irreee-es  X'n
[;\’“]n = 11y » »

a1y X2z, ceercececennnns xsn

SEemEeeE W teeseesecnancesssancsnse e (1°0)

Xy lzy  weseesesaveniss  Xiin

@ce908,00000000000000 000000000000

x,’l x’pz evssc0e ovevace x,pn

is represented by the matrix (140), where p is the number of characters, and is less than =.
The elements x/,, may be directly measured quantities (like statire temperatire, scores
in tests of abilities etc.), or indices (like cephalic index, relative humidity, I. Q.,
mental age), or other quantities directly derived from the measured quantities.

The mean value g, and the standard deviation s, for the i-th character are defined! by
e = l; Sx [(+'w)] e (1)

s = L [#a-a)] - (12)

where S, denotes a summation for all values of A from 1 to =.

* The first section of this paper together with other matter (which is reproduced in an appendix)
was communicated to the Indian Science Congress in 1930 by one of us (P. ©~ M.,).

1 We shall follow as far as possible the convention that Roman letters (a,s,r, etc) will represent sample
statistics, and Greek letters (e, o, p etc) the corresponding population parameters.

2
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Let us now define a sct of new quantities

XA = (x'n - a)

We shalljcall l\']n= X1l X212 eee vere seennn X1n
X271 X322 ccoeence oosces Xan
X1 X2  ees  evcececes X
Ky Kpzg  eeesisitann on Xpn

the reduced matrix of observations.

= . % n
Let x represent the matrix conjugate to [x] , so that
—n 4

- Xy1 Xap eee Xy eee Xpy
X1z X33 e Xig e Xpa
000,00000000%% 000000 ? FAX I AT R X

X Xzm  eee Xin e Xpn

’ , and let

x
[

Consider the product of [x]n and
»

: a "_.‘9 = 14

[x], -x. [b]p

Then by definition we have by = Sal[xn . xp]

From this it is clear that if Gy = §.85.7,

(1-3)

(1°4)

(1-5)

(1-6)

(1-7)
(1-8)

where s. and s; are the standard deviations for the «th and j-th characters, and r; is the

correlation betwecen the i-th and the j:th charactet, then we have

bu = n.ay

(1°9)

n
2. The General Orthogonal Transformation—Let [y], be a semi-unit matrix defined

....................................

o (2°1)
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such that

L.y = 0 @

n
p’

where {1] " is a unit matrix defined by
i

2 I 0 0 ..ceevennnnns 0
(=
0O 1 0 .cieenens 0
% ........................ SaEREEE - (2.3)
L0 0 0 e, 1
‘T'hen we have
Sallyan - 9)1 = 1 when i = j
= 0 when i@ £ j e (249)

¥, to be a set of statistical variates (with zero mean

If we consider y,, ¥., ......
¥»] have zero correlations and are

values), then we notice from (2-4) that [y, 35, ......
thus statistically independent.

Let us now consider a matrix

"C"P _ Cii G,  sus yon sms s s Cp1
—p
€1z €23 seveer  wurenn Cpra
................................... .. (2°5)
Cip Cap  cevrernneen ann Cop
such that
Lo _‘n n
c « = .
S [J’Jw [x],, (2°6)

But the conjugate of the product of two matrices taken in a given order is identical

with the product of the conjugates of the two factor matrices taken in the reverse order.

Therefore, '—x—‘r = r;)T»'.[c]p e (277)
—m —n '
n —p —p, n —p, P
and [x] . = = ¢ . [y] . » [€]
P —dJn b—Jp p’ —m p’
—p. . —p. 14
= .11 el = 1. e] . (28
—Jp P’ P’ —Jp P

because matrix products are associative, and in a product a unit matrix is equivalent to a

scalar multiplier unity.
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Hence by (1'6) and (1'9) we have

—p,

» P
c . [¢ = . 3
£, o L n. [a] . (29)
This is a second degree matrix equation, the solution of which is known. Thus
'
[c].. can be determined. Going back to
P

—p/

¢ [y]:, = [x]: ... (2°95)

L—ip

n n
we can solve for [y],, subject to the condition that [y], is a semi-unit matrix.

3. A Particular Solution. Let us consider equation (2°9)

Z:’ . [C]:/ = n. [w]: e (2°9)

For convenience of reference we shall call the matrix [a] the dispersion matrix (for
the sample).

Cullis has shown? that the above equation always admits of a solution, when the
P
rank of the matrix [a], is ¢/, and that every solution has the same rank #. It should

}
be noticed that [a], being the dispersion matrix of p statistical variates is positive definite.

Hence its rank is necessarily p, If we take p’=p, the solution given by Cullis will hold.
Further let

P P
el =[] e (31)
P P
be a particular solution, so that
Ao = m. e . (32)
—ip P P
Then the general solution wiil be given by
] = (2 () - (33)
) P P

»
where [z], is any semi-unit matrix.
The method of finding a particular solution is laborious but straightforward. Let us

P
represent the successive leading diagonal minor determniants of [a], in the following
way.

A, =1, A = ay, ... (3-41)
An = (a)§ = n 12 . (3.42)
Az Q32

S E. Cullis : Matrices and Determinoids (Camb. Univ. Press) Vol. II, § 160, p. 356.

)



a aya L2¥]
s 11
A;, = (a)3 =
[.2%% L2711 Q3s
Qs Q33 Qss
4 a1 aia Q1p
A, = (a)p =
aa [ 293 Aap
ap; apg s Qpp

We now evaluate a set of quantities s,, s,®,

s« = agy
A 5 = f Ay Qa;, y14v
i
l [22%% Ay, 14v
A, s, = dyq [23¢] ay, 24v
az Az2 Qz, 24v
sy A3y Qas, 24v
etc., and in general
A, 50 = a5, 3%} Ay, 5.1 Ay, i1y
P31 Q22 Az, 1.1 G2, 114y
Ay Qg g, -1 @, 14y

where i can take any value from 1 to p.

We next obtain a second set of quantities defined by

1 2
am = & e 82w - P
sl(l) 5;®7 e 51,(13)

This now enables us to form a quasi-scalar square matrix defined by

» t 0 0 .. o0
(&1 =
0 Vss® 0 .. 0

0 0 Vs, ™ .. (|

0 0 0 .. Js,®

[ParT 1.

(3'43)

(344)

.5v® defined by the following equations

(3-51)

(3'52)

(3.53)

(3'54)

(3:6)
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and a subsidiary matrix

[h]|1 - 0 d,» d,™ e dy®
’ 0 1 d4®  4® . g.®
0 o0 1 d,™ .. dy,®
(3-8:
0 0 0 0o .. 4
We can now write down a particular solution
14 P P P
c = n. [k k] = [ ca
[ = wo.[k [6) = [ cay -

In numerical calculations it is not necessary to find the quantities defined by

equations (2-6), (3'7), (3'8). We can directly write the values for [¢/y] in terms of the
quantities defined in the equation (3'5)

dy = Wn.s9, | Vs® (392

for all values of i less than or equal to j.

Also ¢y = 0 forall values of i greater than j. e (393)

4. The General Solution. We may now consider the equation
—p n n
c . [y] = [x] (41)
el D P P

= P .
Let C be the reciprocal, and hence [C] be the conjugate reciprocal of the

—p P
. l-‘p
matrix ¢ , so that
—p
14 Ll )

€r. ¢ = ¢ [ =a @y . @2
P —p —p P )

—p

where A is determinant of the matrix ¢ .
—ip
1)
Prefixing [C]  on both sides of the equation (4'1) we have
P
14 P n P n 3
(€l . ¢ . [yl =1[C] .[x] =a.[1] (4-3)
P —Ip P P

n
where [l] is now a known matrix.
P

But the left hand side reduces to A . [y]: where A is, as before, the determinant of the

.
matrix ¢
—p
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Hence, L = )
and [l . [z, = A.[y], . (4'5)

P . . - .
[c], is therefore the matrix of a general transiormation, which converts the

corrclated wvariates [ x,;, Xz, ...... x, ] to the statistically independent variates

P
[ Y0 Yas coeees ¥, ] One such particular transformation is [¢/],.

SECTION II. RECTANGULAR CO-ORDINATES.

5. Reclangular Co-ordinates for the Sample. Let us consider a space of n dimensions.
The n measutements x',i for the i-th character, can now be represented by a single point
X!/, in this space, with co-ordinates x/;y (A = 1, 2,... n). For the p characters we then get
p points X/, X/;, .. X/, Let the line OT be the equiangular line, i.e. the line making
equal angles with all the axes. Let X/ M, be the perpendicular from X/, on OT
(i= 1,2, ... ). Then it is known that

M‘ Xliﬂ = N.aQy, OLVI’. = n.qg ees (5-0)

Through O draw OX, equal and parallel to M; X/, Let 6,; be the angle between OX|
and OX; Then we know that

cos by = 1y, 0X,.0X,.cos6y = mn.ay (5°1)
Consider the figure formed by 0X,, 0X,,...0X,. If we reduce the whole figure in the

ratio 1: /n, we get the figure OZ, Z, ... Z, ...Z,, where Z, (i = 1, 2, ... p) is the point
on OX, such that

0z, _ 1
0%, P .. (52
We then have OZ2 = ay, 0Z,. 0Z;.cos Z, 0Z; = ay (5:3)

The figure OZ, Z, ... Z, is fundamental to our investigations. We may call this
figure the fundamental polyhedron for the sample.

The lines OZ,, OZ, ... OZ, all lie in a linear subspace of p dimensions. Different
samples have different fundamental polyhedra, but they are all immersed in a space of
n— 1 dimensions, orthogonal to the equiangular line OT through O,

Let My, denote the foot of the perpendicular from the point Z; to the subspace
0Z,Z, ... ... Z,. It should be noticed that in M, , the value of i may be taken
1, 2, 3, ...... up to j, but not greater than j; also My = Z; Then any twa-
links of the broken chain  OM,; M, ... My; are perpendicular.

8



RECTANGULAR CO-ORDINATES IN SAMPLING DISTRIBUTIONS

We now take B new system of rectangular axes OY,, OY,,...0Y, immersed in the
grace 0OZ, Z, ... Z, such that OV, is identical with OZ, ; OY, lies in the plane OZ, Z,,
and is perpendicular to OVY,, and in general OY, (j < p) is taken to lie in the subspace
OZ, Z, ... Z, and is perpendicular to OY,, OY,, ... OY,,. Then if #; 5 ... t;; be the
co-ordinates of Z, with reference to this system of co-ordinates,

ty = My, My (=)

y =0 (i>7) (5 4)
where it is to be remembered that the point M, is the origin O, for j =1, 2, 3,... p. The
diagram for three variates (p=3) is given below.

We now write out the matrix

L 1 t t t
t = 11 12y 13 oo 1ip
O
0) t22) t23 iZD
0, 0, tys tap (55)
0 0 0 ton

D
Thus the elements in the g-th column of the matrix [¢], are the co-ordinates of the
point Z,, with reference to the new system. We shall call such a system of p (p + 1)/2
co-ordinates, the rectangular co-ordinates of the sample.

Before proceeding to the problem of their distribution we shall investigate the connec-
tion in which they stand to the quantities ¢y introduced in the first section.

9.
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6. Rectangular Co-ordinates and the Dispersion Matrix. Now from (5'5) we have

tu= My M, = 0Z,= s,= | a, [|'?

tas = (parallelogram formed by OZ,, 0Z,)/0Z,

Qayy Q13 12
| as Az
— —————————

| an | A0
an Qyy an 12
az a2z (2%}
ajy Qy ay

ty =

asy (B¢ ay,y 12
2z Q33 gy 1y
Q151 Qi-152 .- Ay_yy g1

(6°10)

(6°11)

(6°12)

where ¢ £ p ; as £, = M,_;,; My is the ratio of the volumesof the parallelopipeds formed by

(6-21)

(0Z,, OZ,, ...... 0Z,) and (0Z,, 0Z,, ...... OZ,_,) and these volumes are given by the
numerator and denominator respectively in (6-12).
Again, tia = Mgy My, = OMy; = )Z,co86,, = 53713
— 182713 _ a,,
§1 (@1,)'/?

Similarly we can prove that

bix = Sk T an/(an)'?

where k 5 1, and is of course less than or equal to p, the number of characters.

Again, S2 Sy 733 = OZ, OZ; cOS 0,3 = t15tys + tantag + 0. tag
therefore, oy = (S2 S5 Taz — tya t1s)/taa = (S S3 T23—S3 S5 7y Tagz)/t2a  from
Sa Sy 1 Tis Sy S3 l % §1 S3 T1s
_ l Tia Tos , 5:% 52 83 | S1 83 71z Sz 53 T2
tas N taa

10

(6:22)

(6-22)
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Thus from (6:12), we have

’ ayy (3% ‘
azy LPE)
tgy = .
(au)‘“i an  ag 12 o (6°30)
| Az A3z

In a similar manner we can prove the general result

' a, a,x
as Ak ‘
loy = (au)/? o o o) (631)
as Asy
where k ranges from 2 to p.
Again, 53 Sy sy = OZy OZ €08 03y = sty + tag bagttsy sy + 0. &,
that is tae = (S35 84 Tss — t1a tiy = tag t2q)/tas

which after substitution from (6°12), (6:22), (6°31) and some reduction gives us

Ay s Ayq
Az QAgo Ay
Q3y A3z A3y
ty, = (6°40)
1/2 1/2
a Az / a1 a3 Q13 /
[P35} Asp Az, QAyz Qa3
s, Qasz Q33
In the same way we show that
an (B¢ a1k
Az, (2T} 2233
a3, 22} 2239
tak = e (6 41)
1/2 1/3
(%1 Qg / Qi QA3 (5T /
sy Q32 225} Aaz ags
sy A3z Qass

where k ranges from 3 to p.

11
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The form of (6:31) and (6°41) suggests the following general result.

11 Q12 Qs 11 a;x

gy Aza Az -1 Qazx

ay ayy ay, 11 3 %

e = o (6°5)
ax Az A1yi-g / a, (37 o a1, 3
23 agg gy g y, Ay2 Qg4
sde

Q151 Qy_152 e A qy -1 Qyyq Qyyg vee am

where i does not exceed k, and k ranges from 1 to p.

Assuming the above result to be true up to.t,_,,, we can prove it to be true for #,, by
arguments similar to those used before. As we have shown it to be true for i = 1, 2, 3,
the result in question is thus rigorously established by induction.

Now from (3°44) and (3-54) it follows that

A. S(l) A,
by = ==l ketnl — (Tm1) o) .
. A_TTEATTR ( A, )'S k-i+1 (6:6)

(6°7)

I
>

If in (3:54) we put v = 1, we have A, 5,®

S(l)k—tu/ V5@ (6:8)

From (6°6) and (6°7) we have i
where i does not exceed p and k ranges from i to p, and it has been already noticed that
tw = 0when k <i.

Comparing with (3'9) we have cy = tyNn (6-9)

for all values of i and j from 1 to .

We have thus established the identity of the matrix of rectangular co-ordinates and
» .
the matrix [¢'], which we obtained as a particular solution of the fundamental matrix

equation (2°9).
12
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7. Vectorial Interpretation. ‘The connexion between the investigations of section I
and the present section can be still better seen from the following considerations.

Consider a system of p mutually perpendicular unit vectors [i,, i,,...... ip,] immersed
in the space OX,; X, ...... X,;. Let OX,, OX,, ..... 0X,, when considered as vectors be
[uy, us,...... u,]. Then each of these may be expressed as a linear combination of the unit
vectors { as follows

U = Ux il + Uk iz+---+ Upk ip fOr k = l, 2, ine P- e (70)
. . . - hp .
Then the linear transformation with matrix « converts the vectors i to u where .
—p
'_J' - Uy Uya .. Uip
—D
Uy Uaa Uzp
(7°2)
uDl upﬂ ese upp

~p 5 .
u is the determinant of

and Ay = ’ Uy

—ap

If [U]p denotes the con jugate reciprocal of
P
r;p, then the linear transformation with the matrix
—Ip
)
L. [u] (7°3)
A, p

will convert the vectors u to i, and so this linear transformation acting on the correlated
variates [x;, %3, ... x,] Will convert them into statistically independent variates with

unit standard deviations.

If instead of the vectors { we had started with any other set of mutually perpendicular
vectors [ fi, fa» ... J» ]  and expressed

Uc = Vyx i + Vaxfa + oo + Vi o and set
';p = U1 V12 V12
—p
V21 V3a . Vzp
(74)
Um Upa e Upp

—p —ap P
then the matrix v has the same property as u namely that if[V] isits conjugate
—Jp P

—ip
reciprocal then the linear transformation with matrix
1 »
= [V] (7°5)
v P
will convert the variates [ x,, x,, ... x, ] into a set of statistically independent variates

. . . . . P
with unit standard deviations, A, being the determinant of the matrix » .

—p

13
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—

~ D
It is geometrically evident that we can pass from wu "to w by multiplying the
—p —p

former with a semi-unit matrix.

If now in particular we take our p orthogonal unit vectors [{,, is,...i5,] to lie along
oy,, QVY,, ... OY,, then

uy = tyan (7°6)
where #,’s are rectangular co-ordinates for the sample. Consequently from (6-9) we have
i = cy (7°7)

where ¢/;; ’s are the quantities occuring in the investigations of section 1.

)4
We thus arrive by another route at the proposition proved already, that if [C'], is the

conjugate reciprocal of c’ K and A’ the determinant of c’ then the transformation with

—p

the matrix

1 -

boer
is one of the linear transformations which change the variates [x;, x,, ... x,] into a set
of statistically independent variates with unit standard deviations. It also appears that
the most general transformation with this property is one with matrix
P

L. L C]p where ¢ = [z]17 e
A » —p D

—p

» »
[2]l; being any arbitrary semi-unit matrix ; [C], is the conjugate reciprocal of

L ] ~—p
¢ ,and A is the determinant of the matrix ¢ .
D

—p

8. Rectangular Co-ordinates for the Population. DBefore proceeding to the question
of the distribution of the rectangular co-ordinates for the sample, we proceed to define
the rectangular co-ordinates for the population.

In a space of p dimensions, let us take a set of lines OZ/,, OZ’,, ... OZ',, such that
Oz/l = ay,
} (80)
cos Zy OZ'y = py,

where @, is the population variance for tlie i-th character and py, is the population
correlation between the i-th and j-th characters.

We now take OZ/, Z/, ... Z/, as the fundamental polyhedron and denote as before by
M’y the foot of the perpendlcular from the point Z/; to the subspace OZ/; Z/; ... Z)
wherein M’y i can be taken equal to 1, 2, ...... j.

Then setting

Ty = M,y My, (i< 4) } (8:1)

Ty = 0, (> 7)
we may call r the rectangular co-ordinates of the population.

14
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SgctioN 111, JoiNT DISTRIBUTION OF RECTANGULAR AND OF NORMAL CO-ORDINATES,

9. Density Factor. On the hypothesis of normal distribution, the distribution of the
reduced obscrvations (vp) [cf. 18] (i =1,2,...p,and A = 1,2, ... n) can be written,
after integrating out for the means (a,, @5......4,), as :

if = 1 —infa" a,; + %4z + ... 22" a,; +
f = ”p,x.(z.,r)(n-lw,z. la l w-1);2"

4 [dxa] (©0)

where [dxp] stands for the product of all differentials dxp, for values of i = 1,2, ... p;
and A=1,2,..n; also || is the determinant of the matrix of population
dispersions (ay), that is,

e i \
el = layi, and o =-ﬁ"| @1

whete Ay is the minor of ayin |a].

Now we take, following R.A. Fisher, a space of np.dimensions, and subdivide it into .p
a-dimensional orthogonal subspaces. In the i-th subspace we can take = orthogonal axes
OX,, (A = 1,2, ... n), and can represent the i-th reduced character by a point Q, with
co-ordinates, xu (A = 1,2, ... n), with rcspect to the axes just chosen. If we rotate all
the subspaces so as to make them fall on the first subspace, then tie points C,, Q,, ... Qp
may be considered to take the positions X,, Xa oo X, considered in paragraph 6, Let
Q be the point of the complcte np space whose projections on the p subspaccs are Q,, Qs,
wre Qpe  Then we can call 'Q, the representative point of the reduced observatlons, aud
the complete space may be considered as being populated by the representative points Q,
with density

1 e "1 {aay + @ ax + .. 2% a0} ©02)
"p,z.(zw)(uq,p,z. I P I o-1),2 * * ven

Let ¢, be the rectangular co-ordinates for the sample, and 7 the similar rectangular
co-ordinates for the population, defined before. Then we shall first show that the den-
sity (9°2) is expressible in terms of the rectangular co- ordinates.

Let [.,.]p = ™ Tia Tip
B 5

Ta Ti2 - Tap @3
n Tpz . Top

. . . ~p .
be the matrix of rectangular co-ordinates for the population ;and let 7 be the conjugate
. —p

matrix,

15
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P
Suppose ot [+] _ ['T]
—p » P
_ Ta Tig o  Tu
Ta T2 T (9-4)
Tm sz TPP
then we shall show that Ty = ay.
Now from the multiplication rule for matrices it follows easily that
Ti.i = SA (T,\i s TM) (95

where it is to be remembered that =, = 0 for i > j.

But 8, (ra . Tay) is from geometry the scalar product of the vector OZ/; and OZ/; and

is therefore equal to 0,.0.py = oy
D P 9'6
Hence [T}, = [ely (9-6)
Consequently also ' = TY (9°7)

P
where TY 15 the minor of Ty in the determinant of [T], , divided by this determinant.
Again a; = S, (tM F t,\j) (98)

where as before t; = 0 for > j.

Also ('t ay; + @®® ayy, + ... ... 20’ a5, + ...... )

11 2 "12 2 2 P 2 2 2
= {T t11+’1 (t13+t22)+....:.T (t1n+t2n + s tnn)“‘ }
+ (2T 1y, by + 2T 4y, tyy + 2 T2 (b tigt+itan tas) + ...
! vee A 2Ty byt g by + o tn ) + (9°9)

|

We shall find it convenient to denote the left hand side in equation (9-9) by I(T, ).

We can then write the density factor (9°2) as

! o~ n F(T,0) L (@9)
np/'_’.(z_”)(n—l)p/'). | '1\ I (n-1)/2

. - e P
where | T | is the determinant of the matrix [T],.
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10. Joint Distribution of Rectangular Co-ordinates. We now want the total density
for those samples for which the rectangular coordinates lie between t; and t; + dty
where i will take all values from 1 to p, and for any given value of 4, j will take all
values from that given value of i to .

When t,, is constant, the point X, describes an (n—1)-dimensional hypersphere of
radius ¢,, 4/n, because OX, is always perpendicular to the equiangular line in the first
subspace. When £,,, 1,3, ¢,, are constants, the point X, describes an (n—2)-dimensional
hypersphere of radius t,, 4/n, and so on. Finally X, will describe a hypersphere of
radius t,, ¥/ n. Now the surface of a k-dimensional hypersphere is

s/

2 SETD

7=t (10°1)

where r is the radius of the hypersphere. Hence eonsistently with the restrictions on
the representative point (), it describes a hypervolune

2p . gP(2n-p-1) /5_ noe/2 -2 n-38 n-p-1

oD TI0—2). ...P}(n—p) x tu ‘ tza  na tw [dty] (10-2)

where [di,] stands for the product of all differential elements like d¢,, where i will take all
values from 1 to p, and for any given value of ¢, j will take all values from that value
of i to p.

Hence finally the joint distribution of the rectangular co-ordinates takes the form : —

mP(a-1)/2 Ile I (n-1)/3 _}n . F(T, t) n-3 n-3 n-p-1 )
a3 e © .t i e t . [dty] (10-3)

11 22 p

We shail show later that J. Wishart’s joint distribution of the sample dispersions is
directly deducible from this.

11. Normal Form and Normal Co-ordinates. We have denoted by F (T, t) the expres-
sion on the right hand side of (9'9). We can regard this expression as a quadratic form
in the p(p+1)/2 variables t,. We shall now construct a linear transformation
which leaves unchanged the p variables [¢,,, tas, ... t;,] except for constant factors, and
at the same time reduces the quadratic form under consideration to a sum of squares.

F(T,t) =  {TV 4% + T% (ba® + t20?) + .. T™ (8,7 + o + oo + too*)}
+ (2T 4y, tyy + 2T 4y, s + ... 2T 4y, Uy
+ 2T (kg by + taa tas) + o0 2T (fua by + fog bag) +
+ 2T% (f101 trp + baps bap + -oo bpoa, o1 Bo-10)}

= S° [T ;.EI: (tas - tay)]

=1

where k is the lesser of ¢ and j, and T = T (11-1)

17
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Let | T | denote the determinant of the matrix ['I‘]: defined by
l T l = Tll le . Tl, p~-1 Tl,p
A 22 T2 »-? T2»

(11-2)
Tp—l,l Tp—l,ﬂ . Tp—l., p-1 Tn—l,p

Te.1 T».2 e Te. »-1 Top

If we take the last r constituents of the diagonal elements of | T |, where r is of
course less than p, and consider that minor of T, which has these terms for its leading
diagonal terms, then we can call this minor | T | .

Thus | Tay! = | Tee| = Ter (11-21)
T = e-1. -1 Te-1.p
| Tea | .
T p-1 Tre
= To-1. p-1 TP _ (Tp—l.p)2 (11-23)
[Tey| = |T]| itself (11-24)

Let T¥ be any element of | T | such that i <p—r, j<<p—7. We shall define the determi-
nant | T | with the help of the following equation (11-25).

| Tw | | Te®| = | T Ther Thoore2 Th»
To-reld  TPTHL porel Lporel, pored To-r+1.p
Tp-r+2.d  T'P-TYZ p-rel 7Pp-red, porez Te-r+2.p .. (11-25)
Tes  Tes™ Tesma e
It is to be noticed that
[ TwP™?*" | = | T | /| Ty | (11-26)
We have, therefore,
Ten'* Tea™ ... T
_ S(n) L Ten | | To | T = T = [T (11:30)
1 Ton | | Tea | | T |

18



RECTANGULAR CO-ORDINATES IN SAMPLING DISTRIBUTIONS

Let L,V Tr =T ¢, + T* tia + ... Tow tip (11-31)
) J [‘AD E
= ;\_—5_1( tlA) (11.32)
P
Ly T = As= I(T“ ta2) (11-33)
where it is to be remembered that t;, = 0, if i > j, and in general
P
o/ T = § (T¥ tn) (i=1,2..p.) (11-34)
Then we can write
Li=p
F (T,t) = ”S_1 [Tv. AS_“I (ta ta)] where k is the lesser of i and §
= L+ Lp®+ 1" + ... Lpp?
Lj=p-1 1] X
=+ ”5_1 [T(l) -SA=1 (tM tM)] (11'35)
where, as before, k is the lesser of ¢ and j, and
T = {T4Tw — Th T} [ T = | Tyy" | (11-36)
We now set
Lps VT o) = 8 (07 ) (=12, .. p=1) (11-37)
=1 1
We also write
Li=p-1 T 1) k 2 ! lz
1L,§=1 1 s)»=1 (tMtM)] - 1,0-1 + 201 p-1, p-1
Ly=p-2 5k 11-38)
ST .S ()] (
Lj=1 (2) A=1
where T = {Tw! Tey™ ! — R R WA e (11-39)
Now, Ty = {THTw — The T4s} [T (11-40)
Ty ™ >t = {2 -1 Ter _— (TD—I-D)Z} /Tee ave (11-41)
Tt = {Tho-2 Tor _ 4o [o-ip} [ToP (11-42)
T = {Tp—l.! Tep — To-Lp T4} /Toe e (1['43)
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Now consider

| Tl .| Ta"| = T L B
-1 Te-1. p-1 Tre-'» (l i *50)
*1['pid Trp-1 Tr»

Denoting the minor of any teim in this determinant by placing a bracket ( ) round

it, we have Tyt = (L% »)/Toe (11'51)
TPt = (T2 (11-52)

Tt = (TeM)/Tow (11°53)

Lt = (T T (11°54)

Accordingly T = {(Te% 1) (TH) — (TeW) (T} [ Tee(TY) (11-55)
= [Taw| [Ta"!|/(TY (11°56)

= [ Ta"| (11-57)

Procceding in this way and setting
p-r A.p-r

Lot | TeP™? | =8 [T .l (i=1,2, ... p—1)... (11°6)

A=t [¢)]

wehave F(T,t) = Py + Py + .o Up? + Prpy + Popy + o P,

G P + Lig? + L + 1g? + 2 + L+ 1R (11-7)
L=»
= S [I%] where ly = 0, when i > j (11°8)
1,j=1
i
It is to be noticed that Iy = &,y &/ | Tew | (i=1,2, ... D) (11-9)

12. Rectangular Co-ordinaies in terms of Normal Co-ordinates. @~ We shall now
express ¢ as a linear combination of the I's. In what follows we shall write

y 1
T@ for | T |, the two having been identified earlier.

Iy VT = Tea™. (12-11)
Iy /TR = T g THEBL g (12°'12)
’ (p-t-1) (p-1-1) (-1-1
b} Ad
1 T — T ¢ =g (12'13)
wo W i) SA=1 [ -9 11] (751)
hy ¥ T = S, [T 4] (12°14)
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We have here in hand {p —i+ 1) linear equations from which the (p—i+ 1) quantities ¢,
(f = i, i+1,...p) can be obtained as linear functions of ly’s (j = i, i+ 1. ... p). As we shall

presently show, we shall get ¢, in the form

i
by = kM ly + kM Lga + oo R =’A5_‘ [k . Ia] (12-2)
Consider the determinant of the (p —i+ 1)th order
Ay = Te-n" 0 0 0 0
T Tern'™ ™ 0 0 0
wawaQ 0 .. (12:3)

’l\(p—l-a)“m T(p—l—z)‘“' 1+2 T(p—l—z)

T (o)™

+2,
T Ty ® To)*™®

We shall use the notation Ag'™ to denotc the minor of the element in the I-th row

and m-th column of Ay divided by A itself. (12-31)
It is readily seen that Ap'™ =0 when m < [, (12:32)
We now have fromn the theory of linear equations,

¢ ,\/TM A!,j—h-l l 'rlﬂ. i+1 2,4-1+1 l 'I‘M Aj-lﬂ. J-1+1 l (12.4)
n= VT By VT s B et et VT A, H
It is thus easily seen that the relation (12:2) holds when we take
(12°5)

ki = VTeo™ . Ap¥™h

13. Joint Distribution of Normal Co-ordinates. The joint distribution of the f#,’s

has already been obtained in (10-3) in the form

nPE-1/2 | TY | (@13 { —3nF (T,t)
ZEOE pene - B Tm-By2 ¢
k=1
x () T2 ()" 3 ()P L [aty] (131)

where [dt] denotes the product of all differential elements dty (i=1, 2,...p, and j=1, 2,
...pibut iy =0 when i > j), and F ('I,1) is given by the left hand side of (9'9).
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If we denote by [dl,] the product of all differential elements dl,, (i=1, 2 ... p, and
f=1,2.....p;but ly =0, when i>j), then

8 (L, Lig, Lua, ... Lyp)
dl,] transforms to 11, b13, baa, x [dt -
Ll 0 (411, ta. tas, ... tpp) [aty] (13-21)

Equations (12:11) to (12-14) show that I, I, 1,,...l,, are functions of ty, 4, ,, ... t,,, and
of no other t’>s. Hence the Jacobian reduces to the product of a number of factors.

Having regard to the form of these equations we can write
p
[d] = P_ (Who). [dty] e (13:22)
where PP denotes the product of the terms for all values of ¢ from 1 to p, and
1=1

where Ay, which is given by (12-3), can be written as

» kk
Ay = Pk:l(T(p—k)) e (1323)
11 22 2 33 s PP » ¥ ) 5
Therefore, [dly] = {(T(’_l))(T@_z))(’I‘(p_a)) ...... (") }x[dtu] e (133)

Using (13-3), (11°9), (11:7), and (11:30), the expression (13°1) can be written as

»(n-1)/2 _%n SP S (lﬁz)
n(n-s’)l/2 p(p-1)/4 ° —p l x € gt ded x (llx)n-z(lzz)n_n (lpp)nnp_l[dluj
2 ™ Pk=1{1‘(n—k)/2} .. (134

where according to the notation already used [dl;] stands for the product of all differen-
tials like dl (i=1, 2, ...... p, and §=1,2.....p; where lyand dly =0 for i>7j.)

14. Distributions connected with Normal Co-ordinates. From (18'4) we now
integrate out for all variables I, (i%j), and get

np(nn-p—l)/d —}n S" (lu’) I
X e =1 X (1) (L) .. e (o)™ [dlu] ... (14°1)

“p@Enp-5) /¢ _p
2

P _(T(n—k)/2}

It is easily seen that the p-fold integral of the above over all values of the variates
Liv. 5 Uag asi e l,, from O to e reduces, as it should, to unity.

To obtain the distribution of I, only, we have to integrate out for the remaining
(p—1) variables in (14'1). We then get,

n@bhH/2

—inly? g . N 142
T T3 e 4 (1) . dly as the required distribution.. ... (14°2)

This shows that the distribution of l,* is of Pearsonian Type IIL.
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If from (13'4) we integrate out for every other variable except Iy (i£j), we
get the distribution of 1 as
—inlyt
~/(n/21r) . € dlu ven (11'3)

Thus the ly's (i) are distributed normally.

15. Distributions connected with Rectangular Co-ordinates. Distribution of ¢, and ¢,

Now 2=, T = f: T [/ | T | o (157D

[N 1 - (p-1+1)

Substituting in (14'2), we get as the distribution of

n@H2 | Ty | @2
20T T (n—4) 2. | Tipp | @72 °

_‘}"tuz- l T(p—lﬂ)'/IT(p—i) | n-i-1
4 -(tu) -‘“u “5.2)

To obtain the distribution of t;; we first note that

tu = k’“lu + k’l,lﬂ ll.lu T oreeins k’u lu where k’lq = J(T(p_q)q,q).A(‘)q-lq,]—lﬂ voe (15'3)

e first write down the joint distribution of U, Ly, bz - .... Ly, which is
n (J+n-21)/2

- 2 2 2
W X e %n{(lu) +(ll.h1) “er (lu) } . (lu)n-l-l ) dl“dl‘_l,ldli,ug...dlu (15.4)

We now take a new variate

1 LA 3 A 1
Yy = ES- (ky . )] /[‘im (ky )] e (15°45)

=i+

Then the distribution of y, will be a normal distribution with a variance equal to
that of the I's.

—iny?y

Hence the distribution of 3y is Vn[27) . e dyy ... (15°51)

We have now

9 1 (RS | . s
lu = k’l ’“ + [51 (kj)Z] o Yy = a . l“ + B-yu (prOVlSlona“y). eee (15'52)
A=+l

Hence the joint distribution of I, and y, becomes

p(@-i41) /2

sy -« WO ™ s 087
. Jdin—

It should be remembered that I, varies from 0 to oo, and yy from —oo to + o,
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Let us set by=1n =aly+ Byy, &= al e (15°71)
8(&) .77) — a 0 = B e 15.72
Then B(lu, i) a B * ( )

Therefore transforming (15'7) to the new variables £ and 7%, the joint distribution
of ¢ and 7 is obtained as

—in{(e®+B*)E 22+t | (@@ . BY)
C.e (gt L dé L dy ... (15°73)

where C = n®D 1

20T gw T(n—i)j2 « B (15°74)

Putting @ = r cos §, and = rsing this integral reduces to

— 3ni§? — 2&9 cos*0 + n*cos?8} [ r* sin®d cos®¢
C.e (&)*t dé. dy . (15°8)

—3n{(£—n cos?0)?+ 7 sin*d cos®f}/r* sin%g cos®d
a Ce LR dE L dy ... (15°81)

Remembering that £ varies from 0 to o and % from — o0 to + o0, We get the distri-
bution of » in the form : —

—(nn?[2r?) ~ —In(£—n cos?)?/+* sin’d cos®d
C.e [ /‘ e . (&) dﬁ].d'n; .. (15°82)

o]

Take a new variable u such that £—mcos?® = wucos? ... (15°9)

Then the integral within the square brackets is transformed and the distribution eof %
reduces to

— (ny?[2r%) ®  _(n cot®9.u?/2s?) e i
Es [f e u+) .du] x (cos?) .dn ... (1591)

=

Finally substituting the value of C given in equation (15'74), we have the distri-

bution of 9 or ¢, in the form :—

(cos g)**  netn/2 = (n9?]27%) 20 (g2
T sn g yrrm-nj2 ¢ «Fullts mcobefr)edn ... q52)
> 2
where Fu (7,0) = f P /2. (w+m)™ . du ... (15°93)
-1
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SrcrioN IV. SpECIAL DISTRIBUTIONS.

16. Joint Distribulion of Dispersions. The joint distribution of the rectangular
co-ordinates t; (i=1, 2...... p; j=1,2...... p, but 4 =0, when > ) has already

been obtained in the form : —

airC-D | T | b :
20(8=3)/3 _ pp(p-1)/1 P{T(n— k) /2
k=1

\ - HTED () M2 (1), (b,) P [ty ] (16°1)

where F(T,t) = oa'a; +a®®a,+...... o ap, + 2(a'? a; + @' ayy F...... a*? g, 1)

and ay = (tu t” # tzi t2j e e tu tu) y 1.§ j. eor (16'11)

If now in (16'1) we change the variables ¢, (i=1,2......4; j=1, 2...... p; but
iy =0, when i>j), toay (i=1,2......p; j = 1, 2...p ; and g, is same as ay), then

B(a,y, a5z, agsy...... app)
: - U LI T L .
a(tll) tlz: tzg, ...... tpp) ( 11) ( 22) Pp vea (16 12)

Substituting in (16°1) we get

1 aie-D | T4 | je-D 1 ~3uF(T,t) n-p- 3
5 T 2p(@-3)/2 L qre(e-1)/4 ' ﬁl’ {I‘(n—k)/Z} .o i -(tu-tzz ------ tvn) v 2.[da,,] (16 2)
k=1

But from (6°12) it is easily seen that

tyikageoitsy = Q11 @iz eee ... ayp 1/2
B2 Qa3 s+ ess agp
= Jay|t .. (16°3)
Gy Qps ses Opp

Also we have shown that ™ = oY, therefore (16°2) reduces to

(Fn)p-D /2 | ol | -1)/2 1 —infala;, + a®agz,+2a a1+ e }
7pp-1)/2 © PP {I'(n—k)/2}
k=1

X ] al I (n-p-2)/2 [da”] (16'4)

which apart from minor notational differences is identical with Wishart’s joint distri-

bution of the variances.®

s J. Wishart: “The Generalised Product Moment Distribution in Samples drawn from a Normal
Multivariate Pepulation’’, Biometrika, Vol. XXA (1928), pp. 383—40.
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17. Distribution of the Dispersion Determinant. S.S. Wilks* has dcfined thg

gencralised variance as the determinant | ay | (i=1,2...... p;i=1.2..... t, and a;=ay).
From (6°12) it follows that | ay | = (fiataztsa.eeenetyy)® e (17°1)
Now from (14°1) the joint distribution of I’s (i=1,2...... p) is given by
p(2n-p-1)/4 —in S (Iy)?
" ce )R ) ) L) g7

e pr {N(n—k)[2)
k=1
where [dl] stands, of course, for dl,,dl,,...... dly,.

Let us now make the substitutions

=1y, wy=1,,l2a, 5= lyglaslsas swssinws cttp=llagecnnidyy (17:3)
It is now readily scen that
B () el o " ()
Ience the distribution of (u,, ua,...... u,) is casily scen to be proportional to
—Enf{u®+ (2 u,?) + (s f1?) + ... (1,2 10502} n-p-1
e * u, . [du] e (17°9)
where [duw,] stands for du,dus......... du,.

It is also cvident that all the u’s vary from 0 to oo. The distribution of u, is propor-

tional to
® N {4 (022 1,2+ (0 1,2) e (4 2)}
[f ........ f e du,du,..du,, ],up"”"du,.
o o
(17-41)
Substituting h for u,2, the distribution of kL is proportional to
~ Enfu,+ (2 [+ (B )]
[ f g ’ [dn,]] . WO/, . (1742)
o
where [dw,] stands for  du,du....... du,, ; the single integral sign stands for the

multiple integral ; and h varies from 0 to oo.

¢ S.S. Wilks :“Certain Generalisations in the Analysis of Variance”, Biomctrika, Vol. XXIV (1932)
Pp- 476—477.
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If we now set g = |ay| = (b tag ...... top)? . (17'5)
then we see from (11'9) that
11 22 PP
h = (lu lna------lpn)2=(T(n-1)) T(p+2) ------ T(o) 0 (Lu b2z vue oo tn:)’l = ] ™ | « B o (17-51)
Thus, drjog = |TV| = |a"] .. (17°52)

Therefore the distribution of g is given by

ot | @RI petes /4 =~ I+ () + (g ] Df? "
2p(2n—p—|.§)/4Pp {r(n—k)/Z} . [ af e 1 2 /% p-1 } [dui] ]-g(n P-2)/2 dg
k=1

(17:53)

Putting in.u,® = w,?, (3n)u.? = w?, .3 (1) = (wp)® ... (17°54)

the distribution reduces to

(nlz)p(n—p)/'_' I all I (n-p)/22p-1
P T(n—k)/2}

00 — 2 2 2 b 1j ] 5 2 )
. [f . {'wl + (wz /wl )+ Ia l(%n) g/(w ) } [d’wl] :| .g(n—p-z)/zdg ”(17.55}
o]

This can be easily identified with the formr given by Wilks® en setting
W2 = vy, Wat = Vas eueeen (wp-1)?= vy, and noting that (n/2)®. [a¥ | = A ... (17-56)

In particular when p=1, the distribution of g reduces to
(nf2)eni2 —(ng/20%)
TGS ¢ a8 (1761

where g is really s?, and o is the standard deviation for the population.

When p=2, the distribution of g is given by

(n/z)“'z .2 I P - [‘Lillz+ (Ag/'w,’)] 1 n-4)/3
{o,2 0, 2(1 —p* )} D/2TY(n—1) I §(n—2) 1[ ¢ dw,’ g
o
(i”)n_z \/7r e_2~/(Ag) g(n—t)/zdg

Yo o (1— PR Th(n— 1)} T13(n—2)} (17°62)

s 8. 8. Wilks, Biom. XXIV (1932), 476-477.
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Consider now the expression (16°10). It is casily scen from the theory of definite inte-
grals that within the multiple integral sign we can integrate out for the odd-suffixcd
variables @y, sy cevees cte. and thus reduce the order of multiple integration.

\When pis odd, we finally get the distribution in the form :—

; (0-p)/3
(3n)2e-»/2, | o | , 201 .g(n_p-z)/z .dg x
P {Ui(n—k)}
k=1

N 22, + (w0, fae) + (g qitpo 3 £ Wy ?
I_f e 2reat (wafiwa) + (ealiea) + o (g [iepea) + (Ag[230y )}.2:('2‘."4..:&',,_,.du'zdu-...d'w,_l]
0 (17:71)
When pis even we finally get the distribution in the form

0 )p(n-p)/:' " I(n—D)/z bt
m Cla . . (o-p-2)/2 g
ATTEDY £ B = (1772)
k=1

[fwc = 2wa (i) + o (wWafwpl) + (~/(“\g\'/u‘p_z)}.’Zi'z'ii"-..‘ii'p-:-d?.i'g.d‘u".\.- divy, ]
0

In particular putting p=3 in (17°71), we get for the trivariate case the distribution

of the generalised variance in the form

5. /2)3(11-3)/2' i '(n-:)lz - 2{ +A /2 2}
. (n L a —eluryt g few, it dnir (n-5)/2

P {1"‘“”—]»‘)} . [f [ Uy d z]- & .dg (1773)
k=1

o

Putting p=4 in (17°72) we get for the four-variate casc the distribution of the gena-

ralised variance in the form

2(n-4) (o-4)/2

JOERE N R VOO ] e
P -1 [[ e “""“'2]'*3' Wide (1774)

o

Noting that Ku(2)= i.(}:)"“./'\) c—('\‘+:,/4'\)..\ mey dy
o

and putting 2w,=x, z=4 (\.g)", and m=2, the distribution reduces to

6.2 a1 T

AN s 1a (n-3), RE Ny "

_P‘ ‘l‘gﬂ'l—k)i RN o & )2, ]\_.“ (.\ [.)I' ll . d.L voo “78)
k=1
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18. Ratio of independent Dispersion Determinanis. Consider

two p-variate
normal populations.

The parameters for the first population, and statistics for
samples drawn from the first populaton, will be denoted as before. = The parameters
or the second population, and statistics for samples drawn from it, will be denoted by
placing a dash on each letter corresponding to a parameter for the first population or
statistic for a sample drawn from it.

We want to study the distribution of

e £ = Jay | _ (figtas...... top)
ig! | a'y | (11 330000 tipp)? e (181)
Take u,, u,...... up as in the last paragraph for the first population, and u/,, w/,...%/,
for the corresponding parameters of the second population. We have (cf. 17°4) the joint
distribution of [u,, u,, ...... u,] and [u/}, 5, ...... u/;] given by

= 3nfu® + (ua/w1)? o (s 1)} + /{2 + ([ 03)? + ()  0/p) %} ]
kExe

X (up) > ()M [duy ] [dul;] .. (1821)

where as before [du,] denotes the product of du,, du,,

...... du,, and [du'] denotes
the product of du/,, du/,...... du',, also
p(zn-p-1)/a  p(zn’-p-1)/4
b= (n) (n!
T T o PEEST pr T H(n— k)] PP{LL(n — (1822
2 kl;{ H(n—k)} kl?__li 3(n'—k)} ( )
Now put u, u, = ¢, and uyfuy, = ¢ (18-3)

o(¢, ¢¥)
2_ r2_ p » =
Therefore, #,2=¢y, w2=¢/¢y and S, u4y) 2,

Making the transformation to ¢ and ¢, we can now write the distribution as
" —Enf{u 2+ (U u)? + . (Upy f 1y g)? + 0¥ fuy 2+ 0l 2+ (wla ful))2 + )R]
‘Re
x @)l gHeR) | dy, du,...... duy., du'y du', ...... duly, . do . dy .. (184)

If { denotes the population value of z, that is, the ratio of the generalised popu-
lation variances, then we have

vr= W o G b B (hte ) I _g_ .. (185)

u'p? (i1 Vaa... .. Uop)? (11t 220 )t | TR

Then the above distribution can be written as

—3[n{u? + (ugfuy)? + - (81 fup_p)? + pztfu, L4+ n'{d + (wofu')? + .. (w)yorftt50)® + ,ch/ulp_l2zl}]
e

x (k[28) x pAERID1 (2] )n0-9/% x du,dit...duy, du'y du .duly, dp dz. ... (18'6)
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Hence the required distribntion® of 2z is

b ) B} _%n{ulz"'(uz/ul)z...(up_,/up_z)’-q-(,',z)/up_lzgg}
S(C)@Eaen/T f---...fe
t3) [ .

o
—dnlfu 24 (wgfu! )+ . (W fulpn)? + 08, 228}
X e

x (@) dyy du,...... dug_du'y du',...... du’p—l] ()04 L dz (18'7)

19. Ratio of Dispersion Determinant to a Principal Minor. We can by a suitable
renaming of the variates, take the principal minor in question to be the leading
principal minor. Let this minor be of the k-th order. Then we have to find the

distribution of

ye = |ayl/ | awn | .. (19°1)
where i,j= 1,2, ... b, and AMp= 1,2, ...k
Then as before Ve = (fker, ko1 Pheos keg covenn top)? e (192)
The joint distribution of (I, ws1, bksz, kez,oereee lp) 1is given by
=i inS“. =k+1 (1112) n-k-2 n-k-3 n-p-1
Ck - € -{(lkﬂ, k+1) (lk+2. k+2) corens (lpp) } g [dlu] (19'3)
where [d] = Al ko1 - Dleeg, keg ceeens dl,, and
_ b4 I ni@-h
G= P T T e (19+4)
Put Uk, k+1 = lk+1. k+1
Uk, k42 = lk+1. k+1 X lk+2. k+2 . (19.5)
Uy, p = lk+1. x+1 X lk.u, k4g ses X lpp
Therefore, IO PRI N (R UL (1955)
a(lkn. k+1, lk+2. K42,000000 lpp) k+1. k41 k+2, k+3 oD

Transforming to the new variables, the distribution of (uxxs1., %kksz...%p) reduces to

—In{ul i + (Uisa/tiin)? + . ooeee (Bip/U,0-1)"} n-p-1 L (196)

Ck . e « Ukp . [duk-l]

where [duk,] stands for dury,, dibyieg ooe... dux,p

s S.S. Wilks : “‘Certain Generalisations in the Analysis of Variance.” Biom. XXIV (1932), 478-480.
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But (14,1(,1,)2 =

(lk+1.k+1 . lk+2,k+2 ...... lpu)’

p 1 5
(P1=k+1 T(p_l))(tk“'kﬂ' sz ez "'!tw)

= | Tox | .7 from (11-26) (19-7)

1

Therefore, the required distribution of yy is given by®

T (n—p)/ZC /‘.’o —%n{u?k,ku + (uk.k+2/uk.k+1)2 +...+ I Tp-kl -yk/ uzk,,_,}
Lk

. e . [du] ]

X P EIDIE gy, .. (19.8)

(»-k) -

where Cy is given by (19'4) and [duy] = duxyxe, - e,

20. Ratio of Standard Devialions of two Correlated Variates. The distribution

of w = 4/(a;,/a,,), which is the ratio of the two standard deviations for the sample,
can be easily obtained.

The joint distribution of (t,,, t;4, t;2) can be written as
—infa', %+ a2 (152 + e?) + 202 L by £ha}

n-2 n-3
k.e c(ty) (ta2) . dby, dby, . dby, ... (20°12)

where n is the size of the sample, and

t(@-1)
k _ nn—l | au | l
ST Y © Tim-DTi(-2) ety
Now an = ti?, Ay = 17 + 07 w? = 1,7 (b + ) .. (20°14)
Introduce two new variables 7, 9, such that ¢{,,=r cosd, t,,=rsiné ... (20°21)

Then the joint distribution can be written in terms of 7, § and ¢,, in the form: —

—&n{a“t“2+a“‘r’+2a”tnr cos 0}

D2 -2 n-3
ke . (tn) (r) (sin 6) .dty, .dr.de ... (20°22)
Then w? = t,%/7?, or w = i,/ ... (20-23)
Set b =t,.r ... (20°31)
CLCTE) B = 2 :
Therefore XS] tufr w et (22:32)

* 8, 8. Wilks. Biom. XXIV (1932), 480-481.
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[n terms of the new variables the joint distribution reduces to

—in{a'wb+a**(b/w)+ 2e!?b cos 6} n-a
tk.e . (b*?/w) (sin §) .db.dw . de o (20°33)

Here 6 varies from 0 to =, and wand b vary from O to oo. Integrating out for 63

we get

(kb"-=/2w).e_%"b(““w“”/w) . db. dw f ¢~ ina bcosd (sin 6)*2.df ... (20:34)

]

_ z™ ' +zcosé : am .
But lm (Z) = m -/:’ e . ( sin @ ) . de .:. (20 41)

Hence (20°34) reduces to

k. ()2 T(3) Tn—2) (HeD/2 —inb(e'w+a®[w) =
()& (8@ J 7 . € ) | (na'?)b} . db . dw

(n-3)/3
(20-42)
Finally integrating out for b, we get the distribution of w in the form:—

k. (2)e2T(4) I'Y(n—2) d_w ‘ f:_%nb(allw+a12/w) . (BYan/2 4] .(na'?b)}db
@-3)/2

(n)(u-a)/z (alz}(n—a)/n * w
0
(20°51)
0 =
But et lr RI(23]
0

14
= 8070 DRI (1 pefatpern . Fuflr—p+ 1)/2, LoE b1, v 1, —p2/at) - (2052)
a T (r+1)

Hence (20°51) can be written as

EQReI'THTi(n—2 dw _[a?/(@w+ a®/w)]0AT (n—1)
(n)EITE (@) D/3 " Fn)®OT TE(n—1)[a"w+a* w02

x (1= ay?/(ayw + @)} i, 0, Hn—1), —4(@)5w?/ (@t +a®)? ...(206)

where the notation followed is the same as given in Watson’s Bessel Functions,
p. 100,

It is clear that F (e, 0,p,2) = 1 . (2071)
Hence putting in the value of. & from (20-13), the distribution reduces to

(n-1)/2 =

2(w)"? | a¥ | [ — 4(a'?)? w? i ... (20°72)
s ol CRrr
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But |eY| =1/ |e,|. Hence finally the distribution takes the form
-n/z
1 2(w)"? [ e i . (2073
I @y [ D2 : @ wE+ ae) it (@ w:+a’?)? e

If in particular @,, = @y, thatis o, = o,, then remembering that a,,=p.s,.0,, we
get the distribution in the form

-n/2

2I'(n—1) _ g _ At w? n-2 2)n-1 :
OB i _[1 (l+_w2)2] @ (L + 9™}, dw ... (208)

which is the distribution given by S. S. Bose’.

21. Distribution of the Covariance of two Correlated Variates. We can now
find the distribution of a,; = s, 5, 7,5, where s, and s, are the sample standard
deviations, and r,, is the sample correlation.coefficient of a bivariate normal population.

Wec have evidently a,, = ¢, t,;,. We have as before the joint distribution of
(t11, ti2, ta2) Biven by

—infatlt, ® + @3 (1157 + 1a,7) +2a'%t,,t,,}

k.e (£12)™2. (£32)" 2. dtyy .disg. Ay, ... (21°1)

Integrating out for {,,, (21°1) reduces to

k.T(n—2)2  —infelt,®+a®h,*+ 2ttt () e gy g,

2(na®*) D% (21-2)

Now set ti b = u, tiofty = v e (21°31)
O(u, v

Then _(-u—_) = 22 o (21.32)

0 (t, ti2)

In terms of the new variables the distribution reduces to

k.T(n-2)2 —nf(aulv) + a®*uv + 2a**u} . (/)= (1/20) . du . dv  (21°33)
Z(énazz)(n-z)/z °

It should be noticed that u and v vary in such a way that (u, ») lies either in the
first quadrant or in the third quadrant of the (u, v) plane.

1 S.S. Bose : ““On the Distribution of the Ratio of Variances of two Samples drawn from a given
Normal Bivariate Correlated Population.” Sankhya, Vol. 2 (1), 1935, 65—72.
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To get the required distribution of u we integrate out for 2 and obtain the expression

y:]
LA AR LI A f o~ Hmud(@tt )+ ek g i gy

4(%"(122)(11—2)/2
0

(21°4)

where it is to be remembered that 8 is + 0 or —oo according as u is positive or

negative.

To evaluate the integral we put 2 = cw, where ¢ = /(a'!/a?®) .. (21'51)
and the integral reduces to
8
(n-2)/4 _ 5 11 22
(@2 al) f eHnuiw + (Lwly (@ a®) ga . (21'52)
o

If B is + w0, then on using the equation (32) on page 51 of Gray, Matthicws and
MacRobert’s Bessel Functions, we find that the integral comes out in the form

(@2/a't) @D/ | 2 Ky {nuy/ (ala??)} ... (21-53)

When B is — o0, we get the same result on using the same equation, and the well
known relation between K,(z) and K,(—z2). Hence finally the distribution of « is given by

P DD @) TN i Ky fa e 210D

Putting in the value of k& from (20-13), this reduces to

ni® —n.a% u
2(""2)/'2_\/7r . I ay I (n—:)/z_r_%(n_1)‘(aua22)(n—2)/1 -~ €
x D Kya g {nu (! a??)} . du ... (21°62)
Puttin 11 22) — =_" % ,
g n u~/(a a ) w l-pz'dl & i (2171)

we have the distribution of W given by

(1 pt)iad)
V7. QD T}n—1)

- 6PV WD Ky (1)} d IV - (21°8)

which agrees with the distribution given by Pearson, Jeffrey and Elderton ®.

September, 1936.

s Karl Pearson, G. B, Jeffery and Ethel M, Elderton : *“On the Distribution of the First Produc
Moment-Coefficient in Samples drawn from an indefinitely large Norma} Population,”” Biom. XXT (1929
p. 168, equation (xXiv).
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APPENDIX.

[Note by P. C. Mahalanobis. 1 worked out the earlicr portion of the present paper in 1930, and
sent it (together with certain applications to anthropometric and psychological problems, which are
reproduced below in the form of an appendix) to Dr. G, M. Morant of the Biometric Laboratory,
I.ondon, in October 1930 for publication in the Biometrika. Dr. Morant informed me however that the
Editor (Karl I'earson) was unable to accept it as in his opinion the normalised variates lacked physical
significance. (I may mention here that Karl Pearson had long ago considered the possibilty of corre-
lated variates having arisen as linear functions of statistically independent components® but had not
developed this method.) The paper was then communicated to the Indian Science Congress, and was
presented before the Physics and Mathematics Section presided over by Dr, C., W. B. Normand, Direc.
tor General of Observatories, India, in January 1931 at the Nagpur Session of the Congress. The paper
however was not published as the question of sampling distributions had not been considered. With
the hiclp of my two young colleagues it has now become possible to start systematic work on this
aspect of the problem, In the meantime the use of normalised variates has been extensively developed
by II. Hotelling andothers. I am however reproducing here that portion of my paper which dealt
with applied problems in the form in which it was originally communicated in 1930, as it may throw
some light on the historical development of the subject. ]

A (). The chicf obstacle in the way of measuring the amount of divergence between
statistical groups arises from the fact that the observed variates are correlated.  Prof.
Karl Pearson' has discussed these difliculties in detail in regard to €2, the Pcarsonian
Cocflicient of Racial Likeness. Similar difficulties arise in using certain other Cocflicients
of Divergence, D,?, D,? ctc constructed by me and deseribed in a paper *“On ‘T'ests and

2

Measures of Group-Divergence
The transfbrmation considered in the present paper suggests a way out of the diffi-
cultics.  We may transform the observed variates into a system of statistically inde-
pendent variates, and use these transformed variates for caleulating the different cocffi-

cients.
(a) Let the intra-group variances and covariances be the same for all groups, i. e,

P »
the matrix [a], is the same for cach statistical group. In this case it is obvious that [x]a

will be different for differcnt groups, and will transform into different matrices, but the
functional relation between [x,, X4y ooveee 2] and [34, 32, .evee. 3] Will remain identical,
This method will suffice for all comparative purposes (including the calculation of
C*, D* ctc) but can be used only when the intra-group correlations and standard devia-
tions are constant.
(b) When the above condition is not fulfilled a different procedure is necessary.
Let [‘_\",,, Xty oo X'«] represent the mean values of the different groups (1, 2, ...
... k) for the i-th character. If X', is the mean of means for the i-th character, and S

o k . k
the corresponding between-group standard deviation, then we may reduce [ X'], into [¥],
with the help of the cquation

o= (X — X0/S e A(L0D)

*.For example, in Phil. Trans. Vol. 186 (1897}, 261.
1 Karl Pearson : *“On the Coceflicients of Racial Likeness”. Biomeltrika, Vol. xviI1 (1926), 105-117.
2 Jour. dsiat. Soc, Bengal, Vol.xxvI (1930), 541-588.
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It is obvious that
[x]: T = k. [1]: A(12)

—k

will then define the matrix of between-group correlations.

k k k
We may then transform [%], into [#], in the usual way, and use [y[,. for pur-

poses of comparison.

k
(c) A third alternative is open to us. We may calculate [R], from the pooled

measurcments for all the different groups. Let there be k groups, and let

n,

Il1 n K
[2M], [x(!)]kz, ,,,,,, [x®]x be the actual reduced values for the Ist, 2nd ...... .. k-th

groups consisting respectively of n,, n,, ...... nx individuals. We may then form .the
pooled matrix :

o, .
[xm, x®, ... w] 2O, x®, L x® = N.[R] ..A(1"3)
P

where N= n,+n,+. ...nx gives-the total number of individuals in all the groups com

4
bined, and [R], is the matrix of observed correlations.

v . . .
We may then use [R]; to obtain a system of variates [y;, y, ...... 9,] which will be
statistically independent for the pooled data, but may of course show inter-correlations
within particular groups.

The choice between (b) and (c) will ultimately depend on the nature of the actual
empirical data under consideration.

A (2). I believe that the present transformation will be found useful in another direc-
tion. To fix our ideas, let us consider a particular problem, say, measurements on the
head in living subjects. Theoretically there is no limit to the number of different charac-
ters which may be measured, For example, it is usual to measure the greatest head-
length and the greatest head-breadth practically at right angles to each other, We may,
if we like, proceed to measure diameters inclined at different angles to the direction of

the greatest head length, and in this way obtain a very large number of head diameters,
say [dy, dagy......dy].
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P
There are now two possibilities, Let [a], represent the variances and covariances
between these p measured diameters for any group of n individuals. If the matrix

»
[a], is undegenerate, then the system [d,, d,, ...... d,] will transform into a system of

p independent variates [y;, ¥z,...... v,]. Let us now increase p to g. If the matrix [u]:
is still undegenerate, then we are likely to obtain different values of [y,, ¥,, ¥p.o....¥4]-
Obviously, in this case, we can never be sure that by including fresh measurements our
results of comparison will not be completely changed.

The other possibility is that as we go on increasing the number of characters, a stage

is reached where the matrix [a]: will become degenerate, and ([d,, d,, ...... d,] -will
transform into a set of lower number of say ¢’ independent variates [y,, ¥, ...... yd].
In this case, even if we take different selections of characters we shall get fairly con-
sistent results, prov ded of course our choice of characters is wide emough to lead to
reliablé values of the transformed independent variates [y,, ¥,,.-.... ']

In order that results of comparison may have stability, it is therefore necessary that
that this condition should be fulfilled. We may thus enunciate the two following

axioms :—

(A) In any given problem there is a finite number of statistically independent
transformed variates.

(B) It is immaterial which particular set of observed characters is selected for study
provided these characters are sufficiently wide in range to be capable of being transformed
into a set of g’ independent variates with reasonable reliability,

To deny these axioms is to deny the possibility of stable comparisons.

From this point of view, one of the fyndamental problems of comparative anthropo-
metry is to determine what number q of independent characters will be sufficient for
purposes of comparison in a given problem. The transformation described in the present
paper makes it possible to investigate this question in a systematic manuer,

A (3). We may also use the present transformation for studying the factorial theory

n
of human abilities. Let[x], be the reduced scores of n individuals in p different tests
(or the reduced measures for n individuals in p different traits). The observed correlation
between the different-tests or traits is then given by

[x]: : E: = n. ['r]: - A@301)

The factorial theory of abilities attempts to express the observed variates [x,, %z,...%p]
in terms of a number of statistically independent variates [¥;, ¥a...... v,.] such that
only particular y-variates are common to particular groups of the observed variates.
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n
That is, [x], is expressed as
n i—l-\p, n
=], = L, DI, . A(302)

n
where the matrix [1] has a special form, and [y], isa semi-unit matrix.

Spearman® defines a general factor to be one (say y,) which occurs in all the observed
variates. Hence the I-coefficients corresponding to 3, will be p ia numher.

A specific factor, on the other hand, is one which will occur in one observed variate
only. If [y, ¥, ...... 3] are the specific factors corresponding to [x,, xs,...... x,] then
the corresponding I-coefficients are obviously given by [l Lz lsay «oveen Iy]. It is

clear that in this case all I-coefficients of the type Il; must vanish when { is not equal
to j.

A group factor of order g is one which occurs in g of the observed variates. For each
y-variate which is a group factor of order g, it is clear that the number of non-vanishing
l-coefficients must also be g. (The specific factors may be called group-factors of order
1, while the general factor is a group factor of order #).

Equation A(2'2) will give rise to a second degree matrix equation

5 rm ]
1] .1 = . .
(el- 1, . [} A(3-03)
of the same form as equation (3-2)*. Here s will depend on the different kinds of group-
factors supposed to be present, and will usually be greater than p. A general solution,
therefore, is not possible ; but solutions may be obtained in particular cases.

(1) Group factors of a particular ordet g ?nly are present. Let g=1, then s=p,
and equation A(3-03) takes the form

11 o, o, ...... 0 Ly 0, 0, ...cc. 0

0' 122) 0, ------ 0 0; lzzy 0; ...... 0 = n [1] A(31)
...................... p

0 0, O, ... Ly 0, 0, O, ... 0

. S

P
It iy obvious that that [r], must be a unit matrix, i.e. all the observed characters must
be statistically independent. This is obviously a necessary and sufficient condition for
an analysis of this type being possible.

3 C. Spearman : The Abilities of Man (Macmillan, 1927,) Chapters X and XI.
* Main paper, Section I, p. 5.
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(2) Let g=2, Thetotal number of vertical rows in equation A(3:C3) (i.c., thc
number of y-variates required) is obviously ®C, in order that all possible group-factors of
order 2 may be present.

Thus sz = "C, = m(m—-1)/21 ... A@321)

Since only 2 l-coefficients are non-vanishing in each vertical row, the total number of
non.vanishing l-coefficients is given by

2.0%C; = p(p—-1) = f, .. A(322)

The total number of observed parameters furnished by [1]: is p(p+1)/2 =e. Itis
clear therefore that (f,—e¢) gives the number of I-coefficients which are arbitrary. Thus*
the number of arbitrary I-coefficients is equal to

(fa—e) = p(»—3)/2 = b, ... A(323)

Assigning arbitrary values to b, of the l-coefficients, the remaining coefficients can be
easily obtained. The solution is however not unique.

(3) The general case for group-factors of order g may be treated in the same way.
The total number of y-variates required is

p!
g!(pb—aq)! = A(3-31)

$q -PCq =

The total number of non-vanishing I-coefficients is given by

!
N . | I
Jo= 4% = DT G-a ~ A@32)
The number of arbitrary I-coefficients is given by
1
b= f—e = p! _ bp+1)
o= f (g—1)! (p—g)! 2 0 A(3:33)
(4) Let all group factors of order 1,2, ...... g inclusive be present. The total
number of y-variates required will then be
SiH Szt eenn. Sq = PCi+7Cy+. ..PCq = Z(*C,) = go say .. A(341)

and the total number of non-vanishing l-coefficients is given by

fitfateennn. fo=1.%C,+2.°Cy+...... g .%Cy = 3(g.7Cy) = hq .. A(342)

where 3, represents a summation for all values of ¢=1, 2, ...... q-

It is clear that for p=2, s,=1, and the group-factor of order 2 becomes a general factor, and the
two observed variates must have a correlation = + 1. For p = 8, s, is 3, and a general solution of the
equation may be obtained in the usual way.
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(5) Let all group factors of all orders (1 and p inclusive) be present. Then the

total number of y-variates = g, = 2°—1 ... A(351)
a=p

The number of non-vanishing [-coefficients = h, = 3 (g,."C,) ... A\(352)
q=1

This will give a complete solution. It is clear however that by far the large number of
I-cocfficients will be arbitrary,-and a large variety of different solutions will be possible,

(3) A general factor and specific factors only are present. The equation now takes
the fornr :

P
10" lll) 0, 0 ...... 0 lOl) 1021 los eoarer lop
bz, 0 0 ... 0
o2 y l:!:) O O llll O) =n. [’]: - A(361)
boay 0, 0, lygy «... O 0, Eii D sps 0
tw, 6, 0, 0 ... L, 0, lay O e 0

We notice that for all values of 4, j, a, b from 1 top,

o = Il + Li'= +1
Ty = Loy . lol A(3‘52)
Tab = Zon o oy
It follows immediately that
A(3'63)

Tav - Ty = loa - lob o doy - loj = Tay. Toy = Taj - "ot

This is the well known tetrad equation of Spearman®, Equation A(3.63) gives the
necessary and sufficient. condition for a solution of the present type being possible.

Here s = p+1, f=2p ... A(3'64)

Thus when p is greater than 3, the number of observed parameters p(p+1)/2
will be greater than 2p, the number of non-vanishing l-coefficients. It follows theretore
that at least p(p—3)/2 connections must exist between the different rows of the corre-
lation matrix.

5 C. Spearman ; Abilities of Man, (1927). Appcndx::\-.
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