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[Parr 1.
INTRODUCTION.

Statistical variates are in gencral not independent, put show various degrees
of intercorrelations. This introduces great algcbraic and analytical difficulties in many
statistical investigations. In the first section of the present paper* it is shown with
the help of matrix algebra how any given set of corrclated variates may be transformed
into a set of statistically independent variates. In the second section a new type of statis.

ical co-ordinates (called rectangular co-ordinstes) is introduced, snd the same trasforma.
tion is obtained by vector geometrical methods, It is also shown that the matrix of rec-
tangular co-ordinates is identical with the matrix of transformation cocfficients used in
the first section. This transformation has in practice to be carried out on the sample, and
hence these coeflicients are subject to sampling fluctuations. The distributions
of the cocfficicnts are obtained in the third scction with the help of certain auxiliaries
which we call normal co-ordinates. In the fourth section we show that many distri-
butions of statistics related to the multivariate normal population can be obtained easily

by using the rectangular co-ordinates.

SECTION I, NORMALISATION OF VARIATES.

1. The Observational Matrix. Let [x/,x', ...... x'a] be the observed values
of the i-th character for the ist, 2nd,...n-th individual. The complete set of observations

n ] ' P
- — X x4 X
[},‘A] - 1 12 iii

»
-\"21: x"_':n ............... S\'lgu
............................ . (1'0)
X1y T'lar ceevetiiioas \,lm

-1

X'p Xp3 ceveiee oo oes X pn

is represented by the matrix (1:0), whe.e p is the number of characters, and is less than .
The clements a/j, may be directly measured quantities (like stature, temperature, scorces
in tests of abilities cte.), or indices (like cephalic index, relative humidity, I, Q.,
mental age), or other quantitics directly derived from the measured quantities.

The mean value a; and the standard deviation s, for the i-th character are defined! by

a = :' Sy [(+'W)] <t (101)

52 = _”TSA [(xfia—a)?] o (102)

where S, denotes a summation for all values of A from I to n.

was communicated to the Indian Science Congress in 1930 by one of us (P. C. M.),
1 We shall follow as far as possible the copvention that Roman letters (a,s,7, ete) will represent sample
statistics, and Greek letters (a, 0, p ete) the corresponding population parameters.
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RECTANGULAR CO-ORDINATES IN SAMPLING DISTRIBUTIONS

Let us now define a sct of new (uantitics

We shall call (2] =

an = (' - a)

Ngg XNg2  cee voee esoues Xn
Xgy Xggz  cecocess seevee Xan

A'yq X123  ees : esecscans Y™

the reduced matrix of observations.

~—p n
Let x represent the matrix conjugate to [x]
—n [ ]

—p
x =
—n

Consider the product of

a ~p 1
(= . 2, = [v],
Then by definition we have by Si [xia « xp]

From this it is clear that if

[

Xy Xgy eee X e Xy

~—p
and a , and let
[SSV 1)

ay = $§..8.0N

so that

e (1°3)
e (1°9)
(1-5)
e (1°6)
(17
.. (1'8)

where s, and s, are the standard deviatious for the i-th and j-th characters, and 7 is the

correlation between the é-th and the j-th charactetr, then we have

by = n.ay

e (1°9)

] .
2. The General Orthogonal Transformation—Let [y]" be a semi-unit matrix defined

[y]:, =

¥ Yis crececcecccrces Yin
¥a1 V33 cesececescccess  Yan

000000 000000000000 000000000000000000

Yorr Ypria  eccceccesseccss Yon

3
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such that

~—p!/ |\

L}
A = l .
¥1, 2. (1, . (22)
where [l]p' is a unit matrix defined by
»
> 1 o 0 ... sasssanss O
1 =
0 1t 0 .....cewenen O
\ cecerrmans oA SOHEER a0 g S . (2°3)
O 0 0 covmcgrmmeo v 1
‘I"hen we have
s . ’ = 1 when i = j 24
Sa[(yin i)l = o when i 2§} ... (24)

If we consider y,, ¥4, ...... ¥ to be a set of statistical variates (with zero mean
values), then we notice from (2+1) that [y,, 34, ...... )] have zcro corrclations and are
thus statistically independent.

Lct us now consider a matrix

—w Cyr €l eeveeerennnenes Cpt
c =
- Cra  Cna  eevene  eenree Cpez s
Cip Cap Cow
such that
N M o (2°6)
o - .

But the conjugate of the product of two matrices taken in a given order is identical

with the product of the conjugates of the two factor matrices taken in the reverse order.

./ —p? P
Therefore, a = v .[c] . (2D
i} —in »’
n —p ~—p, n —p. P
and [=] . X o= . [»1 . » . [€]
» e o 53 [ 114 il »
= Tt el = 1. el . (28
—p » » —p »

because matrix products are associative, and in a product a unit matiix is equivalent to a
scalar multiplier unity.



RECTANGULAR CO-ORDINATES IN SAMPLING DISTRIBUTIONS
Hence by (1'6) and (1'9) we have

—p,

c . [c]:’ = n.[a]:

—p

. (29)

‘This is a sccond degree matrix equation, the solution of which is known. ‘Thus

o ) .
[¢] can be determined. Going back to
P

—p/ n n
e, - = (=] .. (2:95)

n n
we can solve for [y],., subject to the condition that [y], is a semi-unit matrix.

3. A Particular Solution. Let us consider equation (2°9)
—p/ n/
c . [e] = =n. [ar
P P

—p

(2:9)

For convenience of reference we shall call the matrix [a] the dispersion matrix (for
the sample).
Cullis has shown? that the above equation always admits of a solution, when the
v
rank of the matrix [a], is p/, and that cvery solution has the same rank /. It should

]
be noticed that [a];, being the dispersion matrix of p statistical variates is positive definite.

Hence its rank is necessarily p. If we take p'=p, the solution given by Cullis will hold.
Further lct

| 4 [
[¢] =[] . (31
P »
be a particular solution, so that
14 4 P
I '] = n.[d] .. (32)
—Jp P p

Then the general solution will be given by
P

[l = [7.1:. [c’]: . (33)

14
wherc [z], is any semi-unit matrix.

The method of finding a particulat solution is laborious but straightforward. Let us

P
represent the successive leading diagonal minor determniants of [a], in the following
way.

A, =1, A, = ay | o (341)
i
|

A, = (a); = 41 Q11 ] e (342)
Qs Q33 !

» C. E. Cullis : Matrices and Determinoids (Camb. Univ. Press) Vol. II, § 160, p. 8586.

§
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A, = (@)} = an Q13 [T

3
as QAas Qas
Qas, Qss Qss

L3 an @13 oo a3

A, == a) =

o= (@)
as Qga .os Qazp
vee ver e o
ap Qpa von App

[Pazrz 1.

(3:43)

(3-44)

We now cvaluate a sct of quantities s,, 5, ,......5,® defined by the following equations

s'(‘) = Ay
4, 5P = an Q. vy
asy Az, a1sv
Ay s/ = an Q33 ay, asv
as a3s Az, 34v
asy Qs Aa, 324v
ctc., and in general
A, s = an a2 "o Ay, -1 Qo t-aev
Az QAz3 A, 3y Tz, 4-14v
as Qi3 dy, -1 i ey

where i can take any value from 1to »p.

We next obtain a sccond set of quantities defined by

am = &0 2,

()]
——— (’) = — = Sv
s.(‘)' d, P Ll

@ LAY
dy 5P

This now enables us to form a quasi-scalar square matrix defined by
0

P 1 0 (o]
k), = o

P 0 Js'(z) 0 oo

0 0 Vs ... 0

(3-31)

(3:52)

(3.53)

(3'54)

(30)
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RECTANGULAR CO-ORDINATES IN SAMPLING DISTRIBUTIONS

and a subsidiary matrix

By = |0 A a0 4y
»
0 1 d,® d,® d, @
0 0 1 d,™ d,_,™
(3-8}
0 0 0 0 d,m
We can now write down a particular solution
14 1y P 14
[e] = WVu.[k] . [R] = [¢] cay
] » » P

(3:91)
In numerical calculations it is not necessary to find the quantities defined by

cquations (2°6), (3'7), (3'8). We can dircctly write the values for [¢'y] in terms of the
quantitics defined in the equation (3°5)

Clu = N/'n . S(l)j‘“l / \/Sl(l) (392)
for all values of i less than or equal to 3.
Also ¢y = 0 forall values of i greater than j. (3:93)
4. The General Solution. We may now consider the equation
~—p n n
c . [yl = [x] (41}
e P P P
Let C" be the reciprocal, and hence [C']rl be the conjugate reciprocal of the
—ip =
. P—“‘
matrix ¢ , so that
—Jp
P —p ~—p
1. ¢ = ¢ . =a.17 4-2)
P —Ip —p P n
where A is determinant of the matrix Tp
p——i 13
P
Prefixing [C],, on both sides of the equation (4°1) we have
P —p n 0 n n (4'3)
cl . ¢ . = [C . Ja = A.
C P I N 13 A P9 ) o)

n
where [l]p is now a known matrix.

n
But the left hand side reduces to A . [y], where A is, as before, the determinant of the
matrix ¢

—ip
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chcc' [y]’ = [l]' vee (4,4)

and [ - 2] = A.[3], e (4'5)

1 4 . . e
[c)s is thercfore the matrix of a gencral transtormation, which converts the
correlated variutes [ a5, X2y veeeee x4y ] to  the  statistically  independent  variates

4P
[ %15 Y20 eeeeee ¥ 1 One such particular transformation is [¢'],.

SkCTION 11, RECTANGULAR CO-ORDINATES.

3. Reclangular Co-ordinates for the Sample. Lt us consider a space of n dimcensions.
The n measwuements afiy for the i-th character, can now be represented by a single point
X! in this space, with co-ordinates x/i, (A = 1, 2,... n). For the p characters we then get
p points X/,, X/, .. X/, Let the line O°L' be the equiangular line, i.e the line making
cqual angles with all the axes. Let X4 M, be the perpendicular from X4 on OT
(i= 1,2,..p). Then it is known that

h[] X’.’ = n.a,, Ohll = Nn.q; eee (5'0)

Through O draw OX, cqual and parallel to M; X/ Let ¢y be the angle between OX;
and OX,; Then we know that

Ccos eu = Ty OX. . ()X‘ . COS 0u = Ny oo (5'!)

Consider the figure formed by OX,, 0X,,...0X,. If we reduce the whole figure in the
ratio 1 : /n, we get the figurc OZ, Z, ... Z,...Z,, whereZ, (i = 1,2, ... p) is the point
on OX, such that

(.).Zl = -.1. - Ded
OX, T . (52
We then have 0232 = ay, 0Z . 0Z, . cos2,0%, = a, e (5°3)

The figure 0Z, Z, ... Z, is fundamental to our investigations. We may call this
figure the fundamental polyhedron for the sample.

The lines 0Z,, OZ, ... OZ, all lic in a lincar subspace of p dimensions. Different
samples have different fundamental polyhedra, but they are all immersed in a space of
n—~1 dimensions, orthogonal to the ¢quiangular line OT through O,

Let 3,5 denote the foot of the ‘perpendicular from the point Z; to the subspace
0Z2,2Z,...... Z. It should be noticed that in M, , the value of i may be taken

1, 2, 3, ... up to j, but not greater than j; also My = Z;,  Then sny two
links of the broken chain  OM,; M, ... N,  are perpendicular,

8



RECTANGULAR CO-ORDINATES IN SAMPLING DISTRIBUTIONS

We now take a new system of rectangular axes OV,, OV,,...0Y, immersed in the
space OZ, 7, ... Z, such that OV, is identical with OZ, ; OV, lies in the plane 0Z, Z,,
and is perpendicular to OV, aud in general OV, (jg p) is taken to lie in the subspace
07, 2, ... 7, and is perpendicular to OYy, OY,, ... OY,,.  Then if f,y £y ... ty be the
co-ordinates of Z; with reference to this system of co-ordinates,

ty = My My (i57])

ty = 0 (i>7) X))
where it is to be reacembered that the point M., is the origin O, for j =1, 2, 3,... . The
diagram for three variates (p=3) is given below.

We now write out the matrix

v, { { { . {
1 = " 129 1a . »
O}
0, {22y lza i . lap
o, o, laa vee {ap voe (5°5)
0 0 0 a5e [

» I3
Thus the elements in the g-th column of the matrix [¢], are the co-ordinates of the
point Z,, with reference to the new system. \We shall call such a systemof p (p + 1)/2
co-ordinates, the rectangular co-ordinates of the sample,
Before proceeding to the problem of their distribution we shall investigate the connec-
tion in which they stand'to the quantitics ¢/, inttoduced in the first scction.

0
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6. Rectangular Co-ordinates and the Dispersion Malrix. Now from (5'5) we have

tu= My M, = OZ;, = s,= | a, | oe (6-10)

tas = (parallelogram formed by 0OZ,, 0Z,)/0Z,

an Q3 1
vee (6-11)
I an PP
| an e
an Ay, vee a 1/3
Qi [:FYY X gy
a, ayp oo [UT}
l" . eee '6'12)
ay, Ay Ay 11 3
as asz, oo Ay, 1y
Q191 Q-ge3  ooe Q-39 13

wherci £ p ; as 8y = M,y My, is the ratio of the volumerof the parallelopipeds formed by
(0Z,, 0Z,, ...... OZ) and (OZ,, OZ,, ...... OZ; ) and these volumes are given by the
numcrator and denominator respecetively in (6°12).

Again, ha = MuMy; = OM,;, = Z,co80,y = s;71,4
= 51T o G .. (621
$ (ay,)'7? ( )

Similarly we can prove that

Ly = skt = anf(a;,)t? ees (6:22)

where k 5 1, and is of course less than or equal to p, the number of characters.

Again, $3 83 Tay = OZ3 OZ,c080,3 = lyzlys + laslas + 0. I3y
thercfore, Lay = (52 83733 — Lya 83)/las = (S5 Sy Taa—S3 85 T4z Tey)[lza  from (6:22)
$3 S5 1 Tis $18s I 52 S$1 8 Ta
- { Tia Tas s s s,y I Sy Sa ¥y2 Sz Sy Tey
tas - tas
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Thus from (6°12), we have

l ay aps I
aay A2a
o = (any)'? l an a3 I'/2
l Az Qazj

In a similar manner we can prove the general result

I aqy ax I
Qay Qsx
lax = — 12
{ay,)" ‘ ayy aya I
asz A3y

where k ranges from 2 to p.

Again, SySetay = 0OZ,0Z,cos0,, =
that is Lie = (S35 Ta0 = by by = a3 82}/l

which after substitution from (6°12), (6:22), (6°31) and some reduction gives us

an ayz I

Az, Q32 Az,

ayy Ay2 Ay,
e = Qyy ay2 13 a, Qs [JF)
Qas aza Az, [LPY] Q2za
Aay Qa2 A3

In the same way we show that

a M3 ax

Qay Q33 Qax

s Qa3 Aax

tyy =

ayy a3 13 ayy a2 Qyy
asy a3y an 33 Ay
ax [ FYY Qsy

where k ranges from 3 to p.
1"

1/2

1/3

vee

(6:30)

(6°31)

’l:l lld + lza ’|4+t33 l.u + 0 . l“

(6°40)

(6°41)
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The form of (6'31) and {6*41) suggests the following general result.

a1 a2 A1y -1 a)x
dg, LY a3y 11 5 Qzx
ay iy Ay 1-1 3 )k
I = ) (6‘5)
4

an (3P A1y ! ay, a3 . ay, 1

aa, Qagq Az, 1y Qs Ayg s asz,

Qi35 Q=193 Ay 1-1 Ay, ayya a,

where i does not exceed k, and k ranges from | to p.

Assuming the above result to be truc up to ¢_,,x we can prove it to be true for 4, by
arguments similar to those used before.  As we have shown it to be true for i = 1, 2, 3,
the result in question is thus rigorously cstablished by induction.

Now from (3:44) and (3'54) it follows that

A s
e = LT kin = (A—H).s(')k-m (66}

A AN A
ffin (3'54) weput v =1, we have A, 5, = 4, (6°7)
From (6'6) and (6'7) we have e = sO /W5 (6°8)

where i does not exceed p and k ranges from 4§ to p, and it has been already noticed that
e = O0when k <i.

Comparing with (3'9) we have ey = tyyn (6°9)

for all values of i and j from 1 to p.

We have thus cestablished the identity of the matrix of rcctangular co-ordinates and

B
the matrix [¢/], which we obtained as a particular solution of the fundamental matrix
equation (2'9).

12
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7. Vectorial Inicrpretation. ‘The connexion between the investigations of section 1
and the present scction can be still hetter seen from the following considerations,

Consider a system of p mutually perpendicular unit vectors [4y, I...... ip,] immersed
in the space OX, X, ...... X;. Let OX,, 0X,, ..... OX,, when considered as vectors be
28y Wasiisse u,]. Then each of these may be expressed as a iinear combination of the unit
vectors { as follows

Ue = Wi &1 + tax D2t .o+ Upk iy for k=1,2,..p. (7-0)
. . . . ’_"' I3
Then the lincar transformation with matrix u« converts the vectors i to u where
—aJp
.—;2;, — Ugy U2 .. Uyp
—ip
Ugy Uza .o Uzp
(7°2)
Upy Upa Upp
P . . ~1p .
If [U] denotes the con jugate reciprocal of u and A, = I uy (s the determinant of
P —tp

'-—‘p . . 0 .
u , then the linecar transformation with the matrix
—Jp

Lor . (79)

will convert the vectors u to i, and so this lincar transformation acting on the correlated
variates [x;, x5 ... x,] will convert them into statistically independent variates with
unit standard deviations.

1f instead of the vectors § we had started with any other set of mutually perpendicular
vectors [ fiy ju oo o] and expressed

Uk = Uik o + Vaxfa + oo + vk o and set

7' - Tn Vi Via

—p
Va1 Va2 . Vap (7°4)
Vpr Vpa eee Vpp

then the matrix v has the same property as u namely that if[V]v is its conjugate
—tP J —tp P

reciprocal then the lincar transformation with matrix
|} » , 7'5)
— - V (X (
Ay [ ]n

will convert the variates [ x,, %3, ... xp ] into a set of statistically independent variates

—p
with unit standard deviations, A, being the determinant of the matrix 2,

13
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r—p —p
It is geometrically evident that we can pass from u to v by multiplying the

(] [ ]

former with a semi-unit matrix,

If now in particular we take our p orthogonal unit vectors [{,, iy,...0,,] to lie along
oYy,, 0Y,, ... OY,, then

wy = Iy A/n w.” (7°6)
wlere #’s are rectangular co-ordinates for the sample. Conscquently from (6°9) we have
wy =y (7°'7)

where ¢y 's are the quantities occuring in the investigations of scction 1.

P
We thus arrive by another route at the proposition proved already; that if [('], is the

. . '_|p . L . .
conjugate reciprocal of ¢/, and A/ the determinant of ¢/, then the transformation with

—Jp —p

the matrix
1 »
. !
A [C ]n
is one of the linear transformations which change the variates [x,, x., ... a,] into a set

of statistically indepcudent variates with unit standard deviations. It also appears that
the most general transformation with this property is onc with matrix

» ~ —p
L [C] where ¢ = [:»:]p ¢
A P Lep b

p - of P . . .
[2], being any arbitrary semi-unit matrix ; [C], is the conjugate reciprocal of

'—'D 3 . . P
¢ , and A is the determinant of the matrix ¢ -

—ip —p

8. Rectangular Co-ordinales for the Population. Defore proceeding to the question
of the distribution of the rectangular co-ordinates for the sample, we proceed to define
the rectangular co-ordinates for the population.

In a space of p dimensions, let us take a set of lines OZ/,, 0Z/,, ... OZ%, such that

/o=
0z, ay, 1 (80)

cos le OZ’, =- Pig» v
where @« is the population variance for the i-th character and py is the population
correlation between the i-th and j-th characters.

We now take OZ/, Z/, ... 7/, as the fundamental polyhedron and denote as before by
M/, the foot of the perpendicular from the point Z/; to the subspace OZ', Z'y ... Z)
where in  M‘y; i can be taken cqual to 1,2, ... i

Then setting
= M, M, i< j
Ty Mg My (i< 19 } 81
Tl] = 0: (i> j)
we may call 7y the rectangular co-ordinates of the population.

14
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SectioN 111, Joint DISTRIBUTION OF RECTANGULAR AND OF NORMAL CO-ORDINATES,

9. Density Factor. On the hypothesis of normal distribution, the distribution of the
reduced obscrvations (xn) [ef. 1:3] (i = 1,2, ... p,and A = 1, 2, ... n) can be written,
after integrating out for the means (a,, ay...... a,), as

1 —infa" a,, + a*?ay, + ... 2a' a,,

tod a1
SN IS P CETE A [dxn] (9-0)

df =

where [day] stands for the product of all differentials dxy, for values of i = 1,2, ... p;

and A =1,2,...n; also |al 1is the determinant of the matrix of population

dispersions (a), that is,

. Y
I « | = | a |y and oY = l_alLl (91

where Ay, is the minor of ey in |a| .

Now we take, following R.A. Fisher, a spacc of np dimensions, and subdivide it into p
n-dimensional orthogonal subspaces. In the i-th-subspace we can take n orthogonal axes
OXup, (A = 1,2, ... n), and can represent the i-th reduced character by a point Q, with
co-ordinates, x,, (A = I, 2, ... n), with respect to the axes just chosen. If we rotate all
the subspaces so as to make them fall on the first subspace, then the points C,, Q,, ... Q,
may be considered to take the positions X,, X, ... X,, cousidered in paragraph 6. Let
Q be the point of the complete np space whose projections on the p subspaces are Q,, Qs,

. Q;. Then we can call Q, the representative point of the reduced observations, and
the complete space may be considered as being populated by the representative points Q,

with density

) e gy + @ + 200t (9

whiE (2m)meiE | a | -/

« €

Let ¢, be the rectangular co-ordinates for the sample, and 7 the similar rectangular
co-ordinates for the population, defined before. I'hen we shall first show that the den-
sity (9°2) is expressible in terms of the rectangular co-ordinates.

Let [f]“ = Tn Tia Tin
»
Tay Taa s Tap
(9:3)
™ Tpa Top

—p .
be the matrix of rectangular co-ordinates for the population ; and let = . be the conjugate

matrix,
15
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Vou. 3]
3 s L) »

Suppose . [r] - [T] n
—Jp [} »

= 'l‘ll '1“2 oo 'rlp

T., Tya oo T:w

(9°4)
i ey . T,
then we shall show that Ty = a,.

Now from the multiplication rule for matrices it follows casily that

[(e]
n

Ty = Sa (va - 7y) .. (©
where it is to be remembered that Ty =0 for i> j.

But S\ (rar . 7a)) is from gcometry the scalar product of the vector 0Z/, and OZ/; and

is therefore equal to oLoLpy = a.
Ba A} » 1

Hence [T}, = [a], (9°6)

Conscquently also at = Ty (9:7)

. . " . . . 4 P .
where T" is the minor of Ty in the determinant of [1'], , divided by tlus determinant.

Again ay; = Sa(la - tay) (9°8)
where as before ¢, = 0 for i > j.
Also (a'a,, + a®®a,, + ... ... 2 a,, + ...... )
11 2 "22 2 2 wp 2 3 2
= T (,,+1 (Lattw)+. T b+l + o ty)+ )
=+ {2 T2 4y, L, + 2 s fy bis + - S VP PP S PYR PTY I
oo 2y g by e )+ (9°9)
We shall find it convenient to denote the left hand side in equation (9°9) by [F(T', )
We can then write the density factor (9°2) as
1 —in . F(T,1) (9-95)

NPT (2w oR/E [T | e0iF

v
where | T | is the determinant of the matrix [T],.

16
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10. Joint Distribution of Rectangular Co-ordinates. We now want the total density
for those samples for which the rectangular coordinates lic between fyy and ty + diy

where { will take all values from 1 to p, and for any given value of ¢, j will take all
values from that given value of i to p.

When t,, is constant, the point X, describes an (n— I)-dimensional hypersphere of
radius {,; ¥/ n, because OX, is always perpendicular to the equiangulgr line in the first
subspace. When ¢,,, {,,, {5, are constants, the point X, describes an (n—2)-dimensional
hypersphere of radius-f,, &/n, and so on. Finally X, will describe a hypersphere of
radius ty,, ¥/ n. Now the surface of a k-dimensional hypersphere is

=
]
—
&
N
~

(10°1)

where r is the radius of the hypersphere.  Hence consistently with the restrictions on
the representative point Q, it describes a hypervolume

2y ,rn(2n~n~l)/4."nn/2 n-2  n-a n-p-1

1‘%('1— l).l‘%(ll—~2). .,.1'5(71‘"!’) X ln ' I.z:a o tun [dtu] (10.2)

where [di,] stands for the product of all differential clements like df,; where i will take all

values from 1 to p, and for any given valuc of 1, j will take all valucs from that value
of i to p.

Hence finally the joint distribution of the rectangular co-ordinates takes the form : —

~p(n-1)/2 l'rul(n-l)/z _}" i F(T, t) n-8 n-3 n-p-1 .
ST T ot t LAl (t0:3)

11 23 p

We shail show later that J. Wishart’s joint distribution of the sample dispersions is
directly deducible from this.

11. Normal Form and Normal Co-ordinates. We have denoted by F (T, ¢) the expres-
sion on the right hand side of (9'9). We can regard this expression as a quadratic form
in the p(p+1)/2 variables #,. Wec shall now construct a linear transformation
which leaves unchanged the p variables [{,,, {23, ... tp,] except for constant factors, and
at the same time reduces the quadratic form under consideration to a sum of squares.

F(T,l) = {4, + T2 (4,,% + t25%) + .. T (8,7 + 157 + o + 6}
+ (2T 8y, by + 2T by by + . 2T U by
4 2T™(lia tys + taa tas) + oo 2T (f1a byp + lag ta) +
4 277" (py typ + fape tap + ooe bionvn b))
= S [ AE‘; (ta - tay)]

=1

(11-1)
where k is the lesscr of i and 7, and TV = T,

17
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»
Let | T | denote the determinant of the matrix ['T'], decfined by

| :I\ | - Tll '1‘12 . 'I‘I. -1 Tl,p
an 122 T2 p-t T2»
Te-t2 To-1.2 et pet Pe-lp
Tt T2 e p-t Tww

THE INDIAN JOURNAL OF STATISTICS

[Parr I.

(11-2)

If we take the last r constituents of the diagonal elements of | T |, where v is of
course less than p, and consider that minor of ‘I', which has these terms for its leading
diagonal terms, then we can call this minor | T, |

‘ T(x) !

| T |

Thus

| T(u) |

Let TY be any element of | T | such that i <p—r, j<<p-r.
with the help of the following equation (11:25).

nant | Tyl |

| Ty | [T = | TV

Tod

It is to be noticed that

I Tr™ T | =

We have, thercfore,

'I‘p—l‘+ 1.1

o-r+ad

T(»—\)u T(v-a)" Tu”
T | | Tenl
1 Te-v| | Tewl

I ow , — '1"‘"
— Tvp~l. p-1

I'we p-t Twe
'I‘[l—l, p-t 'I‘p.p_ (’I‘U——l.p)z

’l‘u—l.n 1

It

[ T]  tself

1l

1M p-rtl Tl.p—-n: N 'r‘.p

p-rel, porel Pu-rel, pored To-retp

,l\n—nﬂ. p-ril Tp—l‘fﬂ. p-r+2 'l‘ﬂ‘"z-v

e poret Tpp-re3 P'en

| T(ru) I / I ’r(r) l

I T(A) |

...... A =!T(n),=lT|=|T",
| Tew |

18
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(11:22)
(11-23)

(11-24)

We shall define the determi-

(11:25)

(11-26)

(11-30)
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Lct Ly/To  ="T"™q, 4+ T, + ... Tm tin (1:31)
?
= S ("
A=‘( 1) (11-32)
1l gl s" T 1.,)
»V = S0P (11:33)
where it is to be remembered that 4y = 0, if i > j, and in general
»
e, — A s
IIDJ ‘l”p = A'S=I(T L 'IX) (1 = " 21 ees f, -) .se (ll.34)
Then we can write
| C ) T Ms_—.“ [’I . 8% (Iu 13,)] where k is the lesser of § and j
=1 A=\
= L+ L+ L2+ 1p?
1y=p-1 o5 13 | 4
L8, [T Sazi (b 0] e (11°35)
where, as before, k is the lesser of § and §, and
T = {TV'T> = T T4} [ T = | Ty | (11:36)
We now sct
-1 . p-1
byy VT ®Y) = S: l('l‘:')p ) (i=12,.. p=1) (11:37)
We also write
1y=p-1 . 14 L] o ] 2
=1 ll“) * SA-! (llllv\j)] o l 1.p-1 + lI-D-l seesee ID-I- p=-1
J=p- e 11-38)
+ VST st i) (
=) (2) A=
where T = {Te? TP et — Thet Tt Tet v, (11°39)
Now, T = {TT® — T'» T8} [T (11°40)
TpPb 1 = Tt 9t Tee — (Te-VP)3} [T v (11-41)
T\t = {Tho-1 Toe — The [oe-ts} [Tre (11°42)
(11°43)

Ty = {1934 Toe'— Tr-1o oo} [To0
19
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Now consider

| Tw .| Ta" | = ™ Phe-t e
-1 -1, B2 Te-'w» (11:50)
I'ed ['9.p-1 )

Denoting the minor of any teim in this determinant by placing a bracket () round

it, we have T = (Ivt )/ Iw (1151
T et = (T (11-52)

Ttet = (Te)/Tw (11°53)

Tyt = (TPH)/T™ (11°54)

Accordingly T = (I ey (1Y) = (o) (T ) 1) (11-55)
= [Tl |Tw* /(T (11:56)

= 1T (11°57)

Proceeding in this way and sctting

p-r Ap-r

hopet/ | Tw®™?" ] = 5 [T cn] (i=1,2, .. p=1)... (11°6)
A==

)

wehave I(T,) =8, + Py + .o L2 + By + Papy + .00 Py v

Fonet D+ La? + byt ok L2+ L L (a7
L=p
=5, (4] where Iy, = 0, when § > (11°8)
1]
It is to be noticed that Lh=1,vVI 'l‘.(,..., | (i=1,2,..p) (t1-9)

12.  Rectangular Co-ordinales in lerms of Normal Co-ordinates. We shall now
express !, as a linear combination of the I's. In what follows we shall write

" 1y
N . . - .
Te for | Tw |, the two having been identified carlier.

12:11)
L VT = Ta o (
12:12)
Mbe b 4\ A i "hlolll."' (
Il. (3] V"l :u'l '"‘ l:; : o gt l‘”_‘ 0 i)
) A i (12:13)
T _ P =i
Ly v l::_” = 5“==I [ 1“'_') La) (J
*14
by v T = Spmi [T ) (12°14)

20
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\We have here in hand ip--i+ 1) lincar equations from which the (p—i+ 1) quantitics

(j = & i+1,...p) can be obtained as linear functions of )’s (j = i, i+ 1. ... p). As we shall
presently show, we shall get ¢ in the form

hy = kMb+ MY L + kM, =.\Sf.. T Y

(12-2)
Consider the determinant of the (p—i+ th order
Ap = Teo 0 0 o ... o
Ta-n"™' Tt 0 0o .. 0
'l\(,.-n-z)l'”z T(p-|_3)'”' 1+2 T(F_.I_z)ln,lu 0 . 0 (|2'3)
'l‘ln)l'" ’P(o)""" 'r(o)“z'n vee eee 'r(o)p'n

Ve shall usc the notation  Ag"™  to denote the minor of the clement in the I-th row
and m-th column of Ay, divided by Ay, itsclf. (12:31)

It is readily scen that Ag'™ =0 when m < I, (12-32)

We now have from the theory of linear equations,

1,4-1+1 141 2.5-140

ty= VT o+ VT } S ' 124
= (-0 W " Gt @ ot et G-n  © " (12:4)

It is thus casily scen that the relation (12:2) holds when we take
B = Y Tat o At w o (129)

13. Joint Distribution of Normal Co-ordinales.  The joint distribution of the #,’s
has alrcady heen obtained in (10-3) in the form

nP(-1/3 | TU | (@-1)/2 1 -3 T (T,0)
2M(8=3) /3 gp(p=1)/4 ¢ Pe “-‘("-_k)/zl e
k=1

% U2 ()" B P an] (131)

where [d?,] denotes the product of all differential clements diy (i=1,2....p, and j=1, 2,
Lpibut 4, =0 when i > j7), and F ('I',0) is given by the lcft hand side of (9:9).
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If we denote by [dly] the product of all differential clements dly (i=1,2 .., p, and
i=12...pibut I, =0, when i>j), then

o Bl b by
[dlu] transforms to - e paitmgiy x [dn) w32

Tiyuations (12°11) to (12:14) show that I, I, ,,,...l,, arc functions of {y, I, p. ... lp, and
of no other #'s.  Hence the Jacobian reduces to the product of a number of factors.

Having regard to the form of these equations we can wiite
[
[d] = P _ (VAw). [di] e (13°22)

where I‘" denotes the product of the terms for all values of i from 1 to p, and
where Ay, which is given by (12:3), can be written as

A » \l.l

w = P ( ) vie (1323)

k==t (p-k)

Therefore, [dl;] = {(T::_.) )(T::-z) ) (T::.;, ) ...... (va)” }‘ x [dey] ... (133)

Using (13:3), (11°9), (11*7), and (11-30), the expression (13°1) can be written as

v(u-1)/3 -In S" S ()
3N
n 1 % & g1 it o 12 Uge)™ L) ]

u-3)/2 p(p-1) /4 °
29( Y] ’rl(D ] P: {r(n—k)/2} e (13°4)

where according to the notation already used [d;] stands for the product of all differen-
tials like dly (§=1, 2, ceeeee p, und j = 1,2...... p; where Lyand dl, 0 for i>j.)

14. Distribulions connecled with Normal Co-ordinates. From (18'4) we now
integrate out for all variables 4y (i), and get

v(an-p-1)/s —3n 8" (I '
2 : Y] X ¢ } (P ] " X (Iu)“_’”s:)-"‘ ve ees Uw)rw.l‘”"' e (141)
n-p=3
M P '(n=£k)/2}
=1

It is casily scen that the p-fold integral of the above over all values of the variates
L s L2z eee oo lpp from O to co reduces, as it shiould, to unity.

To obtain the distribution of I, only, we have to integrate out for the remaining
(p—1) variables in (14°1). We then get,

@i

—inl? -1-1 . - febri : .2
SETHE T =0]2 e . (1) . dly as the required distribution. ... (14:2)

This shows that the distribution of 1, is of Pcarsonian Type I,

22
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If from (13'4) we integrate out for cvery other variable except 1, (ij), we

get the distribution of 1, as
—‘%Illu‘

Vin/2m) . e dly e (14°3)

Thus the ly's  (i£))  are distributed normally.

15. Distributions connecled wilh Reclangular Co-ordinales. Distribution of 1, and 1,

Now 7 . 3, T - 2 | . .
ow B e T "l 1("’_‘”) [/ ] T | e (15°1)

Substituting in (14:2), we get as the distribution of 1,

c'";"lll’- I T‘p-“”l/l’l‘(p-l) l .(l“)"""'.n'l"

DI itas I YTROTS Ml

B I T ) [ 2. Ty | 727 (15°2)

To obtain the distribution of 1, we first note that
‘U = kj"I" + k‘LIOI ll.l‘l * seeses k,"" lu where kl'" = v’('I‘(P-q,fl.ﬂ,.Au)ll—l‘l.]-l"l vee (15'3)

We first write down the joint distribution of 1y, Ly, hass ool By, which is
(n-20)/2 - 2 2 2 .
s x ¢ PO Qe WBL g etes ity dtia.dly . (15°9)
\We now take a new variate
] [B) [} 1A }

Y= [ S (k1)) / (S (k)] ve  (15°45)

Azt \=10s1

Then the distribution of ¥, will be a normal distribution with a variance cqual to

that of the I's.
. —iny%y
Hence the distribution of y,, is vVnj2r).e . dyy eee (15°51)
We have now

" N
ty = kyly+ [§m(k,)‘] ey = a.ly+ By, (provisionally). ... (15°52)

Hencee the joint distribution of I, and 3, becomes

(m-1+1)/2 — 2 , st
2‘“_._')‘2.:'/".1‘()"_") /2 .e %ll‘(lu) +0 U)"_ (ll.) - . dI“ d.‘." vee “5.7)

It should he remembered that 1, varics from 0 to oo, and y, from =co to + o0,
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Let us set by=1n =aly + Byy, § = aly (15°71)
Then _a(é'.__'l) = @ 0

8, ) a B = af v (15:72)

Thercfore transforming (15'7) to the new variables ¢ and 5, the joint distribution
of ¢ and % isobtained as

—in{(a®+B)E = 2%+ oy} | (a*. BY)
Coe €t dE Ly . (1573)

where C= Ui . -
20-1)/3, Ve 1\“1_.‘-;7'2 an«lﬂ e (1574

Putting a = rcos 9, and B = rsine  this integral reduces to

= $n{€? —2¢n cos*0 + nPcos?6} [ +* sin?@ cos?
Cue (€. dé.dy v (15°8)

—in{(f—7cos?9)*+ n* sin*9 cos?0}/r* sin?@ cos?0
or Ce )t ds . dy L. (15°81)
Remembering that £ varies from 0 to o0 and 7 from — o0 to + o0, we get the distri-
bution of 5 in the form : —

- (11,11/2,2) 2 _in(g__,,’ COS’(I)’/fz sin?d cos?f
[ ¢ (). df].dw; e (15°82)
o

C.e

Take a new variable 2 such that €-ncos?d = wucosd (15°9)

Then the integral within the square brackets is transformed and the distribution of g

reduces to

—(nn?2r%) N — (e cot*o.a [ 26%) wi- u-t
C.e [f e Sty " '. du] x (cos®6) . dy .. (15°91)

Finally substituting the value of ¢ given in cquation (15°74), we have the distri-

bution of 5 or {; in the form :—

(ccs §)° mincteny2 . —(mmt/2r) o ot®e /1), d .
e S e WERNTETITE e « Fualy, ncot®o/1?). dp ... 15°92)
W 2 2 .
where Fo (,a) = f e~ %2 (gt | du e (15°93)
=9
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SECTION IV, 8PECIAL DISTRIBUTIONS.

16.  Joint Distribulion of Dispersions. ‘The joint distribution of the rectangular
co-ordinates f (i=1, 2...... ps i=1,2.....p, but ¢, =0, when i>j) has alrcady
been obtained in the form : —

”;wnq) l 'l‘lj | }(n-1) 1 _FerD . s .
) 3, g0/ ’ Pril(n— ,\.)/2} . @i (L) "2 ()"0 (1) ot .[dlu](lﬁ‘l)
Ke=1

wherce F(T,t) = a'lay +a*Pagy k... a™ ay,, + 2(a' a;; + a' ayy +......aPP) Apa1)
and ay = Lty + oy + 0 oie ty ty) , isj. . (16°11)

If now in (16-1) we change the variables ( (i=1,2......p; j=1,2,..... p; but

ty =0, when i>j), toay (i=1,2...... b3 i =1, 2...p ; and a,, is same as ay), then
Blay,, ayz0 Bugnror; Twd = 20(1,,) (1) e e .. (16:12)
B(l11s Lizs bazy ceene ()

Substituting in (16°1) we get

1 u;v(“—‘)ll ™ | j(m-1) ) 1 . c—!ul"(T.!-) ‘({l1-t22------ipll)"-n_z'[da”] e (16'2}
T 2emi T gee-n/t T Pl (n— k) [ 2}
k=1

But from (6°12) it is easily scen that

tialag.dyy = Q1y Qyz een e Ayp 1/2

@iy  @aa w5 ws asp
= , ay l i see (16'3)

Qpy  Gpa Ayp

Alen we have shown that ™ = o', therefore (16°2) reduces to
(An)r@-1/3 | gV | @-1)/2 1 e—in{a“a“+a"a,,+2a"a,,+.........}
Fr e YV . -1 “‘(,l_ k)/Z!
k=1

x |aY¥ | @D/ [da,] .. (16'4)

which apart from minor notational differences is identicaly with Wishart’s joint distri-

bution of the variances.?

3 J. Wishart: “The Generalised Prodnct Moment Distribution in Samples drawn from a Normal
Multivariate I'cpulation’’, Biometrika, Vol. XXA (1928), pp. 38—40.
Multivarare
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S. S, Wilks* has  defined thg

17. Distribution of the Dispersion Determinant.
b, and ay:=ay).

generalised variance as the determinant | ay | (i= 1,200,005 = 1,2,

T'rom  (6°12) it follows thi. [ ay | == (Dialaslyseeeenilyy)? e (171

Now from (14°1) the joint distribution of 1’s ~ (i= 1,2......p) is given by

p(en-p-1)/4 - %" S* (III)...
n ¢ =1

2uEu-p-s); 4 pu “‘(M-—IJ)/Z[ (ln)"-ﬁuuz)" ‘,..(lm»)" L 8 [(”ul “(17.2)
k=1

where [dl,] stands, of course, for dly dla,......dl,,.

Let us now make the substitutions

=11, wa=1,lsa, st lalass semenes o i1, Liilaaesesalyips (17°3)
It is now readily scen that
S e -
Hence the distribution of  (u,, ua,...... u,) is casily scen to be proportional to
—dnfu (2 ®) + (s ) - (20,2 [ 1)} —_—
e u, [du] e (174)
where [dug] stands for didity........ du,,.

It is also evident that all the o’s vary from 0 to w. “Ilie distribution of u, is propor-

tional to

N N %n{ulz { (u.f/u,."] | (H_-,"'/M-_.!)'}- "'(“»2/”1- ,"')l
[f ........ f ¢ duydug. . duy, ].u‘.""""nlu,..
0 0
v (1741)

Substituting I for 2, the distribution of & is proportional to

[&
(V]

N obnfe 2 (2 By, )
[f p [du.]] L ez e (17°42)

where [duy] stands for  dudu....... duy,.y 5 the single integral sign stands for the

multiple integral 3 and I varies from 0 to .

« S, S, Wilks :“Certain Generalisations in the Analysis of Variance®, Bicmetrila, Vol XXV (1932)
PP 476-—477.
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1f we now sct g = Jayl = (I las i ty)? <. (17°5)

then we sce from (11:9) that
RL 21 PP
h = (ln Iu ""-lpp)ﬂ:(l(u—l)) T(.,m)....., I‘(n) . (’n bay eun oo 1”‘)z = I ™ | g ... (17'51)

Thus, nfog = |V = |a"| .. (17°52)

Therefore the distribution of g is given by

[a"] (M2 yren-p-l)/d [ = dnful 4 (M) 4 (g ] @ | ), % -
Zrm o e bE L = L] J.gerorn.ag
o (17°53)
Putting 3n.u,2 = w,%,  (§n)>u,? = w?, ... (3" " upy)? = (wy,)? ... (17°54)

the distribution reduces to

("/z)n(lhm/'_‘ | a! I (n-p)/22n-1
P {l(n—k)/2}
k=1

=t (ww, )+ Y (3n)rg/(w0p,)®
N [f . {a {w,?[w |t! | (3n } [d’li'g]] g D/2gg  (17°55)
o

This can bc casily identificd with the form given by Wilks® on sctting
0,2 = vy, WP = Vyy .uenns (wp-))2= v,,, and noting that (n/2)*. | a" | = A ... (17°56)
In particular when p=1, the distribution of g reduces to
("/2)‘"“”7 c—-(ng/ZO’) ‘dg ses “7.6')
@ T in—1

where g is really 52, and o is the standard deviation for the population.

When p=2, the distribution of g is given by

(n/2)"? . 2 { (=, =[w?+(Ag/wM)] 4., | po-0i3 g
Tror(—p e e T =) T 3(n =2) 1f e T disly ¥
o

- Gm)cym —2/(Ag) "7 R
ST e D TR DI T =2 ¢ £ ) e

* S. 8. Wilks, Biom. XXIV (1932), 476-477.
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Consider now the expression (16:10). It is casily scen from the theory of definite inte-

grals that within the multiple integral sign we can intcgrate out for the odd-suffixed
variables w,, w,, ...... ete, and thus reduce the order of multiple integration,

Wiien p is odd, we finally get the distribution in the form : —

(n-p)/2
(An)r@-m/2 | o | .20t

‘g (U-p-2)/3 y
P (L 4] BT c g
k=1

LY = 2w, + (wifws) + (welwy) + . (w0 [wyy) + (Ag2w,_,?
lf é st (wifwa) + (wefw,) (Wp-1f104-5) + (A2, )}-2‘“'27!"4..'u'lr-:-d'll'zdli,u--dw»-l
o (17°71)

When pis even we finally get the distribution in the form

) p(u-p)/2 i (n-v) /3 i
X n-
(En) | @ | 2 g‘""”"”z.dg x

kl-‘:l {Li(n—Fk)}

(17-72)

[f“c = 2wyt (wifwa) + (W) + J“\g)/w"'g)!.u';,'w,...ﬂ'p_,.dwz.dn'l.“du'p_g ]
o

In particular putting p=3 in (17°71), we get for the trivariate case the distribution

of the genceralised variance in the form

s(n-3)/2 (u-3)/2

4 (n/2) | «" | [ N 2w+ Ag /2w, e i b et e
P° 03—} ) ¢ s d ] & 41773
k=1

(8]

Putting p=4 in (17°72) we get for the four-variate casce the distribution of the gena-

ralised variance in the form

(n-4)/2

a(u-4q)
8.(n/2) o] Ty, Rlwak AR @t g ] geitde 700,
BT I0-R) I L ] .

Noting that K.(z)= 1. (}z)-u.j‘-v o (vt z’/4A1‘)._Tm-x.d_v

0

and putting 2w.,==x, z=4 (A.g)"", and m=2, the distribution reduces to
16 /2) 2(n~yg) i ' (m-g) /=2 5

.(n - | @ LA . g(u—.'-)/:!. K={4 (,\ g)l/4} . dg - (17'8)

E:“_l{l‘ Y(n—1k)}
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18. Ratio of independent Dispersion Determinants. Consider two p-variate
normal  populations.  ‘Che paramecters for the first population, and statistics for
samples drawn from the first populaton, will ‘be denoted as before.  The parameters
or the sccond population, and statistics for samples drawn from it, will be denoted by
placing a dash on cach letter corresponding to a paramcter for the first population or
statistic for a sample drawn from it,

We want to study the distribution of

z= & = I al! l = “n l11 ...... ’-m.)z
'gl I a,U I (tlll l'lz'l---n-tlx-p,a e (18'1)
Take u,, u, ...... up as in the last paragraph for the first population, and «/,, w/,...1/,
for the corresponding paramecters of the second population.  We have (cf. 17°4) the joint
distribution of [u,, 4, ...... u,] and [y, 0’5, ...... #,]  given by

i =30nfu® + (uafw ) e (uy 1 V2E - 00! 2 4 (' )2 4 L (o -1)%}]
Si508

X (1p)" P ()P [day ] [du!y] ... (18:21)

where as before [dw,] denotes the product of du,, du,. ...... du,, and [duw,] denotes
the product of du’y, du',...... dil,, also

p(2n-p-1)/a plan’-p-1)/¢
k= n) (n’)
2) T PP (n =) tl_’_-"‘ll‘g(n’— k)} o (18:22)

Now put wyu! = o, and u,fuly, = ¢ e (18°3)

Therefore, u2=9¢, wp=¢/¢y and #, _¥) 2¢.

("'im “p)-
Making the transformation to ¢ and ¢, we can now write the distribution as

L —qn[{u 4 (a0 )2+ oo (epog 1pen) 2 + 09 [ 10,2} 4+ {02+ (1hy f0!y) + ot P2 ,12]
e

X @dn)-p-1 Yi(-0-3) | gy du,...... du,, du!y du's ceeeedulyy . dp . dY . (18°4)

1f { denotes the population value of z, that is, the ratio of the generalised popu-
lation variances, then wehave

3 = t-ﬁ!’—- = Sln l!:-.. . lz“)’ = (t 1 l"““"l )I M - z » ’8.5)
g u'y? (i Vagees o llpp) } LAY X-HW-,. T (

T

Then the above distribution can be written as

—30n{u, 4 (eaf10,)? + - (porfitp-3)? + P2V rep SV} 4+ n{! 2 + (0')1)3)? + oo (Whoor[thp-2)? + 981l P21} ]
e

X (k[28) x gRem-2-1 (2] Z)n-2-00/8 5 du,dityeecdutyy duly die! <.dtlyy 9 dz. oo (186)
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Hence the required distribntion® of z is

k . fw.f": "i"lllu’+(u,/u.)’...(u,,-./u,_,)’+.;,z|/up_':;4|
2(2)( Y] [ o o

- in’{'_":’ + (wsfu! ) + ... (!, -1fwlys)? + 4’:'“’9-122‘}
X e

x (et dyyy du,., .. ditg did, du',......du’,_,] ()ee-ore gz (187

19. Ratio of Dispersion Determinant lo a Principal Minor. We can by a suitable
renaming of the variates, take the principal minor in question to be the Icading
principal minor. Let this minor be of the k-th order. Then we have to find the
distribution of

no= lay|/|an | e (19°1)
where i,j= 1,2, ... b, and Ap= 1,2 ...k
Then as before P = (Ixor, ko1 lkez, k42 eeesee 1,)? e (19°2)

The joint distribution of  (lesr, xer. Jkea. keaveeeeeedyy) i3 given by

c..e—insp'”"u"’).{(z,.,.,..,)"""(z..s,k,,)""" ...... @)Y L [dh) . (19°3)
where [d] = Aliar. ket + Aliaz, kea seoeee Al and
C = PLM {2*—(,-’,#“:]—'1—(”—_—‘-)} e (10+4)
Put Uk ke =
ks = bk Xl e (19°5)
Uk, p = h Ilu.;:l xlk::. ez oee X1
Theroors,  Sintathomsssatial, = [0 L0 e £ e 0099

Transforming to the new variables, the distribution of (Uske » Mkkezesottn,) Feduces to

C.. c"in{u’..m+ (rnealttnga)? + ooooee(tnpftinp-1)’} . .;:..  [duna] o (B8

wlere [duxs] stands for duxxe Glakes seeone dutxp

¢ 8.8, Wilks : ¢*Certain Generalisations in the Analysis of Variance.” Biom, XX1V (198%), 478-480,
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But (“k.p)’ = (lku.ku . lku.hz ...... Im,)’

( P:.-—-kn T:'_")(lku.kn- Leaakyze ,,,,t”)’

| Tox | % from (1£-26) v (197)

i

I

Therefore, the required distribution of gy is given hy*

, (""’)”C /“' = Infetcnn + (ennsfunnan) + oo+ | To] o/ 1}
el Lo ]
X HOPDI | dy, . (10.8)
where €y is given by (19°4) and [duy] = dureer « dttexes voeene diigpy

20. Ralio of Standard Deviations of lwo Correlated Variales. The distribution
of w = (ay/az), which isthe ratio of the two standard deviations for the sample,

can be casily obtained,
The joint distribution of (l,,, 1,2, 13;) can be written as

. —Infa't 2 + (12 + 1p?) + 22" L 1y L)
. e

where n is the size of the sample, and

n-3 [ T3
) (L) e dly, diay e dlyy e (20°12)

An-1)
! | oY 1

FARVE O Tim-NTi(n=-2) e (20°13)

k =

Now a, = la a3 = 437 + b0 w? = 4,,*/(La+1,%) .. (20°14)

Introduce two new variables r, 0, such that {,=r cos g, {;;=rsing e (20°21)

Then the joint distribution can be written in terms of r, 4 and ¢, in theform:—

—3nfat't, 2+ a®r? + 2a'?l,,r cos 0} U=z  n-3 n-3
« () (1) (sin o) .dty,.drdo .. (20:22)

ke
Then w? = {,,*/n, or w = Iy/r (20°23)
Set b= ty.r (20°31)
‘Therefore "g((:(:_:,b,))' = 24fr = 2w we (22:32)

¢ S, S. Wilks. {om, XX1V (1932), 480-481.

31



VoL. 3] SANKHYA: THE INDIAN JOURNAIL OF STATISTICS (P
ART .

[n terms of the new variables the joint distribution reduces to

- {ni{a’wb + @' (b/w) + 2a'?b cos 6} nea
tk.e A6 w) (sing) .db.dw.do . (20-33)

Here ¢ varies from O to #, and wand b vary from O to 0. Integrating out for 63

we get

(kv 2w).e ~Inblattwra®lm) g g f ednat?bcosd (o gyes a9 . (2034)

[]
8 "tz 0 : an
But Iu.(2) = 35T );(”H T f PR (sino) .do .. (20°41)

o

Hence (20°34) reduces to

k. (2e®/2T) T{n—-2) (b)-H/3 —1nbla''w + a®* [ 70 .
()77 (al?)G-9)73 s 0 - € LG /%) . "(n-a)/a("a”)b}'db . dw

(20-42)
Finally integrating out for b, we get the distribution of w in the form :—

k. (2)(:1-5)/3 I‘(*) I‘%(n.—z) 3 -(-11 P f:’—inb(a“w+a"/‘w) . (b)(n_l”z- ‘ll .(na”b)}db
(n-3)/3

(u)(u—:b)/'l (alz).(n-u)/'a w
(2051)
30 a=i
But f et ly )} .t
o
Y
_ (ib/f) LDety) | (1 —pifad)p-s. ,Fir—p+1)/2, ’;" +1, v+ 1, —b*/a} ** (20°52)
a T (r+1)
Heunce (20°'51) can be written as
k@O T T (-2 dw [a'*/(a' w+ a®/w)]OD T (n—1)
(n)(n-s)/z (am)(n-a)/a * w Gn)(nu)/z R 11%("_ l)[a"w+a22/ﬂ’]("+l)s

x {1 —4 a3/ (a;, w0 + a"/'w)’}—n/? Fif—4, 0, ¥(n—1), —4(a'?)?w?/(a''w? + a??)?} ...(20°6)

where the notation followed is the same as given in Watson’s Bessel IFunctions,

p. 100.
It is clear that Fa,0,p,2) = 1 (20 71)
Hence putting in the value of k from (20-13), the distribution reduces to
(n-1)/ - 30-
2(uw)"? | a¥ | v [l _ 4a'®)? w? ] " dw v (20072)
(allw2+a22)n—l * (au .u','z_‘__azz)z_ *
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But |a" | =1/]|e,!. Hencelinally the distribution takes the form
1 2(7)"-2 C 4(a'*)? g0l ~lz I
| ay, | ™0t . (" w a )" T [l - mm—] dw eee (20°73;

If in particular a;, =- ay, thatis o, = a,, then remembering that ag;=p.o,.0,, we

get the distribution in the form

-u/a
20(n —-1 (n-1)/3 22 20
(1) (1 —p* [l -- -i’—lz-] A" ()™ dw ., 20-8)

i dm—-1}* - T+t

which is the distribution given by 8. 8. Bosc™.

21. Distribution of the Covariance of two Correlaled Variales. We can now
find the distribution of  a,; = s, s, 4y, where s, and s; are the sample standard
deviations, and r,, is the sample correlation.cocfficient of a bivariate normal population.

We have evidently  a,s = U 4,3 We have as before the joint distribution of

(tis gy 132) given by

=infa'' 1,2+ a®? (1,5 + 1y,7) +2a'%l,,1,,}

. € e (072 (L3,)™0 dbyy dlgg.dlyg o0 (2101)

Integrating out for {,,, (21°1) reduces to

k.Tn=2)2  —fnfa"ty?+a®l,t+ 20 bal g e an dy oy

Now sct Lyl = u, hafty = v o (21°31)

Q (e, )
a (tlli ‘]3)

In terms of the new variables the distribution reduces to

Then = 29 e (21°32)

k. V(n—2)2 . — (" ulv) +a**uv + 2a'u} (u/)eD12 L (1/20) . du . dv (21:33)

Z@AnaE)are *

It should be noticed that ¥ and v vary in such a way that (u, v) lics either in the
first quadrant or in the third quadrant of the (u, v) planc.

1 S, S. Bose : “On the Distribntion of the Ratio of Variances of two Samples drawn from a given
Yormal Bivariate Correlated Population,” Sankhya, Vol. 2 (1), 1935, 65—72,
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To get the required distribution of u we integrate out for v and ohtain the expression
8
E.I'(n=-2)2 —la‘ty | 0 f = Inufla't [ ) + a2y} o
gnaeor  ° " il e ) # « (1) . dy
v (21°4)

where it is to be remembered that 8 is + w0 or —o0 according as u is positive or
negative.

To cvaluate the jntegral weput 2 = cw, where ¢ =  J/(a''/a®) w. (21°51)
and the integral reduces to
4

(an/au)(n_z”‘f e"*” u{w + (1/w)}y/ (o “22).(10)1" . du we (21°52)
o

If B is + 00, then on using the equation (32) on page St of Gray, Matthews and
MacRobert's Bessel Funclions, we find that the integral comes out in the form

(@®* ) DIt 2 Koy {nu v/ (a''a®?)} .. (21'53)

When 8 is — o0, we get the same result on using the same cquation, and the well
known relation between K,(z) and Ki(—2). Hencee finally the distribution of u is given by

3k (I‘ ("):2))’, (a”/a")('-z)“ e naH e Ki@-» {11y (@''a*)}du ...(21°61)
"azu u-

Putting in the valuc of k from (20-13), this reduces to

nl? . s a'’. u
2(»-3)/2. J.,r . . ay l (n-i;/a._[\i("_ l).(a“a“)(“")/‘ *
x ™D Kyug {0 u /(a't )} . du . (21'62)
Putting nuy(ata®?) = W = —}P—‘ . a-?':_, e (21°71)
we have the distribution of W given by
(1 =p3)in-n . o . ¢ .
7. WL T n—1) erv, WAeD (K ju-n(IV)} .d IV . (218)

which agrees with the distribution given by Pearson, Jefirey and Elderton *.

September, 1036.

¢ Karl Pearson, G, B, Jeffery and Kthel M, Jilderton : *“On the Distribution of the First Product
Moment-Coeflicient in Ssmplee drawn from an iudéfinitely large Normal Population,” Biom, XXI (1929

P. 168, equation (xXxiv).
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APPENDIX.

[Note by P. C. Mahalanobis. 1 worked out the earlicr portion of the preseut paper in 1930, and
sent it (togcther with certain applications to anthropowetric and psychological problems, which are
reproduced below in the form of an appendix) to Dr. G. M. Morant of the Biomctric Lahoratory,
London, in October 1930 for publication in the Biomectrika, Dr. Morant informed me however that the
Editor (Karl I’'earson) was nnable to accept it as in his opinion the normalised varintes lacked physical
significance. (I may mention here that Karl Pearson bad long ago considered the possibilty of corre-
lated variates having arisen as linear functions of statistically independent components but had not
developed this method,) The paper was then communicated to the Indian Science Congress, and was
presented before thie Physics and Mathematics Section presided over by Dr, C, \V. B, Normand, Direc-
tor General of Observatories, India, in Jannary 1931 &t the Nagpur Session of the Congress, The paper
however was not published as the question of sampling distributions had not heen considered. With
the help of my two young colleagues it has now become possible to start systematic work on this
aspect of the problem. In the meantime the use of s:ormalised variates has been extensively developed
by H Hotelling andothers. T am however reproducing herc that portion of my paper which dealt
with applicd problems in the form in which it was originally communicated in 1930 as it may throw
some light on the historical development of the subject.]

A (1). The chief obstacle in the way of mcasuring the amount of divergence between
statistical groups ariscs from the fact that the observed variates are corrclated. Prof.
Karl Pearson has discussed these difficultics in detail in regard to C?, the Pecarsonian
Cocfficient of Racial Likeness. Similar difficulties arise in using certain other Cocfficients
of Divergence, 1,2, D,2 ctc constructed by me and described in a paper ¢‘On ‘Fests and
Meastres of Group-Divergence’” 2.

The transformation considered in the present paper suggests a way out of the diffi-
cultics. \Wc may transform the observed variates into a systemn of statistically inde-
pendent variates, and use-these transformed variates for calculating the different cocffi-
cients.

(a) lLet.the intra-group variances and covariances be the same for all groups, i. e,

1

the matrix [a]: is the same for cach statistical group. In this case it is obvious that [3]a

will be different for different groups; and will transform into different matrices, but the

functional rclation between [xy, 22y seoeee Xp] and [24, 33, veveee 5] Will zemain identical.

This method will suffice for all comparative purposes (including the calculation of

C?, D?* ctc) but can be uscd only when the intra-group corrclations and standard devia-
tions are constant.

(b) When thic above condition i. not fulfilled a different procedure is necessary.
Let [ X', X'y ceeeee X'u] represent the mean values of the different groups (1, 2, ...
ve- k) for the i.th character. If X’ is the mcan of mcans for the i-th character, and S

k L3
the corresponding between-group standard deviation, then we may reduce [ X’], into [%],
with the help of the cquation

. 11
®a o= (X — XW/S, AN
* Tor example, in Phil. T'rans. Vol, 186 (1897), 261,

» Karl 'earson : “On the Coeflicients of Racial Likcness®”. Blometrika, Vol. XvIIt (1926), 105-117.
s Jour, Astat. Soc. Bengal, Vol.xxv1 (1920), 541-588.
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R .

It is obvious that
| 4 ~—
(® . % = k.[r]
P

» —k

. A(1°2)

will then define the matrix of between-group corrclations.

¥ , & x
We may then transform [%], into {§],’ in the usual way, and use [y],. for pur-
poscs of comparison.

. . . ‘
(c) A third alternative is open to as.  We may caleulate [R], from the pooled

measurcments for all the different groups. Let there be kB groups, and lect
n

3 ny Bk
[, [®xy ceveee [x®]x be the actual reduced values for the Ist, 2nd...... .. k-th

groups consisting respectively of u,, ng, ...... #x individuals. \We may then form the
pooled matrix :

w (3) ) [ M9 P2y oo oee M
X g X g emeeseves X ¥

and calculate the pooled correlations defined by

LI I ' g »
[x(l). x®, ... xm] e XM, x®, o x® = N.[R] ...A(1°3)
N e Y IO T "y v

where N= n,+n,+, ...nc gives the total number of individuals in all the groups com

bined, and [R]: is the matrix of observed correlations,

’ 3 . . .
We may then use [R], to obtain a system of variates [»,, 35 ...... ¥,] which will be
statistically independent for the pooled data, but may of course show inter-corrclations
within particular groups.

The choice between (b) and (¢) will ultimately depend on the nature of the actual
empirical data under consideration.

A (2). I believe that the present transformation will be found uscful in another direc-
tion. To fix our ideas, let us consider a particular problcin, say, measurements on the
head in living subjects. ‘I'hcoretically there is no limit to the number of different charac-
ters which may be measured, For example, it is usual to mcasure the greatest head-
length and the greatest head-breadth practically at right angles to cach other.  We may,
if we like, proceed to measure diameters inclined at different angles to the direction of
the greatest head length, and in this way obtain a very large number of hecad diameters,
say [d,, dgseee..cds].
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1 4
There are now two possibilitics, Let [a], represent the variances and covariances
between these p measured diameters for any group of o individuals. If the matrix

» . .
[a), is undegenerate, then the system [d,, d,, ,..... d,] will transform into a system of

f independent variates [y, ¥3se0000.¥p).  Let us now increase p to q.  If the matrix [a]:
is still undegencrate, then we are likely to obtain different values of [y, ¥5, ¥peeeen¥a].
Obviously, in this case, we can never be sure that by including fresh measurements our
results of comparison will not be completely changed,

The other possibility is that as we go on incrcasing the number of characters, a stage

is rcached where the matrix [a]: will becorme degencrate, and [d,, dy, ...... dg] will
transform into a sct of lower number of say ¢’ independent variates [y, ¥3 voee.yd'}
In this case, cven if we take different sclections of chatacters we shall get fairly con.
sistent results, prov ded of course our choice of characters is wide cnough to lcad to
reliable values of the transformed independent variates [¥y, Yaseeeeeeda’)

In order that results of comparison may have stability, it is therefore nccessary that
that this condition should be fulfilled. We may thus cnunciate the two following
axioms :-—

(A) Inany given problem there is a finite number of statistically independent
transformed vatiates,

(B) It is immaterial which particular sct of obscrved characters is sclected for study
provided thesc characters are sufficiently wide in range to be capable of Leing transformed
into a set of g’ indepeudent variates with rcasonable reliability,

To deny these axioms is to deny thie possibility of stable comparisouns.

From this point of view, one of the fundamental problems of comparative anthropo-
mctry is to determine what number g’ of independent characters will be sufficient for
purposcs of comparison in a given problem. ‘T'he transformation described in the present
paper makes it possible to investigate this question in a systematic manner. |

A (3). We may also use the preser transformation for studying the factorial theory

n
of human abilitics. Let[x], e the reduced scores of # individuals in p  different tests
(or the reduced measures for n individ als in p difficrent traits), The observed correlation
between the different tests or traits is then given by

n ~™~p

[x]’.ju = n.[r]: - A(301)

The factorial theory of abilitics attempts to express the observed variates [xy, x34.00xp)
in terms of a number of statistically iundependent variates [34, ¥3...0.0.9% ) such that
only particular y-variates are common to particular groups of the observed variates.
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[Pame
That is, [x]: is expressed as
L ~p. n
[x1 = 1 . [y],
» i [ ]p p—p A(3‘02)

n
where the matrix 1] has a special form, and [y], is a semi-unit matrix.

Spearman® defines a general factor to be one (say y,) which occurs in all the observed
variates. Hence the l-cocfficients corresponding to y, will be $ ia numbher.

A specific factor, on the other hand, is one which will occur in one observed variate
only. If [y, ¥1 «ev.oo 1] are the specific factors corresponding to [x,, x,,......x,] then
the corresponding [-coefficients are obviously given by [, L, lys, ..oues Iy]. It is
clear that in this casc all l-coefficients of the type I, must vanish when { is not equal
to j.

A group factor of order g is one which occurs in g of the obscrved variates. For each
y-variate which is a group factor of order ¢, it is clear that the number of non-vanishing
l-cocfficients must also be . ('I'he specific factors may be called group-factors of order
l, while the general factor is a group factor of order ).

Equation A(2:2) will give rise to a sccond degree matrix equation

[I]..'Zt - [']: “ A(303)

of the same form as equation (3-2)*. Here s will depend on the different kinds of group-
factors supposed to be present, and will usually be greater than p. A gencral solation,
therefore, is not possible ; but solutions may be obtained in particular cases.

(1) Group factors of a particular order q only are present. Let g=1, then s=p,
and equation A(3:03) takes the form

by 0, 0, ... 0 Li, 0, 0. 0
0, laay 0, ... 0 0, [ YRR | [ — 0 - n. [T]" A3 )
0 0, 0, ...... Ly 0, o, ) JR— 0

-

1
It is obvious that that [r], must be a unit matrix, i.e. all the observed characters must
be statistically independent.  ‘This is obviously a necessary and sufficient condition for
an analysis of this type being possible.

s C. Spearmag : The Abilities of Man (Macmillan, 1927,) Chapters X and XI.
* Main paper, Section I, p, 5.
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(2) lLet g=2. Thetotal number of vertical rows in equation A(3:03) (i.e., the

number of y-variates required) is obviously ™C, in order that all possible group-factors of
order 2 may he present.

Thus 53 = ™C, = m(m~1)/21 o A321)

Since only 2 l-cocfficients arc non-vanishing in each vertical row, the total number of
non-vanishing l-coefficients is given by

2.7°C; = p(p=1) = [, A(3-22)
The total number of observed parameters furnished by [r]: is p(p+1)/2 =e. Itis
clear therefore that (f,—e) gives the number of l-coefficients which arc arbitrary. Thus*

the number of arbitrary l-cocflicients is equal to

(Ja—e) = p(p—-3)/2 = by ... A(323)

Assigning arbitrary values to b, of the I-cccfficients, the remaining coefficients can be
casily obtained. The solution is howcver not unique.

(3) ‘The general case for group-factors of order ¢ may be treated in the same way,
The total number of y-variates required is

. P!

S$q - p(—q = W s A(s.sl)
The total number of non-vanishing l-coefficients is given by

- p!

_ L] = s 5

The number of arbitrary l-cocfficients is given by
! pp+1)
bim e =P - .

(4) Let all group factors of order 1,2, ...... ¢ inclusive be present. The total
number of y-variates required will then be

S1+ Sab eennn. 8q = PC,+PCa+. ..PCq = %,(°C,) = g, say e A(3°41)
and the total number of non-vanishing l-coefficicnts is given by

h+fat.ifa=1.PCi+2.°Ca+...... q.%°Cq = 3,(q.7Cq) = hy e A(342)
where %, represents a summation for all valucs of ¢g=1, 2, ...... q.

4 It is clear that for p=2, s, =1, and the group-factor of order 2 hecomes a general factor, and the
two observed variates must have a correlation = ¢ 1. lor p = 3, s, is 3, and a general solution of the
equation may be obtained in the usual way.
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(5) Let all aroup fuctors of all orders (1 and p inclusive) be present. Then the

total munber of y-variates = g, = 2*—1 e A(3°51)

The number of non-vanishing l-cocflicients = h, _.,; (£4-*C) . 0\(3'52)

» » . [ . 3
This will give a complete solution. It is clear however that by far the large number of
l-cocflicients will be arbitrary, and a large varicty of different solutions will be possible,

(3) A general factor und specific fuctors o:ly are present, The cyuation now takes

the form

. N\
lun Illl 0: eveeny 0 ’0" Io:o Iu; veaces IW
lay 0, lsw 0.0 L, O, 0 ....0 .
=n.[r], ... A(3:01
bsy O, 0, Lygy wans 0 0, Law 0 ... 0 [r]s ... Ai3:61)
loy, 6, 0, O... IL 0, lyy 0 vieana O

We notice that for all values of 4, j, a, b from 1 top,

o= I+ = +1
Ty = b o by e A(3°52)
Tab = loa o b

It follows immediatcly that

Tub « Ty = l.,., . I..b . lul . ’.., = Pare Ty = Tyy « T A(3'63)

This is the well known tetrad equation of Spearman®,  Fquation A(3.63) gives the
necessary and sufficient condition for a solution of the present type being possible.
A(3°64)

Here = p+l1, J == 2p

Thus when p is greater than 3, the number of observed parameters p(p+1)/2
will be greater than 2p, the nmuber of non-vanishing l-cocfficicnts. It fullows therefore
that at lcast p(p—3)/2 conncctions must exist between tie different rows of the corre-

latioa matrix.

C, Spearman ¢ Abilitics of Man, (1927). Appendix.
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