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Assume that every probability measure P in 2 of a etatistical structure
(X, &, 2) has a denaity p(x, P} wr.t. 8 (not necessarily o-finite) meamure m.
Let & be any subfield and suppose that the densities are factored as p{x, P)
= gix. P)A(x) where g is #-measurable. Then & is pairwise sufficient and
contains supporta of P's. Assume further that m is locally localizable and & is
pairwise sufficient and contains supports of P's. Then the densities are
factored as above.

Two partial orders are introduced for pairwise sufficient subfields. Assum-
ing that every P has a support, a subfield is constructed which is the smallest
with supports under the first partial order. and is the smallest under the
second. This is used to give a simple proof of existence of the minimal
eufficient subfield for the coherent case. In the (uncountable) discrete case it
is proved that under the first partial order there are infinitely many minimal
pairwise sufficient subfields and hence there is none that is smalleat.

1. Introduction. This paper gonerahm the Neyman factorization theorem to un-
dominated statistical str and d some related problems on minimality of
pairwise sufficient subfields.

A statistical structure means a triplet (X, o, ) consisting of a space X, a o-field o and
a family of probability measures 2 = (P). For any measure m on &, the family of all the
m-null sets are written A1m). Similarly /1) denotes the family of all #-null sets, the sets
A in of with P(A) = 0 for all P in #. When .#{m) = .#1n) (resp A1m) = #1P)), we write m
~ n (resp m ~ #). Sub-o-fields of of are simply called subfields. For any subfield # of o, we
write #° = NP, #= N (IVMP, + P,); P,, L E P)) and &= N (AVMP); PE P).
Here 4V ¢ means the subfield generated by # and ¢. For two families of sets & and
¢ 9 C ¢(P) means D C €°. If #° D € also holds, we write # = ¥ F]. This relation “C
[2]" defines a partial order on the family of all the subfields of o/, which we call the partial
order (I). Another partial order {II) is introduced by the relation # < €[}, which means
that # C ¢ When m is a measure on o, #(m) denotes the family of all sets A in o such
that m(A) < c. While o(n) denotes the family of all subsets A of X such that ANE €
o for all E € aflm), or equivalently, for all E in & which are o-finite w.r.t. m. Such sets are
called locally-o/-measurable w.r.t. m.

All the functions appearing in this paper are extended-real-valued. [(x; A) stands for
the indicator function of a set A. A function which is #(m)-measurable is called locally-
o -measurable wr.t. m.

When n(x) d any propositional fi of x, [w(x)] d the set of all x in X
which satisfy n(x) The statement 7(x)[m) means that X — [1(:)] C Nfor some N in.#1m).
Varying di d ding on the will be imposed on statistical structures.

One such condition, wlnch will be assumed in Section 2, is the following.
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ConprTioN A.  There exists a measure m on & which satiafiea:
(a) Every P in #has a density p(x, P) wr.t. m,

and
) 2~m.

As a matter of fact, if a measure satisfies (a), there exists another measure satisfying (a)
and (b) (see Remark 1.1(a) below).

The measure m is called a dominating measure of (X, @, #). The densities may be
assumed to be nonnegative. Under Condition A, m has the finite subset property, that is,
every A in o with m(A4) = o has a subset B with 0 < m(B) < » (aee Muasmnnn (1972,
Lemma 2.9)). Aatamnulstructunucaued‘ i d if the domi mis
o-finite, It is d fXisan ble set, o is the power set of X, all P are discrete
and the only #-null set is the empty set (see Basu and Ghosh (1967)). It is weakly
dominated if m is localizable and locally weakly dominated if m is locally localizable (see
Definition 2.1). The latter mcludea the former, which includes the first two cases since a
ofinite and the ¢ on the power set are localizable. It is known
that weak domination is oqunvllont to “coherence” due to Hasegawa and Perlman (1974),
and “compactness” due to Pitcher (1965) (see Diepenbrock (1971, Theorem 9.1), Mussmann
(1972), Theorem 2.13 and Morimoto (1973, Appendix)).

Another condition is concerned with supporta of 2 which are defined in the following

DemniTion 1.1, Suppose that @ is a family of probability measures on (X, #) and
that P € &. If there exists a set S in of which satisfies (a) and (b) below, then S is called a
wpport of P.

(a) P(S) = 1, and

{b) A€ o, A CSand P(A) = 0 imply that A € M),

In case there exists a support of P for every P in #, we simply eay that supports of 2
exist, or 2 has supports. A support of 2 is often denoted by S(P).

CoNpITION B.  # has supports.

Remark 1.1.  {a) Conditions A and B are equivalent. In fact, under Condition A, [ pix,
P> 0] ie a support of P. That Condition B implies A is Leama 9.3 of Diepenbrock (1971).
Hence, existence of a measure satisfying Condition A(a) implies existence of a measure
satisfying Condition A(a) and (b) via Condition B.

(b) If there are two supports S and T of P, then (S A T) € #9).

{c) Under Condition A, if a subfield 4 contains a support of P, then for any dominating
measure m there exista a density g(x, P) of P w.r.t. m such that [¢(x, P) >0) € 2. If #
contsins a support of P for every P in &, then we say that & contains supports of #.

In Section 2 we give g lizati of the Ney factorization thegrem. A subfield
s said to have & Neyman factorization when each p(x, P) is factored as
) pix, P) = g(x, PYA(x)  ae.
where g(x, P) is & ive & ble function for each P in 2 and A(x) is 2
ive function. The to which “a.e.” refers and the measurability require-
ment on A{x) vary from context to context.
Neyman factorization provides a criterion—a y and sufficient condition—for
fficiency of a subfield in the domi d case, and for sufficiency of an inducible subfield

for the discrete case (Basu and Ghoah {1967), Theorem 2). Mussmann (1971, Theorem
45(a) proved that in the weakly dominated case, sufficiency of a subfield implies Neyman
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thmﬁlmbﬂdhduulmﬁumnhﬁdd.thennhunNm
, the

of the last st is not true unless some additional
mmpdon.o.g..loalhbilhyofmondu bfield (see M (1971, Th 4.5(b)),
is imposed (for a le see E: le 4.1).

In view of this fact we look for some weaker condition than sufficiency which could be
equivalent to Neyman factorization. One possible such condition emerges from Theorem
7 of Morimoto (1972), which proves, for the discrete case, that a subfield has a Neyman
factorization if and only if it is pairwise sufficient and contains supports of 2.

It turns out, vide Theorem 1, that the said condition—"“pairwise sufficiency with
supporta”—is in fact necessary for Neyman factorization under Condition A. Theorema 2,
3 and 4 then show that the converse of it holds in the locally weakly dominated case. it
now appears that Neyman factorization is more a criterion for “pairwise sufficiency with
supporta” than sufficiency iteelf, which happens to be the same as the former in the
dominated case. An i diat of these th is the exi of the
ndldmmﬁumtnbﬁddlmthmppomol?mtbﬂouuywuﬂydommud
case.

Probé ing exi of mi | sufficient subfields have boen considered by

ri hors (e.g., Bahadur (1954), Pitcher (1957, 1965), Burkholder (1961) and Hase-
gawa and Periman (1974 1976)). Our Section 3 deals with similar problems regarding the

llest and mini bfields in terms of two partial orders introduced sbove. The partial
order (1) is frequently used for sufficient subfields and Burkholder (1961 Corollary 3)
showed that for sufficient subfield being minimal is equivalent to being lest under the
partial order (I). What is usually referred to as “minimality” of sufficient subfields is these
two equivalent concepta. On the other hand, (IT) seems more natural for pairwise sufficient
subfields. Moreover, if we restrict our attention to pairwise sufficient subfields, it is shown
that # < ¥[#)] iff # C ¢ and thus (1) coincides with another partial order introduced by
Bahadur (1964, page 429). A liest (resp minimal) subfield in terms of (I) wiil be called
a smallest (resp minimal) pairwise sufficient subfield, while that in terms of (II) will be
called a pairwise smallest (resp minimal) sufficient subfield. The relative position of
“pairwise” indicates whether it refers to sufficiency alone or to the property of being
smallest (resp minimal) as well. It easily follows from the definitions that pairwise minimal
sufficiency coincides with pairwise smailest sufficiency, by an argument similar to that of
Burkholder (1961, Corollary 3). We construct, in our Theorem §, under the assumption
that 2 has supports (Condition B), a subfield which is pairwise smallest sufficient and
smallest pairwise sufficient with supports. In fact, it is also shown that the latter property
implies the former. Thus the result mentioned in the last part of Section 2 is proved here
under a more general condition.

‘These results hold in the coh case of Haseg and Periman (1974), as coh
is stronger than Condition A which is equivalent to Condition B. ‘This observation is used
in Theorem 6 to fix the gap in Pitcher's (1965) proof for the existence of the smallest
sufficient subfield pointed out by Hi gawa and Perl

These resuits are applied to the di case in Section 4. It is proved that a subfield
is pairwise sufficient if and only if it separates the amallest sufficient statistic. Theorem 7
pv.ulgonamﬁwmo{thnmbﬁoldoomwmdin'l'hoonms It also shows the existence
of infinitely many minimal pairwise sufficient subfields and, hence, nonexistence of &

smallest pairwise sufficient subfield. Thus the equival of being minimal and being
mn.ll-tiurm?ol(n -dq;mvodforpdrwmmﬁcmy 'I‘horelwnnceoflm‘
result on bfields by Namba (1977) to the problem or ch

o(mhmdpdrvh.nﬁumtmbﬁold.npoinudout.

The results presented here were sastier submitted to the Annals in the form of two
mwﬂwtmmbyGMMMubmed.mdModmow.vhmhm
subsequently combined to form the paper. Recently our ion was called by
the refares to twn related papars (Sisbart (1978) and Laschgy (1978)) which appeared in
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the time. The jon b theit results and oure is mentioned in Remark
3.1(b) and after Bxample 4.1.

3. Generalizations of Neyman factorization theorem.

TuzonzM 1. Let (X, o, P) be a statistical structure and every P in @ have a density
pix. P) wrl. @ measure m on . Assume that # ~ m.
Suppose that a subfield # has a Neyman factorization:

@ pix. P) = g(x, PYa(x)  [m)

where gix, P) is a gative & able function for each P and hix) is a
nonnegative function such that hix) > 0{m].
Then & is pairwise sufficient and contains supports of .

Proor. For any two measures P, and P; in & define a #-measurable function % as
follows:

Aix) = gix, P))/(g(x, P)) + g(x, P2)) where the denominator is positive.
=0 otherwise.
Take any set A in of and let B be a measurable subset of A such that
(Pi+P)A-B)=0

and for x € B,

plx, P\) + plx, P;) >0

8ix, P) +glx, P;) >0

plx, P) = glx, Pohix), i=1,2
Then A(x) is positive on B. Hence
kix) = plx, P\)/(pix, P\) + plx, P2))

on B, s0 that

f A(x)d(P) + P;) = J' pix, P)/(px, P)) + plx, P)) d(Py + P),
A £ ]

= P\(B) = P\{A).

Hence & is sufficient for (X, o, (P), P1)).
Now take any P in &, and define

qlx, Py =pix, P} i plx,P})>0, gix,P)>0
=1 if plx,P)=0, gix,P)>0
=0 otherwise.

Note that {q(x, P) > 0] = [g{x, P) > 0] belongs to 4. We are to show that g is another
version of the density p. As we have assumed that any density is nonnegative, we have

{plx. P) # qix. P C [p = 0,2 > 0]U[p>0,g=0]C [prg-hlU[h=0]
w that m{ pix, P) v q{x, P)] = 0.

For the weakly dominated and the locally weakly dominated cases we need some
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preliminaries. Let (X, &, m) be a measure space.
Define a measure it on (X, al(m)) by

f(A) = sup(m(A N E); E € o(m)).

That st is in fact a measure is noted by Diepenbrock (1971, Chapter 1, Secion 1). Further,
if m has the finite subset property, i is an extension of m to /i(m) (Zaanen (1967, page
257)).

DernnITioN 2.1. A measure m on o is called localizable (resp locally localizable) if
it satisfies the following condition:

Suppose that #is any subfamily of o/(m). Then there exists an “esa-sup #”" w.r.t. m in
o (resp &i(m)), such that:

(a) m(F — ess - sup F) = 0 (resp ri(F — ess - sup #) = 0) for all Fin Fand
(b) miess - sup ¥ — A) = 0 (resp riless - sup F— A) = 0) for all A in o (resp (m))
such that m(F — A) = 0 for all Fin F.

REMARK 2.1. (g} The extension of m to #i is not unique. Let X be (0, 1], o the o-field
generated by all the singletons except (0} and m be the counting measure on . Then
ofl(m) = 2* and /i gives measure 0 to {0} and 1 to all other singletons. On the other hand,
the counting measure on 2” is also an extension of m.

{b) Take the same X and < as in (a) and let m give measure ® to all the sets containiog
the point 0 and 0 to all other sets. It has no finite subset property. The measure m, then,
is equal to 0 for all the subsets of X and is not an extension of m.

{¢) The notion of localizability appears in Segal (1951) and Diepenbrock (1971). Segal
defines it in a slightly different setup from the present paper and in our framework it could
be interpreted either as localizability or as local localizability, whereas Diepenbrock'’s
definition is equivalent to the latter. Here we find it convenient to distinguish the two
notions as well as weak domination and local weak domination. Our lature reflects
the difference between the two types of concepts as indicated by their definitions and also
by some of their properties (see Lemma 2.2).

DeriviTiON 2.2. A family (f(x, A); A € #/(m)) is called an m-cross-section if it has
the following property:

For each A in s/(m), f(x, A) is an o"-measurable function such that

(i) fix, A) = 0 outside A, and

(ii) For any A and B in of(m), it holds that f(x, A)/(x, AN B) = fix, B)[(x. AN B)(m).

Lesma 2.1, (a) (Diepenbrock (1971, Lemma 3.1)). Suppose that m and n are two
measures on o, with the finite subset property. If m ~ n, then a o-finite set w.r.t. m is o-
finite w.rt. n and vice versa.

(b) (Diepenbrock (1971, Theorem 3.2)). Suppose that m and n are two measures with
l_he finite subset property such that m ~ n. Then m is localizable (resp locally localizable)
if and only if n is localizable (resp locally localizable).

LgM_MA 22. {(Zaanen (1967, page 264, Theorem 2)). Suppose that m is a measure with
the finite subset prtapeﬂy. Then m is localizable (resp locally localizable) if and only if to
each m-cross-section { f(x, A), A € a(m)} there exists an of-measurable (resp «flim)-
measurable) function f(x) such that

fxM(x, A) = f(x, A)  [m]
for all A in ofim),

Lemma 2.3.  Suppose that (X, o, P) is weakly dominated. Then
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() (M (1871, Th 2.4 and Th 4.5), Yamada {1976, Theorem 3.1}).
There exiats a localizable dominating measure n such that @ ~ n and for each sufficient
gubdfield @, each P has a #-measurable density w.r.t. n.

{b) (Kusama and Yamada (1972, Corollary 2.1)). If a subfield @ is pairwise sufficient,
then 9 is sufficient.

DeriNiTION 2.3, We will tentatively call n in (a) a pivotal measure for (X, of, ). The
concept, h , will be redefined under a broader context in Definition 2.4.

Now we state a converse of Theorem 1 for the weakly dominated case.

THEOREM 2. Let (X, of, &) be weakly dominated by a pivotal measure n and let & be
a subfield.

Then # is pairwise sufficient and contains supports of #if and only if all P in @ have
d-measurable densities w.rt.n.

Proor. The “if” part is a special case of the preceding theorem. To prove the “only
if" part, we note that each P has a density g(x, P) w.r.t. n such that [g(x, P) > 0] belongs
to #. By Lemma 2.3(b) the subfield # is sufficient and each P has a #-measurable density
rix, P) w.rt. n. Hence there exists a #-measurable function s(x, P) which satisfies

s(x, P) = r(x, P) [P).
Thia implies that
s(x, P) = q{x,P)  [P].
Define a #-measurable function p(x, P) by
plx, P) = s(x, P) if qxP)>0,
=0 otherwise.
1t is easy to check that
plx, P) = q(x, P) {n).

ReMARK 2.2. There are pairwise sufficient subfields with supports, which do not
include any sufficient subfields. So the “only if" part of Theorem 2 is really more general
than Mussmann'’s result cited in Section 1.

Mere pairwise sufficiency does not guarantee Neyman factorization. Therefore we
cannot drop the assumption about support.

See Example 4.1 for these pointa.

Before proceeding to the locally weakly dominated case, we try to relate it to the weakly
dominated case.

Suppose that we are given a statistical structure (X, &, ) which satisfies Condition A
and let 7it be the extension of m on #//(m) defined before. Then by defining 2 on ¥/i(m) by

Pia) = J’ plx, P) drii(x)
A

for A € ofi(m) and putting P = (P; P € P) we get an extended statistical structure (X,
olim), P). As we assume # ~ m in the original structure, it follows that # ~ 7 and thua
the new isfies Condition A. M T, the next lemma shows that the latter
8 weakly dominated provided the former is locally weakly dominated.
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LEMMA 24. Suppose that (X, o, m) is a measure space where m is locally localizable
and has the finite subset property. Then ri is a localizable measure on #(m).

Proor. Take an Ki-crosssection { f(x, A); A € (i)}, where of(rii) denotes all those
seta A in &J(m) such that 7i(A) is finite. Take a set A in (m). Then f(x, A) vanishes
outside A and hence is &/-measurable.

The subfamily { f(x, A); A € s/(m)) is clearly an m-cross-section. Hence, from the local
localizability of m, there exists an .«/(m)-measurable function f(x), which satisfies

22) f(xM(x, A) = f(x, A)  [m]

for all A in o{m). We shall show that (2.2) holds for all A in /(ri).
From the definition of i there exists a set F in @(m) which satiafies:
{a) F is a subset of A, and
(b) (A — F) = 0.
From (a) we have
flx, AM(x, F) = fix, F)l{x, F) (]
as f(x, A) and f(x, F) belong to the same mi-cross-section. It now follows from (b) and
[ (x, F) = f(x, F} (]

that (2.2) holds for A.

LEmMMA 2.5. Let (X, o, P) be locally weakly dominated by two locally localizable
measures m and n. Then o/1im) = ofl(n).

Proor. This follows immediately from Lemma 2.1 (a).

Lemma 2.8, Let (X, o, ) be locally weakly dominated by m and define # and ri as
before.

Let 71 be any localizable dominati; e of the weakly dominated statistical
structure (X, oflim), P). Then each P in P has an o-measurable density w.r.t. A.

Proor. Let S(P) = [ p(z, P) > 0), where p(x, P) is any density of P w.r.t. m. S{P} is
o-finite set w.r.t. i, and hence w.r.t. A.

Let A(x, P) be a Radon-Nikodym denmy ofm w.r.t. 7 on S(P) and zero outside S(P).
Since A(x, P) is Al(m) ble and ide a o-finite set S(P) in o, it is an
#-measurable function.

If we take any set A in ol(m), it follows that

Pla) = J’ plx, P) drii = plx, PYh(x, P) did
AnstPy ansim

- j plx, P)h(x, P) an,
A

&8 required.

Lesma 2.7, Assume that (X, o, #) is locally weakly dominated by m and define
and it as before.

Let @ be a subfield of o, which is pairwise sufficient for (X, of, #) and contains
supports of @. Then it has the same property for (X, o#l(m), F).

Proor. For esch P in # lot p(x, P) be a density of P w.r.t. m with S(P) = { p(x, P)
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»>0) € 8. (969 Remark 1.1 (c)). Take £, and P; in #and a #-measurable density f(x) of
P, wrt. P+ Pr.S(P1) and SIPy) are o-finite w.r.t. m, and so A N {S(P\) U SiP2)) belongs
10/ for every A in sflim). It follows that [ is dP,/d(P, + P;). So @ is pairwise sufficient
for LX. at(m), B

Now. from the definition of B, any density of P w.r.t. m serves a a density of P w.r.t.
4. So that plx, P) is & density of P w.r.t. i, whose support belongs to &.

THEOREM 3. Let (X, .of, #) be locally weakly dominated. Then there exists a locally
localizable measure n which satisfies:
[N
(ii) Each P has a density w.r.t, n, and
(i) A subdfield H# is pairwise sufficient and contains supports of # if and only if each
P has a #B-measurable density w.r.t, n.

Proor. Take a dominating measure m and denote a density of P w.r.t. m by p(x, P).
Then, take a pivotal measure 7 of the weakly dominated statistical structure (X, .&/!(m),
7), vide Lemma 2.3 {(a) and Lemma 2.4.

By Lemma 2.6 there exista an .o-measurable density of £ w.r.t. fi. It follows that the
restriction of /i to .o, which will be denoted by n, is locally localizable by Lemma 2.1 (b).
Further, n satisfies (i) and (ii), and the “if” part of (iii} is a special case of Theorem 1.

For the “only if” part, notice that ¥ is pairwise sufficient for (X, #!(m), 7 and contains
supports of #, by Lemma 2.7. Then by Theorem 2, we have a #-measurable density of £
w.rt. 7, which, at the sarne time, is a density of P w.r.t. n.

CorOLLARY 2.1. Suppose that (X, o, 9 is locally weakly dominated. Then there
exists a smallest pairwise sufficient subfield with supports of #.

The subfield is obvioualy the one g d by (a version of) all densities of 2 with
respect to the pivotal measure.

The same result is shown in & more general context in Theorem 5.
We now give a definition of a pivotal measure of a locally weakly dominated statistical
structure.

DerniTion 2.4, A locally localizable measure n is called a pivotal measure of a locally
weakly dominated statistical structure (X, o/, #) if it has the following property.
(i} It is a dominating measure of (X, &/, 9.
(i) A subfield 4@ is pairwise sufficient for (X, o, #) and contains supports of # if and
only if every P in #has a #-measurable density w.r.t. 2.

This definition agrees with that in Definition 2.3.
For the dominating measures other than the pivotal measures we give

TuroreM 4. Assume that (X, o, P) is locally weakly dominated by m and let # be a
wbfield of of.

Then ¥ is pairwise sufficient for (X, o, &) and contains the supports of ? if and only
it has a Neyman factorization:

pix, P) = gix, PYalx)  [m),

where g(x, P) is @ nonnegative R-measurable function for each P in P and h(x) is a
nonnegative fl(m)-measurable function.
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Proor. The “if” part is proved by applying Theorem 1 to (X, #(m), 2. For, #1(m)-
measurability of & and 7 ~ Pimply A > 0 {rii] and thus the assumptions of Theorem 1 are
fulfilled by (X, #1(m), 3. Hence & is pairwise sufficient for (X, #(m), , and contains
supports of 2. It follows that ¥ is pairwise sufficient for (X, o, 97, because each P in Pis
the restriction of some £ in $on o, Further, @ contains supports of 2, as the same function
p(x, P) servea as a density of P and B.

For the “only if”” part define measures 2 and 77 as in Theorem 3. Then by Lemma 2.7,
4 is pairwise sufficient for (X, #1(m), ) and contains supports of ¥ Hence there exists
g(x, P), a @-measurable density of P w.r.t. 7 as well as P w.r.t. n.

The remainder of the proof ia a construction of A(x). It goes the same way as Mussmann
(1971, Theorem 4.5). As the reference is unpublished, we sketch an outline of the proof
here.

Let us take any set A in #(n). Since n ~ m and both the measures have the finite subset
property, A, being o-finite w.r.t. », is also o-finite w.r.t. m (see Lemma 2.1 (a)). Hence the
Radon-Nikodym theorem gives us a density of n w.r.t. m, when both are restricted on A.
Write it Alx, A) and define

hix, A) = kix, A) f xEA,
=0 otherwise.
It is easy to see that the family of functions
{hix, A); A€ n)

is an n-cross-section.
Lemma 2.2 now gives us a nonnegative function A(x) which is #2(n)-measurable and
hence (by Lemma 2.5) o!(m)-measurable and satiafies

hix)I(x, A) = h(x, A}  [n]
for all A in #(n). Thus we have

jl(x. Ah(x) di =J’ h(x) dit -J' h(x, A) dm
A

= n(4) <,

By a standard technique we have, for any ive of- ble n-i ble f
flx),

2.3) J’ [(x)A(x) dmi =f f(x) dn.

We will now prove that

2.4) j &(x, P} A(x) ant = J‘ plx, P} dm
A A

for all A in «I(m) which would give a desired factorization. Note that (2.3) implies (2.4) for
A in . Since [g(x, P) > 0] can be written as }, E; where E; € &, (2.4) clearly holds for all
A in #1(m).

REMARK 2.3. (a) In case (X, o, 2} ia weakly dominated, m can be assumed to be
localizable. Then A(x) can be taken to be #/-measurable.
(b) However, as Example 4.4 shows, os-measurability of A(x) does not follow in general
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ExAMrLE 2.1. Let Xbe a two-dimensional Euclidean space whose generic point is (y,
), and & be the family of sets A such that all of its y-sections, denoted by A,, are Borel
sets. Define a localizable measure m on of by

m(A) = T ({A,); ~@ < y <},

where ! is the linear Lebesgue messure.
Now, let 8 = (€, 1) be a two-di ] p and to each @ such that —» < §,
< , define P, by

Py, 2. P)) =exp{—(z=n)'/2] # y=¢
=0 otherwise.

Lat & be the family of all those sets A in of such that A, = @ except for a countable
oumber of y and their complements. Then # has a Neyman factorization, is pairwise
sufficient and contains supports of # = (Py; 8 € 6). o itself in the smallest sufficient
subfield.

The following two examples, both having locally localizable d i
mggest posaibility of extending our results further to some more general cases.

ExAMPLE 2.2. Consider the concept of uniform distributions from a wider scope. Let
(X, o/, m) be a measure space and # = {F(§); § € 6} be any subfamily of &/(m) and let
m(F(#) > 0 for all § in ©. Define a probability measure P, for each & in 6 by

PyA) = m(A N F()/m(F(8)

for all A in of. Let us call #= {P,; # € 8) the family of uniform distributions on &, w.r.t.
m,

Here the subfield d by & d d by 9, is the smallest pairwise sufficient
subfield with supporu The amallest sufficient (or pairwise sufficient) subfield does not
necessarily exist, as Example 2 of Basu and Ghosh (1967) and our Example 4.4 illustrate.
In this case Neyman factorization is necessary and sufficient for pairwise sufficiency with
supports without any condition on the dominating measure m.

EXAMPLE 2.3, A measure given by Halmos (1950, page 131) serves as an example of a
nonlocalizable dominating measure. Suppose that Y and Z are uncountable sets and that
| Y1 < [Z). In the product space Y x Z, a set of the form L{) = ((y. b);y E Y}, (b€ 2),
is called a horizontal line, and M(a) = {(a, 2); 2 € Z}, (a € Y), is called a vertical line. A
subset A of Y x Z is called full on L(b) (or M(a)) if L() — A (resp M(a) — A} is countable.
Pollowing Halmos we define a o-field of a subsets of Y x 2 by

o = (A; Ais full or ble on sach hori } or vertical line},
and a measure n on o by

n(A) = The number of horizontal and vertical lines on which A is full.

1t is easily seen that n is not o-finite, that it has the finite subset property and that local
of- bility w.r.t. it coincides with -measurability. We further prove that a is not
localizable and, hence, is not locally localizable.

Take a set A in on). Then the number of horizontal lines on which A is full is finite.
Let their union be denoted by L and define f(x, A} = [(x, A N L). Naturally { f(x, A); A
€.44n)) is an n-cross-section.

1f we assume that n is localizable, then there exists an a-measurable function f(x) which
fatisfies
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fixM(x, A) = f(x, A)  [n]

for each A in o(r). Denote by E the set on which f(x) is nonzero. By taking L(b) as A we
see that E ia full on any horizontal line. Hence | E| = | Z| (| Y| — Ro) = | Z|. On the other
hand, by taking M(a) as A we see E is countable on any vertical line. Hence, | E| =
] Y[Ro =< | Y|, which is a contradiction.

We can construct a “kth product” of the measure n on X = [['-) (Y, X Z.), as follows.
Denote by x = (y,, zi; -+ -; Y, 22) & generic point of X. Define o and a measure m on .o/ in
an analogous way:

o = {A; A is full or countable on each (2 — 1)-dimensional hyperplane which is
orthogonal to a coordinate axis},

m(A) = The number of such hyperplanes on which 4 is full.

The proof that m is not locally localizable goes the same way as above, except that
notations are more cumbersome.

A family 2= (P,; § € 8} of probability measures having m as a dominating measure is
defined as follows. First we define a function ¢{y, z: #) on Y x Z by

qly, 2,8) = Iy, a) + Iy, a0)ea + Iz, B)m + Iz, B2)m,

where 8 = (o), az, By, Br, £1. &, M, T), o and a7 are two distinet points in Y, 8, and 8, are
two distinct points in Z, {1, &, m and n; are nonnegative, & + &+ m + =1 and Ny, a))
=1if y = a) and = O otherwise, etc. Now define P, by%f = [’ g(y. z.; 8). The
statistical structure thus constructed, with a sufficiently large k, has a sufficient statistic
which is calculated as follows:

Look at y,’s in x and see if there are two different y-values each assumed by more than
two y/s. In that event, record the two values and the number of y,'s assuming each of
them. Otherwise, record all the different y-values in x and the number of y,'s assuming
each of them. The statistic thus calculated is denoted by u{yi, - -, a). Then look at 2,'s
and define v(z\, - -+, z2) similarly. The statistic ¢(x) = (u{y;, ---, ya), t{z1, *--, 22)) I5 2
sufficient statistic and has a Neyman factorization.

8. Minimality of pairwise sufficient subfields. Take any two measures P, and P;
in 2 Throughout this section let r(x; P,, P;) be any fixed density of P, w.r.t. (P, + P3).

THEOREM 5. Assume that every P in P has a support S(P). Then the subfield @
generated by all the functions
Iix; S(P)) PeY.
and

rix; Py, P)I(x; S(P) U S(Py)), P, € P
is a smallest pairwise sufficient subfield with supports of #, and is a pairwise smallest
sufficient subfield.

Proor. First we prove that 9 is a smallest pairwise sufficient subfield with supports
of &

Let @ be a pairwise sufficient subfield which contains a support T(P) for each P in :’
There exists a #-measurable density s(x; P,, P;) = dP,/d(P, + P,) for any P, and Pyin
2. Then S(P) A T(P) € #19) and it follows that for any real a

[rix; Py, Pa)l(x; SIP\) U S(P2)) > a) A (s(x; Pr, P)I(x; T(P) U T(Py)) > a) €.412)

which shows that # D 9@ [#),
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Now we prove that pairwise amalleat sufficiency of any subfield @’ follows from ita beipg
mallest pairwise sufficient with supports. Let # be a pamvue sgfﬁclenl subfield and write
= (S(P); P € #). We are to show that # > aVL(#), nnq it is enough to show that for
any SIP) in &and any P, and P; in & there exists a set B in ¥ such that (P, + P,)(B A

=0
su;l):)ﬁng that & is pairwise sufficient for the family of all the finite convex combinations
of measures in 2, we have a function f(x), a & -measurable density of P w.rt. (P, + P, +
P). Let B = [ f(x) > 0]. Then we have

J’ fx) d(P, + Py + P) = PIBN (X - S(P)) =0,
Bowx-s1m

and, since f(x) > 0in B, (P, + P;)(B 0 (X — S(P)) = 0. On the other hand, P({X - B) n
StP) = P(X — B) = 0. By the definition of a support this impliea (P, + P:){{(X - B) n
S(P)} = 0, 30 that (P, + P,}(B A S(P)) = 0.

It follows that

B>MNYSDOE  [2])

because #V.”is pairwise sufficient and contains supports of .

ReMARE 3.1. (a) In view of the equivalence of Conditiona A and B and the paragraph
following Condition A in Section 1, Theorem 5 holds true under each of the conditions
mentioned in the said paragraph, including coherence.

{b) A recent paper by Siebert (1979) includes a proof of the same subfield being pairwise
smallest sufficient. The same paper and a paper by Luschgy (1978) gave examples of

i e of pairwise Llest sufficient subfield:
We quote here the following lemma by Hasegawa and Perlman (1974, Lemma 3.3).

!..EMMA 3.1. Assume that (X, of, P) is coherent. If a subfield R is sufficient, then B°
=3

REMARK 3.2. If we apply this lemma to each pair (P, P} in &, then we have
& =, provided that & is pairwise sufficient.

PRoPOSITION 3.1. Assume that (X, o, #) is coherent and # is sufficient for (X, o,
#). Then
209,

Proor. Since @ is pairwise smalleat sufficient (vide Remark 3.1(a)), 2 C #V.41P, +
Py) for all P, and P; in & So by Remark 3.2, 9 C 4 = @ Hence 2C #= & = @°.

THEOREM 6. Assume that (X, of, #) is coherent. Then 9 is smallest suffictent.

The proof of this is the same as that of Theorem 2.5 of Pitcher (1965), except that we
use the foregoing p ition to plete the gap pointed out by H and Perlman

{1974). Since the proof is short it is reproduced here for the sake of completeness.

ProOF. 9 is sufficient by the argument given in the proof of Theorem 2.5 of Pitcher
(1965). The proof is completed by appealing to Proposition 3.1.
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4. The discrete case. Let X be an uncountable set, o the power set of X, all P be
discrete and only #null set be the empty set. This case falls in the case of weak domination
ifweukothodom!m&nxmunmmwbothooounﬁummdp(x,m-un
probability function of P. A statistic is defined a3 a class of mutually disjoint nonempty
ssta which collectively cover X (for details see Morimoto (1972 or 1973)).

DeriNiTiON 4.1. A subfield @ separates a statistic I= (T if for any two sets T and
8 in J there exists a set B in # which contains T and does not meet S.

DerintTioN 4.2. A subfield # is separating if for any pair of points in X there exists
a set in & which contains one and only one of them.

Basu and Ghosh (1967) proved the existence of the “smallest sufficient statistic” denoted
henceforth by .4 = {M}. They showed that all the unions of its sets constitute the smallest
sufficient subfield. It was shown that two points x and y belong to a same set in .4 if and
only if

(41) plx,P)>0esp(y,P)>0 forall Pin 2 and
pix, P)/p(y, P) is independent of P.

Lemma 4.1. Let (X, o, P) be a discrete statistical structure. A subfield # is pairwise
sufficient if and only if it separates 4.

Proor. The “only if” part is Theorem 3 of Morimoto (1972). Let us take up the “if”
part. Take P, and P; in 2 and define

g(x) = plx, P\)/(plx, P1) + plx, Py))

on the countable set [ p{x, P\) + p(x, P;) > 0]. Because of (4.1), ¢(x) is constant on each
set in 4. Therefore [p{x, P\) + p(x, P;) > 0] is a countable union of sets in .4, say =
U M().

We can get a disjoint sequence (D{(n); » = 1, 2, ...} such that UZ, D(n) = X, Dix)
contains M{n), meets no other M(i), and belongs to #, for each n.

Nowuundv(x)meuduwayl.hnutncommonowthn) The function g{(x)
thus ded is a @ d y of P, wxt P, + P;, 8o that & is pairwise
sufficient.

The following lemma is due to B. V. Rao.-

LeMMA 42, Let 3 be the subfield generated by 4 and S(M) be the subfield generated
by all the sets in .4 except M. Suppose that 8 is a proper subfield of 3. Then @ separates
M if and only if B = M) for some M in 4.

Proor. Suppose @ separates 4. As # v 9 there exists M in .4 which does not belong
to 4. We shall show that eny set K in .4 other than M belongs to #. As & separates .4,
there is a set B in # which containe X and does not meet M. Since B € 9, either B or X
— B is a countable union of sets in .4. In the latter case, however, from the separating
property of @ it would in M, ry to the ption. So B is a countable union
of sets in .4, say, = UZ, M(i). For each M({) there exists a set B(i) in # which contains X
and does not meet M(i). The set (NZ, B(i)) N B, obvioualy in M, is equal to X.

The converss is obvious.
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TumoreM 7. Let (X, o, ) be a discrete statistical structure and let A be the smallest
sufficient statistic. Then
(8) The subfield 9 generated by A is the smallest pairwise sufficient subfield with
and hence is pairwise smallest sufficient.
{b) The subfields generated by ail but any one of the sets of 4 are minimal pairwise
sufficient.
{c) No smallest pairwise sufficient subfield exists.

Proor. (a) follows immediately from Theorsm § since the 9 of Theorem 5 ia identical
with the 9 of Theorem 7. The remaining parts follow from Lemmas 4.1 and 4.2,

Remark 4.1. Intersection of two pairwise sufficient subfields may not be pairwise
wufficient, unlike the case of sufficiency (cf., Burkholder {1981, Theorem 4)). For example,
take two such subfields as described in (b). Their i ion does not sep M.

Remanx 4.2. The subfielda described in (b} are pairwise sufficient and do not have
Neyman factorization.

REmaRk 4.3, Let us see what h if 2 is replaced by some subfield /. A
ocaly that .o i separating.

Let {p(x, 8); 8 € O} be a family of nonnegative functions p(x, 8) on X which assign
positive values to a countable number of points and satisfies ¥ {plx, #); x € X} = 1.
Define P = (P,; # € 8}, where P{A) = ¥ { pix, §); x € A} for all A in o and for all § in
0. [M.l;xnd 9 ba as before. The counting measure m on & is locally localizable, because
Him) = 2,

Here again, a subfield 4 ia pairwise sufficient if and only if it separates 4. In fact, if #
separates 4 it is pairwise sufficient for (X, 2*, 2) and, hence, for (X, o, #). This proves the
"

The “only if”" part is proved as follows. As & is separating and all the sets in .4 are
countable sets, o separates .4. By Lemma 4.1, # is pairwise sufficient for (X, 25, #). It
follows from pairwise sufficiency of @ for (X, o, 2) that @ is pairwise sufficient for (X, 2%,
#). Hence, again by Lerama 4.1, & separatea 4.

H we assume further that o contains all the singletons, it follows that m is not
localizable, o includes 9, p(x, 6) are o-measurable and (X, o/, #) satisfies the assurnptions
of Theorem 4. (Incidentally, if o ins no singl then m is localizable, because
#m) ~ (@).) Theorem 7 remains true in this case. For, as we have seen, any subfield of
o which is pairwise sufficient for (X, «, #) ia pairwise sufficient for (X, 2%, #), 8o that the
subfields which are proved to he smallest or minimal pairwise sufficient under (X, 25, P
bave the same property under (X, o, #). The same property is not true for sufficiency and
there may not exiat a Llest sufficient subfield (see E le 4.4 and Example 2 of Basu
and Ghosh (1967)). A subfield has a Neyman factorization if and only if it includes 2.

ExampLE 4.1. As the simplest case which, however, retains all the essential features
of the discrete case, let us take up the family of all the one-point distributions on X. That
is, we define P = (P,; 6 € X) where P){(8)) = 1. Taking the counting measure m as the
dominating measure we have

dP,
p(x.P;)-E-l x=0

=0 otherwise
The subfield 9 given in Theorem 7(a) is now the family of all countable and cocountable

sets. For all P, in P, p(x, Ps) is 9-measurable, so that 9 has a Neyman factorization. 3
containg po sufficient subfield, as the smallest sufficient subfield in o = 2%,
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Let o be a fixed point in X and let 2{a) be the subfield generated by all the singletons
except a. It ia the specialization of 2(M) in Theorem 7(b) to this case. It does not contain
the support of P, which is {a}, and it doea not have Neyman factorization aa p(x, a) cannot
be factored as is required. This shows that the assumptions in Theorem 2, 3 and 4
concerning supporta cannot be deleted.

The foregoing example was treated also by Luschgy (1978. Example 1).

We now ask whether there exist minimal pairwise bfields other than those
given in Theorem 7(b). Take up the preceding example again and note that a subfield is
pairwise sufficient if and only if it separates points. We wish to find out if there exist
minimal separating subfields other than those generated by all but one nmgle(om

Our question, which has now taken & set theoretical app . was ly
by Namba (1977). He obtained, among other things, a fine representation theorem whxch
completely charcterizes the minimal upuaung subﬁelds. and found an example of such a
subfield that does not in any The f g le will illustrate his
results in the present context.

ExampLE 4.2. Let ] = (i) be an uncountable set of indices i and 2’ be the space of all
functions on  to {0, 1}. Points in 2’ are written x = (x{i); i € 1), or simply x(i) and O will
be the point such that O() =0 forall i in .

Now we define, for each nonnegative integer n, X. to be the set of all points x such that
x(i) = 1 for at most n indices i in I. Put X = U, X,. A subset B of X is called a clopen set
if there exists a countable subset K(B) of I which will be called a support of B, such that
x € B and x(i) = y(i) for all i in K{B) imply y € B. Let & be the family of all such sets. It
is a separating subfield of 2¥ without any singleton.

We further prove the following property of X equipped with & which will be called w-
compactness: Suppose that to every x in X there corresponds a “neighbourhood™, i.e., a set
B(x) in # of the form B(x) = { y; y{i) = x(i), 1 € K(B(x))). Then we can choose a countable
number of points xs, £ = 0, 1, - - such that U~ B(xs) = X.

It is enough to prove the same property for all X.. We do this by induction. Take X,
and write K = K(B(0)). If a point x does not belong to B(0) then x(i) = 1 for some i in K,

80 that there is a countable number of such points. Let them be x;, x3, -+, Xa, --- and
take O a8 xo. Thus the w,-compactness of X, is established.
Next, assume that X,, Xz, - - -, X, are w;-compact and consider X..,. Notice again that

a point x outside B(0) satisties x(i) = ) for some i in K. B(0) and K(0) are different from
those considered relative to X, or X, but we use the same symbols. Take an integer p such
that 1 < p < n + 1 and & point d such that d(i) = 1 for p indices i in X and define D = {x:
x(i) = di), { € K). Since X.., — B{0) is a countable union of such seta, it suffices to show
that D is co dbya bl ber of neighbourhoods.

For any x in X let x* be the “restriction” of x on J = I — K(0), i.e., x* = {x(i)}: i € J) and
Z = (x'; x € D). Then Z is the set of all functions on J to {0, 1} whose value is 1 for at
moet n + 1 — p indices in J. As the cardinality of J is the same as that of /, the assumption
of induction on X...-, applies to Z, giving rise to a countable number of points whose
neighbourhoods collectively cover Z. Let them be xi, x2, ---. Then take all those points
x in D whose restrictiona on J coincide with any of x;,, ¢ = 1, 2, --. and let them be
denoted by Xy, Xz, -+, Xa, -+ . [t is clear that UL, Blxa) = D.

This amounts to proving that # is minimal separating, since the theorem of Namba
states {in a more extensive set up) that w, pactness of X defined above is a Y
and sufficient condition for 4 to be minimal sep ing. More ily, let Y be any apace,
o a separating o-field and # = (F;; i € I') be its generator. There is a natural correspond-
ence between a point x in X and a function (x{i); i € I) on I to {0, 1} defined by x(i) = 1
« x € F,. Through this correspondence Y and o are conveniently identified with a subset
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X of & and the family & of all ths “elopen” sets in jt. The minimality of «is thus checked
through an-compactness of X.
R.V annmoonhhndB.V Rao gave us the following example of a o-field which is
but has no mink bfield. In view of Remark 4.3 pairwise
umdmcyo{n bfield i» ! toita i y in this case. So, it serves as

paranng prop

Anuamphwhhnommmnlpdrﬂtnﬁcunuubﬁald.

ExXAMPLE 4.3. Take X = 2’ as in the previous example and let o be the family of all
the clopen subsets of X and 2 be the family of all one-point probability measures. Let 4 be
any separating subfiald of & and let us prove that 4 has a separating proper subfield. In
what follows, ¢/, &, + -+, €, -+ - will be either 0 or 1. Define two points x(i; &) ¢ =0, 1 in
X by x(i; 0) = O and x(i; 1) = I, where I(i) = 1 for all i in I. By the separating property of
4 there exists B(¢,) € @, ¢, = 0, 1, such that x(i; ¢,) € B(e,), & = 0, 1, B(0) N B(1) = D and
B(0) U B(1) = X, Let K(1) denote a common support of 5(0) and B(1).

Define four points x(i; ¢;, e2) by

wiiq,a)=a €K1
= i€l-KQ).
There exists four mutually disjoint sets Ble,, &) € B such that x(i; ¢, &) € B, &) for all
qand ¢ and U {Bla, &); ¢ = 0, 1} = Ble;) for ¢ = 0, 1. Let K(2) denote a common

support of Bie,, @), ¢, & = 0, 1 and assume, without loss of generality, that X(1) C K(2).
Then define eight points x(i; ¢,, &, &) by

xiia,6,a)=a (€K()
= €K -K(Q1)
=6 iel- K@),

and find out eight disjoint sets Ble,, &, &) in a similar way as above and proceed iteratively.
We get 2 branching sequence of sets Bie, &, -+, &) and increasing sequence of sets of
indices (K(n)). As LE-, K(n) is & countable set, for each sequence € = (¢, &1, -+, €0, ++ )
M1 B¢, &, * -+ &) in not empty and belongs to &, with a support U3, X(n). Let it be
denoted by B(e).

Define ¢ to be the family of all those sets C in @ such that either C or X — C is included
by a countable union of the sets B(¢). €is a separating subfield of @. For, if x and y are two
points in X, then there exista a set B in @ such that x € B and y € B. Take the set B(¢)
which contains x. Then B 1 B{e) belongs to ¢, contains x and does not contain y. Moreover,
¢ n a proper subfield of 4, as it does not contain B(0).

T. Kamae drew our attention to the following exsmple.

ExamrLe 4.4. Using the same notations as in Remark 4.3, Jet X = (=1, 1), of = the
Borel field of X, @ = (0, 1) and for each & in © let.p(x, 8) satisfy the following conditions.
pl6,8)>0 and p(-6,8)>0
plx, @) =0 H x¥@ and -8
Pi6,8) + p(—8,0) =1,
MNhP.hnmwhtmummd\pmblbmﬁup(—a ) on —6 and p(6, #) on 6.

Lat 9 denote the family of all and tric sets. Then by
Remark 4.3, 9 it .prhmﬁdmtmbﬁddwdthmpmdf If we dufine
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8(x,0) = p(0, 8 f x=@0 or —8
=0 otherwise, and
Afx) = 1 f =0

=pix, -x)/p{~x,-x) H x<0,
then
4.2) plx, 0) = gix, Ohix)
where g(x, #) is 9-measursable, but if p(#, ) ia Borel, Alx) is ble, not w.rt o

but only w.r.t. 2¥ @ &I(m). This is the case for any factorization of the form (4.2), which
ahows that we cannot have #-measurability of h(x) in Theorem 4. Incidentally, the family
of all symmetric Bore] sets is sufficient if and only if p(#, 8} is a Borel function and in case
it ia non-Borel, no smallest sufficient subfield exists.
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