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0. Introduction. In his paper “On a class of probability spaces” ([1]), D.
Blackwell observed that the class of Borel sets of & metric space may be a sepa-
rable ¢-field without the metric space being separable. However, in a subsequent
letter to one of the authors, he stated that the question remained open. The
object of the present note is to prove that the separability of the o-field of Borel
sets implies separability of the metric space, assuming the continuum hypothesis.
What is actually used, is not the continuum hypothesis but the following propo-
sition, which we will abbreviate as ®: If u is an uncountable cardinal, 2* > ¢
(the cardinal of the continuum). This is easily deduced from the continuum hy-
pothesis and it seems to us that it has not so far been proved without the con-
tinuum hypothesis (cf. [4]). The main conclusion is as follows: A metric space is
separable if and only if the cardinality of the Borel sets is < ¢, provided we
assume @. It is also shown that the above theorem implies @.

1. The main result. We introduce certain notations. X is a metric space and
@® is the o-feld generated by open subsets of X. Sets of ® are called Borel sets of
X. ® is colled separable if there is a sequence [A.] of sets of ® generating it.
In that case, cardinality of ® i8 = ¢ ([2)). Before proving the main result we prove
an auxiliary result, interesting in itself.

TreoReEM 1. X is separable if and only if every disjoint family of nonemply
open subsets of X is counlable.

Proof. 1f X is separable, its topology has a countable basis Gy, Gy, *-*
Since any nonempty open set of X contains a nonempty G, , the existence of an
uncountable disjoint family of nonempty open subsets of X implies the existence
of an uncountable disjoint family of nonempty G:'s, which is impossible. To
prove the converse, let us suppose that every disjoint family of nonempty open
subsets of X is countable. Let n be an integer = 1 and let X, be defined as fol-
lows: X, = {A: A C X;z,y e A = d(z, y) > 1/n}. Elements of X, are sub-
sets of X and are partially ordered by the relation of set inclusion. Further,
every linearly ordered sub-family of X, has 2 supremum in the family (namely,
the set-union) and hence, by Zorn’s lemma, there are maximal elements contain-
ing any element of ., in particular any point of X. Let A4, be one such non-
empty maximal elemeant. Maximality of A. implies thatify ¢ X — A, ,d(y,2z) S
1/n for some z ¢ A, . Further, each 4, must be countable, as otherwise, the
spheres with centres at the points of A, and radii (1/2n) will be 2n uncountable
disjoint family of nonempty open subsets of X.

Let nownrun over 1,2, --- and set A = U,A, . A is countable and for any
y ¢ X — A and any positive integer », there is an z. £ A, such that d(y, T») =
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1/n. This shows that A is dense in X. Since A i8 countable, this completes the
proof that X is separable.

Remark. This result need not be true if X is not metric. See, for example, (3].

We now prove our main result,

TreoreM 2. (Under assumplion @) X 18 separable of and only if cardinality of
® S c. In particular, X is separable if and only +f ® is separable.

Proof. If X is separable, its topology hasa countable base Gy , Gz, - - which
generates ® and hence cardinality of 8 < c. Conversely let cardinality of ® be
S ¢ If [Aa}a is any disjoint femily of nonempty open subsets of X, then,
every subunion of the A.’s is open and hence ¢ ®. There are 2 such subunions
where u is the cardinal of I and since cardinality of ® is < ¢, we have 2 < ¢,
This however implies (in virtue of assumption ®) that » £ Ny. Theorem 1
now applies and proves that X is separable. This completes the proof.

Remark. We can show that Theorem 2 implies ®. To see this, let X be an
uncountable set with cardinal u. Give X the discrete topology so that @ is the
class of nll subsets of X. Cardinality of ® is thus 2 and since X is not separnble,
Theorem 2 implies that 2 > ¢. This is precisely assumption @.
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