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By R. R. BABapur anp R. Ranoa Rao
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1. Introduction, Let X1, X3, - - - be a seq of ind dent and identically
dnsmbuted random variables. Let @ be a constant, — @ < a < «,and for each
n=12--let

m p,np(Mga)_

It is assumed throughout the paper that the distribution of X, and the given
constant a satisly the conditions stated in the following paragraph. These condi-
tions imply that p. > 0 for each n, and that p, — 0 as n — . The object of
the paper is to obtain an estimate of p. , 8ay g, , which is precise in the sense that

(2) /P =1+ 0(1) 88 n— o,

Let { be a real variable, and let ¢(¢) denote the moment generating function
(mgd) of Xy, ie,p(t) = E(e*"),0 < ¢ § . Define
©) $(8) = ).
Let T denote the set of all values ¢ for which ¢(f) < . We suppose
that P(Xy = @) # 1, that T 43 a non-degenerals interval, and that there ezists o
positive v in the inlerior of T such that ¢(r) = inf, {¥(1)] = p (say). These condi-
tions are satisfied if, for example, ¢(!) < ® for all ¢, E(X1) = 0,a > 0, and
P(X, > a) > 0. In any case, r and p are uniquely determined by

¢(7)
o(r)
where ¢’ = dp/dl, and we bave 0 < p < 1.

There are three separate cases to be considered.

Case 1: The distribution function (d.f.) of X, is absolutely continuous, or,
more generally, this d.f. satisfies Cramér’s condition (C) (1, p. 81].

Case 2: X, is a lattice variable, i.e., there exist constants zo and d > 0 auch
that X, is confined to the set {zo + rd:r = 0, = 1, & 2, --- | with probability
one,

Case 3: Neither Case 1 nor Case 2 obtains.

We can now state

Tusorem 1. There exists a sequence b, by, - -+ of positive numbers b, such that

4) =¢ and p=¥(r),

(8) = (m), by (1 +0(1)],  loghs, = 0(1)
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ag n — . In Cases 1 and 3, ba is independent of n, This last also holds in Cox:
fP(Xi=1a)> 0.

The proof of Theorem 1, and of Theorem 2 below, is given in Sections 25
The present determination of b, is given by (4), (9) and (33) in Cases | and3,
and by (4), (8), (37), (38) and (46) in Case 2. The following refinements ¢
Theorem 1 are available in Cases 1 and 2:

Turoues 2. (Cases | and 2). For each j = 1, 2, - -+ there exisls o boundel
(possibly conatant) sequence ¢; , €1, » such that, for any given positive inlegerk.

s €y Ctn Ciun 1
S N S | )
asn — ©,

The sequences |¢c;..] are given explicitly for Cases 1 and 2 in Sections 3 and
respectively. It would be interesting to know whether (6) holds in Case 3
well, perhaps with the |¢; ) determined according to the formula for Case I.

Estimates in the form {5) or (6) were first obtained by Cramér (2, pp. 20-1!
in the case when X, has an absolutely continuous component (80 that Case |
obtains). Cramér showed that in the latter case (6) holds for every k (withi,
and each c;.. independent of n), and determined b, . Our method of proof in the
general case (cf. Sections 2-5) is essentially a variant or extension of Cramérs
method. Case 2 was treated recently by Blackwell and Hodges {3| by a differen:
method. It is shown in [3] that (6) holds for & = 1in Case 2, under the restrictio
on n and a that P(X: + -+ + X. = na) > 0 for every admissible n, and th
requisite b, and ¢, (which are then independent of n) are determined explicitly
Some other references bearing on the problem under ideration are [4), |3'
and [6).

In the following Section 2 it is shown that p. can be expressed as o* [, , wher
I.i8 8 certain integral; 0 < . < 1,80d /. = O(n™") asn — «. I, can be est
mated by application of certain refinements {1}, {7) of the central limit theorem.
This estimation of /, is carried out in Sections 3, 4 and 5 for Cases 1, 2 and 3
respectively. It may be added here that, as was pointed out in [2], direct applics-
tion of the central limit theorem (or refinements thereof) to p. defined by (1)
does not, in general, yield approximations g. which satisfy- (2).

In Section 6 we describe certain numerical approximations to p. which are
suggested by Theorems 1 and 2 and their proofs.

2. Lemmas. Let Y, = X, — a, and let F be the (left-continuous) distributios
function (d.f.) of Y\, F(y) = P(Y, ‘y). Let G be defined by G(»
= Jewcy<ep '€ dF(y). Since E(e’™*) = ¥(r) = p, it is clear that G is a prob
ability d.f.. Let Z, be o random variable distributed according to G.

Lexua 1, The m.g.f. of Z, exisis in a neighborhood of the origin. We have

() E(Z,) =0, 0<Var(Z) < =.
Proor. Let {(!) denote the m.g.f. of Z,. Then £() = ¢(r + §)/p foraly,
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by (3) and the definition of Z, . Since ¢({) < w in a neighborhood of { = 7,
it follows that §(f) < « in a neighborhood of { = 0. Consequently, E | Z,[" < «
forr=1,23, ---and E(Z]) = (d'§/dl} s . Ln partioular, E(2,) = {dE/df} oo =
¥(r)/p = 0, since ¢(t) is minimum at ¢ = r, and r is in the interior of 7", It
remaing Lo show that Var(Z,) > 0. Suppose to the contrary that Var(2,) = 0;
then P(Z, = 0) = 1; hence P(Y, = 0) = 1, ie, P(X, = @) = 1, which is
contrary to our assumptions, This completes the proof.

lz":mVnr(Z,) be denoted by o', It follows from the preceding paragraph and

(4) that

1 v’(") -
(8) o e o'
Define
9) am=or, (0<a< )
Let Z,,2,, - - - be aseq of independent and identically distributed random
variables. For each n, let
Lt +2,
(10) U= —
and
(1) Huz) = P(U.<z), (—» <z< w),
Lemua 2. p. = p" 1., where
(12) L= e [ H.G) - KO d
Proor. Let Y, = X, —aforj= 1,2, ---  n Then
p=PYi4 - +Y.20) by (1)
= [ [ arw) Rt
N a2l
(13) =t [ [ dg) - date)
LSS YN}
-0 [ ) by (9), (10), (11)
LF <]
=p"IT sy

1t follows by integration by parts that I defined in (13) is equal to I, , and this
completes the proof.
A theorem of Chernoff [4) ststes that p. 5 p" for every n, and that for any
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given positive py < p, we have p. & o7 for all sufficiently large n. A simple
proof of Chernof's theorem can be given as follows. Since 0 3 HdJz) -
H.(0)S 1 forevery n and z 2 0, we have /. 5 1 and hence p. S " for every
n, by Lemma 2. To establish the second part of the theorem, we note first that
lima.oHa(z) = &(z) for every z, where

(14) o) = [ o a (~» <2< )

by (7), (10), (11) and the central limit theorem. Let ¢ be a positive constant.
Then

Lara[ (e - Hi0)dr

Z(H() — H.(0)] n'af-c""'d:

= [Ha(e) — Ha(0)] 6™,

Hence lim infe.e {n log I} 2 — ae. Sincs . S 1 for every n, and since ¢ is
arbitrary, it follows that n log I, = o(1). Hence n™* log pa = log p + of1),
by Lemma 2, and this is equivalent to the conclusion desired.

The preceding ar t depends only on the central limit theorem. In the
following ions we esti 1. more ly by substituting the i
of H.(z) due to Cramér [1] and Esseen [7] in the right side of (12). The remainder
of this section is concerned with preparations for this application of the Cramér-
Esseen expansions. Almost all the considerationa of the following paragraphs
are well known, and we include them here only for the sake of completeness.

Let n(w) denote the m.g.{. of Z,/o. According to Lemma 1, 5 < « in a neigh-
borhood of 2 = 0. For j = 2, 3, - - let A; be defined by

15) Med A= G @ A log o(8)] e (G = 3,4, -00).

It should be noted that jIA; is the jth cumulant of the distribution of Z,/s. The
m.g.f. of U., with U, defined by (10), is

[akw/a)" = exp [n 3, MCu/nl)
Clearly, [n(w/a")]" exp (—w'/2) is snalytic in & domain independent of »,

and can be expanded there as a power series in w. By regrouping the terms of
this series according to powers of n we shall have

(18) {rt/a e = V()

where the P; are polynomials. P; ia of degree 37, and P; is even or odd according
a8 j is even or odd. The first fow polynomisls are
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Po(w) = u = 1,
Pi(w) =\,
an Pi(w) = hw' + Au’,

Py(w) = aw' + M’ + ',
Pu(w) = Nw® + (D 4 A + Aaw® + Ao,

Write () = &(z) and #"'(z) = (d'/dz")®(z) forr = 1,2, -+, whemoia
given by (14). Let 1‘,( ) denote the function of z obtained by r ing W'
with (—1)'®""(z) in the polynomial P;(w). It is clear that each P,( ¢) is
absolutely continuous and of bounded variation in {— 0, e ). It should also be
noted that Pj( —®) is square integrable with respect to Lebes,gue measure,

In the following, for any function K(z) of bounded variation in (—w, ),
we denote the c.f. of K by x(t] K), i.e.,

(18) x1K) = [ e aK (@)

for every real ¢. If K is absolutely continuous, x is, of course, (21)’ times the
Fourier transform of X’. The reader may refer to (8, Chapters I-III) for such
elements of Fourier transform theory as are used in this paper.

Lessa 3. For every j, 1, and z

(19) XU P—#)) = Pitye™"

and

(20) Pi(- ) = @0 [ Py dogy).
Proor. As is pointed out in |1, p. 49], we have

)] x(t[97) = (—iye™

forr =01, . Suppose, for given j, that Py(w) = a.w where the a,
and N are constants (depending on j). Then Py(—®) = } ¥ ya, (~1)" ¢ (z);

hence the left side of (19) equals Y5 a, (—1)" x(¢ |$“"); (19) now follows from
{21). The relation (20) follows from (19) by the inversion formula for the
Fourier transform, since dP,( ~#) = Pj(—®) dz, and d®(t) = (2x) Ve di.

A probability d.f. K(z) is said to satisfy condition (C) if

lim supyi.e | x(¢| K) | < 1.

In the following lemma the F; are arbitrary probability d.fs.

Leswa 4. If F, satisfies (C), and if Fy 18 absolulely continuous with respect to Fy
then Fy also satisfies (C).

Proor. In this proof, for any probability d.f. K let K* denote the symmetrised
d{. defined by K*(r) = [2, K(z + y) dK(y). Wa then have

xt1 K9 = [ con (i) dK* = [x(t1 KO |*
for ali &.
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Suppose, contrary to the lemma, that there exiats a sequence {4, :j = 1,2,
such that | ;| — = avd | x(¢ | F2) | — 1 as j — . It then follows from th
above paragraph with K = Fi that [2, cos(t,z) dFf — 1. Hence cos(lg) — |
in Py e. Since Fy e dominates F, e, it is easily seen thy
F- e domi PP e. C ly, cos{tz) — 1 in F}-measur
It now follows from the above paragraph with K = Py that | x(t/| R} [~
a8 j — w, which is impossible. This completes the proof.

‘We conclude this section with a description of the functions 8i(z), Si(z) which
ocour in the Euler-Maclaurin sum formulae, and which are required in ihe
analysis of Case 2. It is convenient to define S, as follows:

(22) Si(z)=%4—z for 0<z31; Si(z + 1) m Si(z).
Forj & 2, S; may be defined a8

W_le': cos (2xrz)

X ey (e
() 8y(z) = . (2er2)
o~ 8in {2wrz
anT): (j odd)
Each S, is & bounded and periodic function; S, is absolutely i for
J 2 2; and at each non-integral z we have
(24) Si(2) = =L, Sulz) = (-1’8,(z) =1,

8. 1, in Case 1. Suppose that the d f. of X, satisfies (C). Since Y, = X, - ¢,
it is plain that P, the d.f. of Y, also satisfies (C). It is easily seen that £ and ¢
(the d.f. of Z,} are absolutely continuous with respect to each other. It therefore
follows from Lemma 4 with P, = F and F; = G that @ also satisfies (C).

Let k be an arbitrary but fixed positive integer. It follows from the conclusee
of the preceding paragraph by Cramér's theorem (1, p. 81] that H.(z) =
K.(z) + Ru(z), where

A
(25) K. (z) = Eﬂ'" Py~%)
and R.(z) is of the order n~**""* uniformly in z. It follows hence from (12) thxt
)  Lo=nle [ K - KO ds + 0.
We have
&
(@ x(t] Ka) = oV Py
jonl)

by (18) and (25). Let fu(z) = exp (—n'az) for z 2 0 and fu(z) = O other
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wise. Then [=.&'fu(z)dz = 1/(n'a — it) = g.(t) eay. Coneequently, by
first using integration by parts and then Parseval’s formula, it follows that

wa [ KaGe) - KO bz = [ K@) s
(28 :
- [reK@ e - L[ o gy a

It follows from (26), (27) and (28) that

(] f- 1 i\ : —MP ( d‘b( -ﬂ)

(29) of2m) I = - +m I 3(it) 1) +0(n7™).
Define

(a0) wea = [ ) Pt d2() (ra=012---).
Since P, is an even [odd] polynomial if & is even {odd], and since f=. ' d&(1) = 0
forj =0,1,2, ---, it follows that each &, is a real constant, and that
(31) e =0 if r + sis odd.
Now, (1 4 itn7a ) = Tagear (=itna™) + a7 £ wo(t), where |w|in

bounded in n and ¢. Since ® has finite moments of all orders, it therefore follows
from (29), (30) and (81) that

@  e@m'l= T { = (- }x) um} +0(x7).

Since pa = 2" 1., and gince xoe = 1, it follows by replacing k with 2k + 2 in
(32) that (6) holds for any given k, with

(33) by = o
ad
) an= Z, (=) o (=12

for every n. This establishes Theorem 2, and hence also Theorem 1, in Case 1.
1t follows from (17) and (30) that the coefficients p,, required to compute
€. 8ecording to (34) are
me = —1
(35) p1a = 3\
15
2

Hoa = 3 — )‘:,
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where the A; are given by (15). Similarly, ¢,,. can be computed from

Mo =3
May = — 15
(36) ma = —15N + 105N
ma = —16 + 1060 — %Ex:

paa = — 160 + 105(IM + M) _0_;_5)‘:)“_‘_103%&

We conclude this section with s remark concerning the role of Craméry
theorem (1, p. 81} in the preceding ar t. Suppose that H. is absolutely
continuous, and that H.is square integrable over (—, =), It then follows,
by integrating (12) by parts and using Parseval’s formula, that

(20%) a(2m)! I = f_._ (‘ + 7:"2)_' {["(5)]‘.} v

where 7 is, aa before, the m.g.f. of Z,/0. (The square integrability condition is
imposed here for the validity of Parseval’s formula, and can be replaced by
others, e.g., that (1 + &)™ | n(it) | be integrable). According to (16), the fune.
tion in curly brackets on the right side of (29°) can be expressed as
3 nan VP (it). By comparing (29) and (29°) it is seen that, from a technical
point of view, the role of Cramér’s theorem in the present special case is to
guarantee that when 3.7an VP, ia replaced by 3 ;=i n'P, on the right side
of (20°), the error introduced is indeed of the order n~**. The same remark, bu,
with (20*) replaced by a rather different formula for /., applies to the role of
Esseen’s theorem in the argument of the following section.

4. 1, in Case 2. Suppose that X, is a lattice variable. Let d be the maximum
span of X, ,i.e., d > 0is the g.c.d. of the differences between consecutive possible
values of X; . Let zo be the number such that @ < 7o < a 4 d, and such that
the possible values of X, are included in the eet {zo + rd:r = 0, £1, £2, ---).
Let

(37) B=dle, y=vd, x=(m—a)d
It should ba noted that 0 5 x < 1. For each n, let
(38) fn = nc — ), 056.<1,

where [z] denotes the greatest integer contaived in z.

Let k be an arbitrary but fixed positive integer. It follows from Esseen’s
theorem for the lattice case (7, p. 61] that H.(z) = K.(x) + L.(z) + R.(z).
where K.(z) is given by (25), R. ia of the order n~*"'* uniformly in z, and L.
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is defined ns follows. For any j = 1,2, --- leth; = 1ifj = 1 0r 2 (mod 4) and
A= —1ifj = 0or3 (mod4). Then

s . I
@) Lnz) = L nV b8 8,07 — 0,) Ki(a) = L Mon(a) say,
where K%' ia the jth derivative of K, . It follows hence from (12) that
1o = nla 'L' ™ (Bo(z) ~ Ka(0)ldz
(10) i -
+ L l N (M n(z) — My n(0)] dz + O(n ),

The first term on the right side of (40) is (cf., (28)) equal to f5 6™ K" (z) dz.
We observe next that, forj 2 2,

wa " M (2) — M) dz = [ () d

=W [ S ) KEE)
(41) + (=187 Sialya) KD(2)) do

= nVh g '£ 8, (y) B9 (z) dr
~ i b 7 [ ) RY () s

=Njn = Nio.0 (s2y).
In (41), we have put n'8 7'z — 6, = ya, and used integration by parts, (24),
and the identity (1)’ k; = h;—;. In order to evaluste the contribution of
M, . to the right side of (40), suppose for the moment that 0 < 6, < 1, and let

(42) =0, L=(—1+0)8a (r=12.".).

Let A, denote the open interval ({,, {,41). Then S;{y.) is linear in z over each
4, (cf. (22)), and its derivative there equals —n'S”. By writing
¥ = Y% fa,, and applying integration by parts to fs,, it follows without
difficulty that

'n'ai ¢ My (z) dz = — '[ KW () de
(43) -
+ Mo+ Mia(0) + 7! T 67K,

where y = off = 7d (cf. (37)). Now, 8;(z) is & Jeft-continuous function of z.
It follows hence that, for given n, the left and right sides of (43) are right-
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continuous in 6. . Since (43) holds for each 6. in (0, 1), we conclude that (43)
is valid for 8, = 0 also.

Since S; and K**” are bounded functions, it is plain from the definition of
N (cf. (41)) that N, is of the order n*7, It therefore follows from (40),
(41) and (43) that

(44) L= pn 30 O K + 0(nH),
rel

Now, according to (20) end (25),

(45) K5 = et [ (3 a et ) aeco

for every r. Let us write
(48) z=¢" b= 18/(1 - 2)l™
Tt follows from (44) and (46) that

R oo * (1 — z) exp [—i186./n)
et = [ e

(47) s
(); o P,-(it)) do(t) + 0(x7"),

Forany andanyj =0,1,2, --- let

S ==

It then follows easily from (31) and {47) that
49 b (2m) I, = ~ -
(49) @m)l= 3 7 12, 86000 mal + 0.

By replacing & with 2k + 2 in (49) we see that (6) holda for any given &, with
b, given by (46), and
(50) Cm = 2 B 1(6.) e

r4a=1j

This establishes Theorem 2 in Case 2, and bence also the first part of Theorem 1.
To complete the proof of Theorem 1 in Case 2, we see from (37), (38) that
P(X,+ -+ + X, = na) > 0implies 8. = 0. Consequently if P(X, = a) > 0
then 6, = O for every n, and hence b, = 8/(1 — z) for every n.

It may be worthwhile to note that in the present case b. can be expressed as

"he'"""/(e — 1)}, which shows that, in general, b, oomllaus about the

value a~' (ef. (33)) as n — o through the sequence 1, 2,

An alternative formula for the coeflicients ¢; required in (60) is

o o= ala-a () a-ah

T4,
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From (51) it in easily seen that, with u = 2/(1 — 5),
Lhm]
hoe=—(8+u)
(52) h=4(6+ u)' + u(l +u)]
b= =40+ w)' + 3u(l + w8 + u(l + u)(1 + bu)]
o= i (8 + u)* + Bu(l + u)0' + 4u(l + u)(1 + su)s
+ 234" + 36’ + Mo + u).

The coefficients ¢;., and &, ¢an be computed from (35), (36), (50) and (52).
The formulae for b, and ¢;,» with § = 0 agree with the results of (3.

6. 1. in Case 8. If X, is not & lattice variable, then neither ia Z, . It follows
hencs from a theorem of Esseen [7, p. 49] that Ha(z) = ®(2) + n7%(z) +
n7ra(x), where f(z) = (const.) (1 — 2') exp (—32"), and ra(z) — 0 uniformly
inz8sn — . The contribution of a7 to I, is n 37 e =f'(z) dz, which ia
easily seen to be of the order n™. It follows that

L= nte "6 18(2) — 0(0)) ds + otn™)

- [ 1/ (z) dx + o(n7)

= o [1 — 8(n! a)] + o(n7)
= (21-11)_'11—l + o(n").

In (53), we have used integration by parts, a linear change of variable, and the
leading term of the asymptotic formula (9, p. 179]

(6) 1-8(z) = @)™z =2 + 37 + 0 ) asz— .

It follows from (53) that (5) holds, with b, = &~ for every n. This completes
the proof of Theorem 1.

Bince #(z) + n7f(z) = K.(z), where X, is defined by (25) with k = 1, the
conclusion of the preceding paragraph is also available from the of
Section 3. We have used a direct calculation instead b this caloulati
suggests the form of the numerical approximations desoribed in the following
section.

(83)

8, Concludk 8. S in a given case, and for given n and g, that

itis required o compute the numerical value of p. defined by (1). In this section
we consider approxirations of the form

(85) gn = 0" (1 — #(nn)),
where p and & are defined by (4) and (14), and v. is & suitably chosen number.
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We shall describe four choices of v., called ve, o, v®, and vi". The resulting
values of ¢. are denoted by qu , q.l.”. eto.

Firat consider
(56) v = nla
where o is given by (4), (8) and (9). Thia choice of v. amounts (cf. (53)) to
approximating 7. by replacing H. with ® on the right side of {12). It therefore
follows from the Esseen-Berry theorem that we always have

_. S E|Z

(&7 lpe—ael $20 5=~
where C is & universal constant. Wallace (10, p. 637 states that € < 2.05.

Next, consider

(58) o = n'/b.

where b. is defined by (33) in Cases 1 and 3, and by (46) in Case 2. (Of course,
¢ = gu in Cases 1 and 3). Then ¢&” satisfies (2), and the o(1) term in (2) s
known 1o be of the order n™" in Cases ! and 2. Finally, let ¢, ., be defined accord-
ing to Section 4 in Cases 1 and 3, and according to Section 5 in Case 2. Define

(59) o = o (1 — () + cin)/n)

if the expression within the square bracketa is positive and v%)’ = 0 otherwise; and

(60) W=+ (0 F el — e — aaa)/n)

if the expression in square brackets is positive and »P = 0 otherwise. Then
4 also satisfies (2), and o(1) = O(n™"") in Cases 1 and 2 (j = 1, 2).
The stated theoretical properties of the approximations qf." are eagy conse-
quences of (5), (6), (54), and (58).

Although {unlike g%) the approximations g’ are derived from asymptotic
expansions corresponding to the case when n — = and a is held fixed, the usefu!-
ness of thess approximations may be wider than is suggested by the derivation.
Some evidence to this effect is provided by the fact that if X, is normally dis-
tributed then p, = g = ¢ = ¢! for every admissible a and every n,
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