ON DEVIATIONS OF THE SAMPLE MEAN

By R. R. BAHADUR AND R. RANGA RAO

Indian Statistical Institute, Calcutta

1. Introduction Let X_1 , X_2 , ... be a sequence of independent and identically distributed random variables. Let a be a constant, $-\infty < a < \infty$, and for each $n = 1, 2, \cdots$ let

$$p_n = P\left(\frac{X_1 + \cdots + X_n}{n} \ge a\right).$$

It is assumed throughout the paper that the distribution of X_1 and the given constant a satisfy the conditions stated in the following paragraph. These conditions imply that $p_n > 0$ for each n, and that $p_n \to 0$ as $n \to \infty$. The object of the paper is to obtain an estimate of p_n , say q_n , which is precise in the sense that

$$(2) q_n/p_n = 1 + o(1) as n \to \infty.$$

Let t be a real variable, and let $\varphi(t)$ denote the moment generating function (m.g.f.) of X_1 , i.e., $\varphi(t) = E(e^{iX_1})$, $0 < \varphi \le \infty$. Define

$$\psi(t) = e^{-t} \varphi(t).$$

Let T denote the set of all values t for which $\varphi(t) < \infty$. We suppose that $P(X_1 = a) \neq 1$, that T is a non-degenerate interval, and that there exists a positive r in the interior of T such that $\psi(\tau) = \inf_i |\psi(t)| = \rho$ (say). These conditions are satisfied if, for example, $\varphi(t) < \infty$ for all t, $E(X_1) = 0$, a > 0, and $P(X_1 > a) > 0$. In any case, r and ρ are uniquely determined by

(4)
$$\frac{\varphi'(\tau)}{\varphi(\tau)} = a \text{ and } \rho = \psi(\tau),$$

where $\varphi' = d\varphi/dt$, and we have $0 < \rho < 1$.

There are three separate cases to be considered.

Case 1: The distribution function (d.f.) of X_1 is absolutely continuous, or, more generally, this d.f. satisfies Cramér's condition (C) [1, p. 81].

Case 2: X_1 is a lattice variable, i.e., there exist constants x_0 and d>0 such that X_1 is confined to the set $\{x_0+rd:r=0,\pm 1,\pm 2,\cdots\}$ with probability one.

Case 3: Neither Case 1 nor Case 2 obtains.

We can now state

THEOREM 1. There exists a sequence b. , b1 , ... of positive numbers ba such that

(5)
$$p_n = \frac{\rho^n}{(2\pi n)^3} b_n [1 + o(1)], \quad \log b_n = O(1)$$

as $n \to \infty$. In Cases 1 and 3, b_n is independent of n. This last also holds in Cax: if $P(X_1 = a) > 0$.

The proof of Theorem 1, and of Theorem 2 below, is given in Sections 2: The present determination of b, is given by (4), (9) and (33) in Cases I and 3 and by (4), (8), (37), (38) and (46) in Case 2. The following refinements of Theorem 1 are available in Cases 1 and 2:

Theorem 2. (Cases 1 and 2). For each $j=1, 2, \cdots$ there exists a bounded (possibly constant) sequence $c_{i,1}, c_{j,2}, \cdots$ such that, for any given positive integral

(6)
$$p_n = \frac{\rho^n}{(2\pi n)^4} b_n \left[1 + \frac{c_{1,n}}{n} + \frac{c_{2,n}}{n^2} + \cdots + \frac{c_{n,n}}{n^4} \right] \left[1 + O\left(\frac{1}{n^{4+1}}\right) \right]$$

as $n \to \infty$.

The sequences $|c_{f,n}|$ are given explicitly for Cases 1 and 2 in Sections 3 and respectively. It would be interesting to know whether (6) holds in Case 3 as well, perhaps with the $|c_{f,n}|$ determined according to the formula for Case 1.

Estimates in the form (5) or (6) were first obtained by Cramér [2, pp. 20-21] in the case when X_i has an absolutely continuous component (so that Case I obtains). Cramér showed that in the latter case (6) holds for every k (with k, and each $c_{j,k}$ independent of n), and determined b_k . Our method of proof in the general case (cf. Sections 2-5) is essentially a variant or extension of Craméris method. Case 2 was treated recently by Blackwell and Hodges [3] by a different method. It is shown in [3] that (6) holds for k = 1 in Case 2, under the restriction on n and a that $P(X_1 + \cdots + X_n = na) > 0$ for every admissible n, and the requisite b_k and $c_{i,k}$ (which are then independent of n) are determined explicitly Some other references bearing on the problem under consideration are [4], [3] and [6].

In the following Section 2 it is shown that p_n can be expressed as ρ^*I_n , where I_n is a certain integral; $0 < I_n < 1$, and $I_n = O(n^{-1})$ as $n \to \infty$. I_n can be estimated by application of certain refinements [1], [7] of the central limit theorem. This estimation of I_n is carried out in Sections 3, 4 and 5 for Cases 1, 2 and 3 respectively. It may be added here that, as was pointed out in [2], direct application of the central limit theorem (or refinements thereof) to p_n defined by (1) does not, in general, yield approximations q_n which satisfy (2).

In Section 6 we describe certain numerical approximations to p, which are suggested by Theorems 1 and 2 and their proofs.

2. Lemmas. Let $Y_1 = X_1 - a$, and let F be the (left-continuous) distribution function (d.f.) of Y_1 , $F(y) = P(Y_1 \stackrel{\checkmark}{<} y)$. Let G be defined by $G(x) = \int_{-\infty \sqrt{x}} e^{x} e^{x} f(y)$. Since $E(e^{x} Y_1) = \psi(\tau) = \rho$, it is clear that G is a probability df. Let Z_1 be a random variable distributed according to G.

LEMMA 1. The m.g.f. of Z_1 exists in a neighborhood of the origin. We have

(7)
$$E(Z_1) = 0, \quad 0 < \operatorname{Var}(Z_1) < \infty.$$

PROOF. Let $\xi(t)$ denote the m.g.f. of Z_1 . Then $\xi(t) = \psi(\tau + t)/\rho$ for all t

by (3) and the definition of Z_1 . Since $\psi(t)<\infty$ in a neighborhood of $t=\tau_1$ if follows that $\xi(t)<\infty$ in a neighborhood of t=0. Consequently, $E\mid Z_1\mid^r<\infty$ for $t=1,2,3,\cdots$ and $E(Z_1)=\{u^r\}/u^r\}$. In particular, $E(Z_1)=\{u^t\}/u^r\}/u^r$ is in the interior of T. It remains to show that $\text{Var}(Z_1)>0$. Suppose to the contrary that $\text{Var}(Z_1)=0$; then $P(Z_1=0)=1$; hence $P(Y_1=0)=1$, i.e., $P(X_1=a)=1$, which is contrary to our assumptions. This completes the proof.

Let $Var(Z_1)$ be denoted by σ^2 . It follows from the preceding paragraph and (4) that

(8)
$$\sigma^2 = \frac{\varphi''(\tau)}{\varphi(\tau)} - \alpha^2.$$

Define

(9)
$$\alpha = \sigma r$$
, $(0 < \alpha < \infty)$.

Let Z_1 , Z_1 , \cdots be a sequence of independent and identically distributed random variables. For each n, let

$$U_n = \frac{Z_1 + \cdots + Z_n}{n!\sigma}$$

and

(11)
$$H_n(z) = P(U_n < z), \quad (-\infty < z < \infty).$$

LEMMA 2. $p_n = \rho^n I_n$, where

(12)
$$I_n = n^{\frac{1}{2}} \alpha \int_0^n e^{-n^{\frac{1}{2}} x} |H_n(x) - H_n(0)| dx.$$

Proof. Let $Y_i = X_i - a$ for $j = 1, 2, \dots, n$. Then

$$p_n = P(Y_1 + \cdots + Y_n \ge 0) \qquad \text{by (1)}$$

$$= \int_{\substack{x_1 + \cdots + x_n \ge 0 \\ x_1 + \cdots + x_n \ge 0}} dF(y_1) \cdots dF(y_n)$$

$$= \rho^n \int_{x_1 + \cdots + x_n \ge 0} e^{-i(x_1 + \cdots + x_n)} dG(x_1) \cdots dG(x_n)$$

$$= \rho^n \int_{0 \le x < n} e^{-n \log x} dH_n(x) \qquad \text{by (9), (10), (11)}$$

$$= \rho^n \int_{0 \le x < n} e^{-n \log x} dH_n(x)$$

$$= \rho^n \int_{0 \le x < n} e^{-n \log x} dH_n(x)$$

It follows by integration by parts that I_n^{\bullet} defined in (13) is equal to I_n , and this completes the proof.

A theorem of Chernoff [4] states that $p_n \leq p^n$ for every n, and that for any

given positive $\rho_0 < \rho$, we have $p_n \ge \rho_0^n$ for all sufficiently large n. A simple proof of Chernoff's theorem can be given as follows. Since $0 \le H_n(x) - H_n(0) \le 1$ for every n and $x \ge 0$, we have $I_n \le 1$ and hence $p_n \le \rho^n$ for every n, by Lemma 2. To establish the second part of the theorem, we note first that $\lim_{n\to\infty} H_n(x) = \Phi(x)$ for every x, where

(14)
$$\Phi(x) = \int_{-\infty}^{x} (2\pi)^{-1} e^{-\frac{1}{2}t^2} dt \qquad (-\infty < x < \infty),$$

by (7), (10), (11) and the central limit theorem. Let ϵ be a positive constant. Then

$$I_n \ge n^b \alpha \int_{\epsilon}^n e^{-n \beta n x} \{H_n(x) - H_n(0)\} dx$$

$$\ge [H_n(\epsilon) - H_n(0)] n^b \alpha \int_{\epsilon}^n e^{-n \beta n x} dx$$

$$= [H_n(\epsilon) - H_n(0)] e^{-n \beta n x}.$$

Hence $\lim \inf_{n\to\infty} \{n^{-1} \log I_n\} \ge -\alpha \epsilon$. Since $I_n \le 1$ for every n, and since ϵ is arbitrary, it follows that $n^{-1} \log I_n = o(1)$. Hence $n^{-1} \log p_n = \log \rho + o(1)$, by Lemma 2, and this is equivalent to the conclusion desired.

The preceding argument depends only on the central limit theorem. In the following sections we estimate I_n more accurately by substituting the expansions of $H_n(x)$ due to Cramér [1] and Esseen [7] in the right side of (12). The remainder of this section is concerned with preparations for this application of the Cramér-Esseen expansions. Almost all the considerations of the following paragraphs are well known, and we include them here only for the sake of completeness.

Let $\eta(w)$ denote the m.g.f. of Z_1/σ . According to Lemma 1, $\eta < \infty$ in a neighborhood of w = 0. For $j = 2, 3, \cdots$ let λ_j be defined by

(15)
$$\lambda_1 = \frac{1}{2}; \quad \lambda_j = (j|\sigma^j)^{-1}(d^j/dt^j)|\log \varphi(t)|_{i=1}, \quad (j = 3, 4, \cdots).$$

It should be noted that $j|\lambda_j$ is the jth cumulant of the distribution of Z_1/σ . The m.g.f. of U_n , with U_n defined by (10), is

$$[\eta(w/n^{\dagger})]^{n} = \exp \left[n \sum_{i=1}^{n} \lambda_{i} (w/n^{\dagger})^{t}\right].$$

Clearly, $[n(w/n^{1})]^{n}$ exp $(-w^{2}/2)$ is analytic in a domain independent of n, and can be expanded there as a power series in w. By regrouping the terms of this series according to powers of n we shall have

(16)
$$[\eta(w/n^{i})]^{*}e^{-x^{i}n} = \sum_{i=0}^{\infty} n^{-i}i P_{i}(w)$$

where the P_j are polynomials. P_j is of degree 3j, and P_j is even or odd according as j is even or odd. The first few polynomials are

$$P_1(w) = \lambda_1 w^3,$$
(17)
$$P_1(w) = \lambda_4 w^4 + \frac{1}{2} \lambda_3^2 w^6,$$

$$P_1(w) = \lambda_4 w^4 + \lambda_1 \lambda_4 w^7 + \frac{1}{2} \lambda_3^2 w^6,$$

$$P_4(w) = \lambda_4 w^4 + (\frac{1}{2} \lambda_4^2 + \lambda_1 \lambda_4) w^4 + \lambda_4^2 \lambda_4 w^{10} + \frac{1}{47} \lambda_4^4 w^{10}.$$

Write $\Phi^{(0)}(x) = \Phi(x)$ and $\Phi^{(1)}(x) = (d'/dx')\Phi(x)$ for $r = 1, 2, \cdots$, where Φ is given by (14). Let $P_I(-\Phi)$ denote the function of x obtained by replacing w' with $(-1)'\Phi^{(1)}(x)$ in the polynomial $P_I(w)$. It is clear that each $P_I(-\Phi)$ is absolutely continuous and of bounded variation in $(-\infty, \infty)$. It should also be noted that $P_I(-\Phi)$ is square integrable with respect to Lebesgue measure.

In the following, for any function K(x) of bounded variation in $(-\infty, \infty)$, we denote the c.f. of K by $\chi(t | K)$, i.e.,

(18)
$$\chi(t|K) = \int_{-\infty}^{\infty} e^{itx} dK(x)$$

 $P_0(w) = w^0 = 1$

for every real t. If K is absolutely continuous, χ is, of course, $(2\pi)^t$ times the Fourier transform of K'. The reader may refer to [8, Chapters I-III] for such elements of Fourier transform theory as are used in this page.

LEMMA 3. For every j, t, and x

(19)
$$\chi(t \mid P_i(-\Phi)) = P_i(it) e^{-it}$$

and

(20)
$$P'_{j}(-\Phi) = (2\pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} e^{-itx} P_{j}(it) d\Phi(t).$$

PROOF. As is pointed out in [1, p. 49], we have

(21)
$$\chi(t \mid \Phi^{(r)}) = (-it)^r e^{-it^{it}}$$

for $r=0,1,\cdots$. Suppose, for given j, that $P_j(w)=\sum_{r=0}^N a_r w^r$, where the a_r and N are constants (depending on j). Then $P_j(-\Phi)=\sum_{r=0}^N a_r (-1)^r \Phi^{(j)}(x)$; hence the left side of (19) equals $\sum_{i=0}^N a_i (-1)^r \chi(t \mid \Phi^{(i)})$; (19) now follows from (21). The relation (20) follows from (19) by the inversion formula for the Fourier transform, since $dP_j(-\Phi)=P_j^r(-\Phi)\,dx$, and $d\Phi(t)=(2\pi)^{-1}e^{-t^2}\,dt$.

A probability d.f. K(x) is said to satisfy condition (C) if

$$\lim \sup_{t \to \infty} |\chi(t \mid K)| < 1.$$

In the following lemma the F_i are arbitrary probability d.fs.

LEMMA 4. If F_1 satisfies (C), and if F_1 is absolutely continuous with respect to F_2 , then F_1 also satisfies (C).

PROOF. In this proof, for any probability d.f. K let K^* denote the symmetrized d.f. defined by $K^*(x) = \int_{-\infty}^{\infty} K(x+y) dK(y)$. We then have

$$\chi(t \mid K^{\bullet}) = \int_{-\infty}^{\infty} \cos(tx) dK^{\bullet} = |\chi(t \mid K)|^{2}$$

for all i.

Suppose, contrary to the lemma, that there exists a sequence $\{i, j = 1, 2, \cdots\}$ such that $|t_f| \to \infty$ and $|\chi(t_f|F_f)| \to 1$ as $j \to \infty$. It then follows from the above paragraph with $K = F_f$ that $\int_{-\infty}^{\infty} \cos(tx) df_f^2 \to 1$. Hence $\cos(tx) \to 1$ in F_1^* -measure. Since F_1 -measure dominates F_1 -measure, it is easily seen that F_2^* -measure dominates F_1^* -measure. Consequently, $\cos(tx) \to 1$ in F_1^* -measure. It now follows from the above paragraph with $K = F_1$ that $|\chi(t_f|F_1)|_{f=1}^2$ as $j \to \infty$, which is impossible. This completes the proof.

We conclude this section with a description of the functions $S_1(x)$, $S_1(x)$ which occur in the Euler-Maclaurin sum formulae, and which are required in the analysis of Case 2. It is convenient to define S_1 as follows:

(22)
$$S_1(x) = \frac{1}{2} - x$$
 for $0 < x \le 1$; $S_1(x+1) = S_1(x)$.

For $i \geq 2$, S_i may be defined as

(23)
$$S_{j}(x) = \begin{cases} \frac{1}{2^{j-1}} \sum_{r=1}^{\infty} \frac{\cos(2\pi rx)}{(\pi r)^{j}} & (j \text{ even}) \\ \frac{1}{2^{j-1}} \sum_{r=1}^{\infty} \frac{\sin(2\pi rx)}{(\pi r)^{j}} & (j \text{ odd}). \end{cases}$$

Each S_j is a bounded and periodic function; S_j is absolutely continuous for $j \ge 2$; and at each non-integral x we have

$$(24) S_1'(x) = -1, S_{j+1}'(x) = (-1)^j S_j(x) (j = 1, 2, \cdots).$$

3. I_n in Case 1. Suppose that the d.f. of X_1 satisfies (C). Since $Y_1 = X_1 - a$, it is plain that P_1 the d.f. of Y_1 , also satisfies (C). It is easily seen that P and G (the d.f. of Z_1) are absolutely continuous with respect to each other. It therefore follows from Lemma 4 with $P_1 = P$ and $P_2 = G$ that G also satisfies (C).

Let k be an arbitrary but fixed positive integer. It follows from the conclusion of the preceding paragraph by Cramér's theorem [1, p. 81] that $H_*(z) = K_*(z) + R_*(z)$, where

(25)
$$K_n(z) = \sum_{j=0}^{k} n^{-jj} P_j(-\Phi)$$

and $R_n(x)$ is of the order $n^{-(k+1)/2}$ uniformly in x. It follows hence from (12) that

(26)
$$I_n = n^{i} \alpha \int_0^{\infty} e^{-n^{i} a x} \left[K_n(x) - K_n(0) \right] dx + O(n^{-i k - 1}).$$

We have

(27)
$$\chi(t \mid K_n) = \sum_{i=1}^k n^{-ij} P_i(it) e^{-it^2}$$

by (19) and (25). Let
$$f_n(x) = \exp(-n^{\frac{1}{2}}\alpha x)$$
 for $x \ge 0$ and $f_n(x) = 0$ other-

sise. Then $\int_{-\infty}^{\infty} e^{ix} f_n(x) dx = 1/(n^i \alpha - it) = g_n(t)$ say. Consequently, by first using integration by parts and then Parseval's formula, it follows that

(28)
$$n^{\dagger}\alpha \int_{0}^{\infty} e^{-n^{\dagger}\alpha x} \left[K_{n}(x) - K_{n}(0)\right] dx = \int_{0}^{\infty} e^{-n^{\dagger}\alpha x} K'_{n}(x) dx \\ = \int_{-\infty}^{\infty} f_{n}(x) K'_{n}(x) dx - \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{g_{n}(t)}{g_{n}(t)} \chi(t \mid K_{n}) dt.$$

It follows from (26), (27) and (28) that

(29)
$$\alpha(2\pi n)^{\frac{1}{2}} I_{\pi} = \int_{-\pi}^{\pi} \left(1 + \frac{it}{n!a}\right)^{-1} \left(\sum_{j=0}^{k} n^{-jj} P_{j}(it)\right) d\Phi(t) + O(n^{-k}).$$

Define

(30)
$$\mu_{r,s} = \int_{-\infty}^{\infty} (it)^r P_s(it) d\Phi(t)$$
 $(r, s = 0, 1, 2, \cdots).$

Since P, is an even [odd] polynomial if s is even [odd], and since $\int_{-\infty}^{\infty} t^{1/4} d\Phi(t) = 0$ for $j = 0, 1, 2, \cdots$, it follows that each $\mu_{r,s}$ is a real constant, and that

31)
$$\mu_{r,s} = 0 \quad \text{if } r + s \text{ is odd.}$$

Now, $(1 + i\hbar^{-1}\alpha^{-1})^{-1} = \sum_{\delta \leq c, k} (-i\hbar^{-1}\alpha^{-1})^c + n^{-ik} t^k \omega_n(t)$, where $|\omega|$ is bounded in n and t. Since Φ has finite moments of all orders, it therefore follows from (29), (30) and (31) that

(32)
$$\alpha(2\pi n)^{\frac{1}{2}} I_n = \sum_{0 \le j \le \frac{1}{2}k} n^{-j} \left\{ \sum_{r+i=2j} \left(-\frac{1}{\alpha} \right)^r \mu_{r,i} \right\} + O(n^{-jk}).$$

Since $p_n = p^n I_n$, and since $\mu_{0,0} = 1$, it follows by replacing k with 2k + 2 in (32) that (6) holds for any given k, with

$$(33) b_n = \alpha^{-1}$$

and

(34)
$$c_{j,n} = \sum_{\tau+i=1}^{r} \left(-\frac{1}{\alpha}\right)^r \mu_{\tau,s}$$
 $(j = 1, 2, \cdots)$

for every n. This establishes Theorem 2, and hence also Theorem 1, in Case 1. It follows from (17) and (30) that the coefficients $\mu_{r,s}$ required to compute $\epsilon_{s,a}$ according to (34) are

(35)
$$\mu_{1,1} = 3\lambda_1$$

$$\mu_{0,1} = 3\lambda_4 - \frac{15}{2}\lambda_1^3$$

where the λ_i are given by (15). Similarly, $c_{2,n}$ can be computed from

$$\mu_{4,0} = 3$$

$$\mu_{1,1} = -15\lambda_4$$

$$(36) \qquad \mu_{1,3} = -15\lambda_4 + 105\lambda_4^3$$

$$\mu_{1,4} = -15\lambda_4 + 105\lambda_4\lambda_4 - \frac{315}{2}\lambda_4^4$$

$$\mu_{4,4} = -15\lambda_4 + 105(\frac{1}{2}\lambda_4^4 + \lambda_2\lambda_4) - \frac{945}{2}\lambda_4^3\lambda_4 + \frac{10395}{24}\lambda_4^4$$

We conclude this section with a remark concerning the role of Cramér's theorem [1, p. 81] in the preceding argument. Suppose that H_n is absolutely continuous, and that H_n' is sequare integrable over $(-\infty, \infty)$. It then follows, by integrating (12) by parts and using Parseval's formula, that

(29°)
$$\alpha(2\pi n)^{\frac{1}{2}} I_n = \int_{-\infty}^{\infty} \left(1 + \frac{it}{n^{\frac{1}{2}}\alpha}\right)^{-1} \left\{ \left[\eta\left(\frac{it}{n^{\frac{1}{2}}}\right)\right]^{\alpha} \delta^{\frac{1}{2}t^{\frac{2}{2}}} \right\} d\Phi(t)$$

where η is, as before, the m.g.f. of Z_1/σ . (The square integrability condition is imposed here for the validity of Parseval's formula, and can be replaced by others, e.g., that $(1+i^2)^{-1} \mid \eta(ii) \mid be$ integrable). According to (16), the function in curly brackets on the right side of (29°) can be expressed as $\sum_{i=1}^{n} n^{-i} P_i(ii)$. By comparing (29) and (29°) it is seen that, from a technical point of view, the role of Cramér's theorem in the present special case is to guarantee that when $\sum_{i=1}^{n} n^{-i} P_i$ is replaced by $\sum_{i=1}^{n} n^{-i} P_i$ on the right side of (29°), the error introduced is indeed of the order n^{-13} . The same remark, but with (29°) replaced by a rather different formula for I_n , applies to the role of Esseen's theorem in the argument of the following section.

4. I_n in Case 2. Suppose that X_1 is a lattice variable. Let d be the maximum span of X_1 , i.e., d > 0 is the g.c.d. of the differences between consecutive possible values of X_1 . Let x_0 be the number such that $a \le x_0 < a + d$, and such that the possible values of X_1 are included in the set $\{x_0 + rd : r = 0, \pm 1, \pm 2, \cdots\}$. Let

$$\beta = d/\sigma, \quad \gamma = rd, \quad \kappa = (x_0 - a)/d$$

It should be noted that $0 \le x < 1$. For each n, let

(38)
$$\theta_{\Lambda} = \pi_{K} - [\pi_{\Lambda}], \qquad 0 \leq \theta_{\Lambda} < 1,$$

where [x] denotes the greatest integer contained in x.

Let k be an arbitrary but fixed positive integer. It follows from Esseen's theorem for the lattice case [7, p. 61] that $H_n(x) = K_n(x) + L_n(x) + R_n(x)$, where $K_n(x)$ is given by (25), R_n is of the order $n^{-(k+1)/3}$ uniformly in x, and L.

is defined as follows. For any $j=1,2,\cdots$ let $h_j=1$ if $j\equiv 1$ or 2 (mod 4) and $h_j=-1$ if $j\equiv 0$ or 3 (mod 4). Then

(39)
$$L_n(x) = \sum_{j=1}^k n^{-\frac{1}{2}j} h_j \beta^j S_j(n^{\frac{1}{2}}\beta^{-1}x - \theta_n) K_n^{(j)}(x) = \sum_{j=1}^k M_{j,n}(x) \text{ say,}$$

where $K_n^{(j)}$ is the jth derivative of K_n . It follows hence from (12) that

$$I_n = n^i \alpha \int_0^\infty e^{-n^i \alpha x} \{K_n(x) - K_n(0)\} dx$$

$$+ \sum_{i=1}^k n^i \alpha \int_0^\infty e^{-n^i \alpha x} \{M_{j,n}(x) - M_{j,n}(0)\} dx + O(n^{-k-1}).$$

The first term on the right side of (40) is (cf., (28)) equal to $\int_0^\infty e^{-n^4 cx} K_n^{(1)}(x) dx$. We observe next that, for $i \ge 2$.

$$n^{1} \alpha \int_{0}^{\infty} e^{-n^{1}\alpha x} [M_{j,n}(x) - M_{j,n}(0)] dx = \int_{0}^{\infty} e^{-n^{1}\alpha x} M'_{j,n}(x) dx$$

$$= n^{-ij} h_{j} \beta^{j} \int_{0}^{\infty} e^{-n^{1}\alpha x} [S_{j}(y_{n}) K_{n}^{(j+1)}(x)$$

$$+ (-1)^{j-1} n^{i} \beta^{-1} S_{j-1}(y_{n}) K_{n}^{(j)}(x)] dx$$

$$= n^{-ij} h_{j} \beta^{j} \int_{0}^{\infty} e^{-n^{1}\alpha x} S_{j}(y_{n}) K_{n}^{(j+1)}(x) dx$$

$$- n^{-i(j-1)} h_{j-1} \beta^{j-1} \int_{0}^{\infty} e^{-n^{1}\alpha x} S_{j-1}(y_{n}) K_{n}^{(j)}(x) dx$$

$$= N_{j,n} - N_{j-1,n} (say).$$

In (41), we have put $n^{\dagger}\beta^{-1}x - \theta_n = y_n$, and used integration by parts, (24), and the identity $(-1)^{j}h_j = h_{j-1}$. In order to evaluate the contribution of $M_{1,n}$ to the right side of (40), suppose for the moment that $0 < \theta_n < 1$, and let

(42)
$$\zeta_0 = 0, \quad \zeta_r = (r - 1 + \theta_n)\beta/n! \quad (r = 1, 2, \cdots).$$

Let A, denote the open interval $(f, , f_{r+1})$. Then $S_1(y_n)$ is linear in x over each A, (cf. (22)), and its derivative there equals $-n^n \beta^{-1}$. By writing $\int_0^\infty = \sum_{r=0}^\infty \int_{A_r}^\infty$ and applying integration by parts to f_{A_r} , it follows without difficulty that

(43)
$$n^{1}\alpha \int_{0}^{\pi} e^{-n^{1}\alpha x} M_{1,n}(x) dx = -\int_{0}^{\pi} e^{-n^{1}\alpha x} K_{n}^{(1)}(x) dx + M_{1,n} + M_{1,n}(0) + \beta n^{-1} \sum_{i}^{n} e^{-i(\nu-i+\Phi_{n})} K_{n}^{(1)}(f_{i}),$$

where $\gamma = \alpha \beta = rd$ (cf. (37)). Now, $S_1(x)$ is a left-continuous function of x. It follows hence that, for given n, the left and right sides of (43) are right-

continuous in θ_n . Since (43) holds for each θ_n in (0, 1), we conclude that (43) is valid for $\theta_n = 0$ also.

Since S_k and $K_n^{(k+1)}$ are bounded functions, it is plain from the definition of $N_{f,n}$ (cf. (41)) that $N_{k,n}$ is of the order n^{-k-1} . It therefore follows from (40), (41) and (43) that

(44)
$$I_{n} = \beta n^{-1} \sum_{r=1}^{n} e^{-\gamma(r-1+\theta_{n})} K_{n}^{(1)}(\zeta_{r}) + O(n^{-|k-1|}).$$

Now, according to (20) and (25),

(45)
$$K_n^{(1)}(\xi_r) = (2\pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} e^{-itt_r} \left(\sum_{i=0}^{k} n^{-\frac{1}{2}i} P_j(it) \right) d\Phi(t)$$

for every r. Let us write

(46)
$$z = e^{-\tau}, \quad b_n = [\beta/(1-z)]z^{\theta_n}$$

It follows from (44) and (45) that

$$b_n^{-1} (2\pi n)^1 f_n = \int_{-\infty}^{\infty} \frac{(1-z) \exp[-it\beta\theta_n/n^4]}{(1-z \exp[-it\beta/n^4])} \cdot \left(\sum_{i=1}^k n^{-kj} P_j(it)\right) d\Phi(t) + O(n^{-kj}).$$

For any θ and any $j = 0, 1, 2, \cdots$ let

$$f_j(\theta) = \frac{1}{j!} \left\{ \frac{d^j}{dw^j} \left(\frac{(1-z)e^{-\theta w}}{(1-ze^{-w})} \right) \right\}_{w=0}.$$

It then follows easily from (31) and (47) that

(49)
$$b_n^{-1}(2\pi n)^{\frac{1}{2}}I_n = \sum_{0 \le j \le k/2} n^{-j} \{ \sum_{r+s=2j} \beta' \ell_r(\theta_n) \mu_{r,s} \} + O(n^{-jk}).$$

By replacing k with 2k + 2 in (49) we see that (6) holds for any given k, with b_n given by (46), and

(50)
$$c_{f,n} = \sum_{r,k=n,j} \beta' \, f_r(\theta_n) \, \mu_{r,k} \, .$$

This establishes Theorem 2 in Case 2, and hence also the first part of Theorem 1. To complete the proof of Theorem 1 in Case 2, we see from (37), (38) that $P(X_1 + \cdots + X_n = na) > 0$ implies $\theta_n = 0$. Consequently if $P(X_1 = a) > 0$ then $\theta_n = 0$ for every n, and hence $b_n = \beta/(1 - z)$ for every n.

It may be worthwhile to note that in the present case b_n can be expressed as $\alpha^{-1}[\gamma e^{n(1-\delta_n)}/(c^n-1)]$, which shows that, in general, b_n oscillates about the value α^{-1} (cf. (33)) as $n \to \infty$ through the sequence 1, 2, ...

An alternative formula for the coefficients t, required in (50) is

(51)
$$t_{j}(\theta) = (-1)^{j} \sum_{r \neq z = j} \frac{\theta'}{r! \delta!} \left\{ (1-z) \left(z \frac{d}{dz} \right)^{s} (1-z)^{-1} \right\}.$$

From (51) it is easily seen that, with u = s/(1-s),

$$\begin{aligned} & f_1 = 1 \\ & f_2 = -(\theta + u) \\ & (52) \quad f_3 = \frac{1}{2}[(\theta + u)^3 + u(1 + u)] \\ & f_4 = -\frac{1}{2}[(\theta + u)^4 + 3u(1 + u)\theta + u(1 + u)(1 + 5u)] \\ & f_4 = \frac{1}{2}[(\theta + u)^4 + 8u(1 + u)\theta^3 + 4u(1 + u)(1 + 5u)\theta \\ & + 23u^4 + 36u^3 + 14u^2 + u]. \end{aligned}$$

The coefficients $c_{1,n}$ and $c_{1,n}$ can be computed from (35), (36), (50) and (52). The formulae for b_n and $c_{1,n}$ with $\theta = 0$ agree with the results of [3].

5. I_n in Case 3. If X_1 is not a lattice variable, then neither is Z_1 . It follows hence from a theorem of Easeen [7, p. 49] that $H_n(x) = \Phi(x) + n^{-1}f(x) + n^{-1}r_n(x)$, where $f(x) = (\text{const.}) (1 - x^2) \exp{(-\frac{1}{2}x^2)}$, and $r_n(x) = 0$ uniformly in x as $n \to \infty$. The contribution of $n^{-1}f$ to I_n is $n^{-1}f_n^{\infty}e^{-(n)^{\log x}}f'(x)$ dx, which is easily seen to be of the order n^{-1} . It follows that

(53)
$$I_{n} = n^{1}\alpha \int_{0}^{\infty} e^{-n^{1}\alpha x} \left[\Phi(x) - \Phi(0)\right] dx + o(n^{-1})$$

$$\approx \int_{0}^{\infty} e^{-n^{1}\alpha x} \Phi'(x) dx + o(n^{-1})$$

$$\approx e^{\ln n^{2}} \left[1 - \Phi(n^{1}\alpha)\right] + o(n^{-1})$$

$$= (2\pi n)^{-1}\alpha^{-1} + o(n^{-1}).$$

In (53), we have used integration by parts, a linear change of variable, and the leading term of the asymptotic formula [9, p. 179]

$$(54) \quad 1 - \Phi(x) \, = \, (2\pi)^{-1} e^{-1x^2} \{ x^{-1} - x^{-1} + 3x^{-1} + O(x^{-1}) \} \text{ as } x \to \infty \, .$$

It follows from (53) that (5) holds, with $b_n = \alpha^{-1}$ for every n. This completes the proof of Theorem 1.

Since $\Phi(x) + n^{-1}f(x) = K_n(x)$, where K_n is defined by (25) with k = 1, the conclusion of the preceding paragraph is also available from the argument of Section 3. We have used a direct calculation instead because this calculation suggests the form of the numerical approximations described in the following section.

8. Concluding remarks. Suppose, in a given case, and for given n and a, that it is required to compute the numerical value of p, defined by (1). In this section we consider approximations of the form

(55)
$$q_n = \rho^n e^{i v_n^2} ((1 - \Phi(v_n)),$$

where ρ and Φ are defined by (4) and (14), and ν_n is a suitably chosen number.

We shall describe four choices of v_n , called v_n^{\bullet} , $v_n^{(0)}$, $v_n^{(1)}$, and $v_n^{(1)}$. The resulting values of q_n are denoted by q_n^{\bullet} , $q_n^{(0)}$, etc.

First consider

$$v_n^* = n^{\dagger} \alpha$$

where α is given by (4), (8) and (9). This choice of v_n amounts (cf. (53)) to approximating I_n by replacing H_n with Φ on the right side of (12). It therefore follows from the Esseen-Berry theorem that we always have

(57)
$$|p_{*} - q_{*}^{\bullet}| \leq 2C \frac{\rho^{\bullet}}{n^{1}} \frac{E |Z_{1}|^{1}}{\sigma^{1}}$$

where C is a universal constant. Wallace [10, p. 637] states that $C \le 2.05$. Next. consider

$$v_n^{(0)} = n^{\frac{1}{2}}/b_n$$

where b_n is defined by (33) in Cases 1 and 3, and by (46) in Case 2. (Of course, $q_n^{(0)} = q_n$ in Cases 1 and 3). Then $q_n^{(0)}$ satisfies (2), and the o(1) term in (2) is known to be of the order n^{-1} in Cases 1 and 2. Finally, let $c_{f,n}$ be defined according to Section 4 in Cases 1 and 3, and according to Section 5 in Case 2. Define

(59)
$$v_n^{(1)} = v_n^{(0)} \left[1 - (b_n^2 + c_{1,n})/n\right]$$

if the expression within the square brackets is positive and $v_n^{(1)} = 0$ otherwise; and

(60)
$$v_n^{(1)} = v_n^{(1)} \left[1 + (b_n^4 + c_{1,n}^2 - b_n^2 c_{1,n} - c_{2,n})/n^4\right]$$

if the expression in square brackets is positive and $v_n^{(1)}=0$ otherwise. Then $q_n^{(1)}$ also satisfies (2), and $o(1)=O(n^{-j-1})$ in Cases 1 and 2 (j=1,2). The stated theoretical properties of the approximations $q_n^{(1)}$ are easy consequences of (5), (6), (54), and (58).

Although (unlike q_n^*) the approximations $q_n^{(l)}$ are derived from asymptotic expansions corresponding to the case when $n \to \infty$ and a is held fixed, the usefulness of these approximations may be wider than is suggested by the derivation. Some evidence to this effect is provided by the fact that if X_1 is normally distributed then $p_n = q_n^{(l)} = q_n^{(l)} = q_n^{(l)}$ for every admissible a and every n.

- [1] H. CRAMÉR, Random Variables and Probability Distributions, Cambridge University Press, 1937.
- [2] H. CRAMÉR, "Sur un nouveau théorème-limite de la théorie des probabilités," Actualités Scientifiques et Industrielles, No. 736, Hermann Ci*, Paris, 1938.
- [3] DAVID BLACKWELL AND J. L. HODGES, "The probability in the extreme tail of a convolution," Ann. Math. Stat., Vol. 30 (1959), pp. 1113-1120.
- [4] HERMAN CHERNOFF, "A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations," Ann. Math. Stat., Vol. 23 (1952), pp. 493-507
- [5] V. V. Paraov, "Generalization of Cramér's limit theorem," Uspakhi Mal. Nauk. Vol. 9, No. 4, (1955), pp. 195-202. (In Russian).

- [6] R. B. Baragua, "Some approximations to the binomial distribution function," Ann. Math. Stat., Vol. 31 (1960), pp. 43-54.
- [7] CARL GUSTAY EASKEN, "Fourier analysis of distribution functions," Acta Mathematica, Vol. 77 (1945), pp. 1-125.
- [8] E. C. Titumansh, Introduction to the theory of Fourier Integrals, Oxford University Press, 1937.
- [9] WILLIAM FELLER, An Introduction to Probability and its Applications, Vol. I, 2nd Ed., John Wiley and Sons, New York, 1957.
- [10] DAVID L. WALLACE, "Asymptotic approximations to distributions," Ann. Math. Stat., Vol. 29 (1958), pp. 635-654.