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CHAPTER I : INTRODUCTION

The problem 0of constructing an optimal schedule of trucks for
garbage clearanci‘ of a city is considered. The qarbage ias assumed to
‘ba accumulated along the streets of the city. The requirement is to
minimize the total distance covered and also the number of tripses. The
optimasation problem of minimization of distance is shown to be NP~
complete. It is also shown that there does not exist any k-absolute
approximate algorithm for the above problem. An algorithm, however,
has been found which yields a l-relative approximate achedule for the
case of two trips. This algorithm is generalised for the case of more
than two trips wusing the divide and conquer strategy. This general
alqgorithm is shown to require an optimal number of trips, along with
an upper bound on the total distance covered. Further, this alqorithm
is modified to a heuristic, which is empirically seen to require a

lesser amount of distance covered but at the cost of slight increase

in the number of trips. However, there exists an upper bound on the

number of trips required.
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CHAPTER II : DESCRIPTION OF THE PROBLEM
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Given the map of & city, length and garbage accumulation
of each road, we are going to find out a schedule of trucks such
that the total garbage is cleared in several trips of trucks each

of which clears some amount of q9arbage without exceeding the truck

capacity.

An optimal schedule is one that needs the ainimum distance
traversed by the trucks (i.e total length of all trips) as well as

making the number of trips not too large.

Me define a Network as a weighed graph (V,E) hlung with the
garbage accumulation function g : E -> N and denote it by N{(V,E,q).

The length of edge @ is denoted by d(e).

A Trip is defined as 3 network with the extra feature that

the corresponding graph (V,E) is an eulerian multigraph with all

vertices having positive degree connected with each other.

Now the scheduiing problem, which we will call GARBAGE, is

formally defined as follows.
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:,robleu Definition 3

Given a network N(V,E,g), a distinguished node v_£ V, and
an integer q. Pind out a set of trips, which we will call trip~set
and dlnutiéli'r - { T, )T, «-a .I"Qf. where each trip T, Is of

the form N(V,E,,q9.), such that the following conditions hold :

i) Degree of v, is m» positive.

ii) g.te) = 0 it e E;, Vi.

iii) EZ‘ 9:(e) < C, Vi.

v) Z:d(T;) is wminiwum where dﬁT) is size of a trip T,

considering repeatation of edqes.

We denote the total amount of garbagqe as A and the minimum

number of trips required as n,. Clearly
A = §9(e)

and N, = [asc]

In general, the truck capacity is sufficiently larqer than

garbage accumulation on any road and hence we can assuwme that

g(e) ¢ C/2, Nef E.

One immediate result of the assumption is that, A < mC/2,
m being the number of edges in the graph. There are two more theo-

retical results given in the next pages.
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If for some network N(V,E,g), g9(e) > 0, YetE and A< C,

then GARBAGE reduces to the Chinese Postman Problem.

PROOFE =
Since A £ C, only one trip is sufficient to clear the garbage.

Also g{e) > 0, ¥afE implies that each edge is to be traversed at

least once.

Thus, we have to find out » cycle with, possibly, repeatations

of edges and of minimus length amongy all such cycles where each edge

is ysed at least once. This is simply the CFPP.

The CPP has an 0(n>) algorithm [by Edmonds l.1.

Let us denote the optimal cost of GARBAGE as C, and that of the

CPP (on same graph) 3as C.ep -

BULT - II :

it g(e) > 0, VefE, ther
Cepp € Co € nypelepp -

Proof :

Let the optimal schedule contain kK trips. Each of these k
trips are cycles through the node v, and hence concatenation of them

is also a cycle. Since q(e) > 0, Ve £ E, each edge is to be traversed,
and this is a feasible CPP solution. But 1length of the minimum of all

such feasible solutions of the CPP is C.pp . Hence, C.p < Co.

(Y
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For the other part, we will see that there is always a schedule

with cost n,.Cpp and hence the optimal schedule does not cost more

" than this value.

Our above-mentioned schedule consists of n, trips and in each
trip, a truck travels through the CPP solution of the graph and clears
garbage from roads at random only maintaining the condition that in all
but last trip the truck éltarimas much qgarbage as possible, i.e., upto
its capacity. Hence, at the last trip, the amount of qgarbage left out

is maximum C which can be cleared out in the last trip.

The cost of above schedule is n,.C.. . Hence the proof.
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CHAPTER III : COMPUTATIONAL COMPLEXITY OF GARBAGE
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During our effort to get an efficient algorithm that solves

GAEBAGE optimally, we found it very difficult and we started thinking

of its computational complexity. The following theorem 1is » result of

that.
QFHEOREM I : The decision version of GARBAGE,(i.e. GARBAGEY) is NP-complete.
PRDOE : i) GARBAGE, € NP.

-r

The decision version of GARBAGE 1is,
Given a2 network N(V,E,q), a specified node v, £ V, truck

capacity C, and an inteqger b, does there exist a schedule of cost <{ b 7

The following polynomial time algorithm solves the
problem nondeterministically.
STEP I : Guess any tour T in the graph.

STEP II : Assign function g’ to the tour nondeterministically
uainta;ning the constraints that |
g'(e) = 0 if @€ T,
0 ¢ g'te) ¢ gte), ¥eCE,

and q9'(e) ¢ €,

STEP III : YefE do gle) = gl(e) - g'(e).
STEP IV : Include <(V,7,37> in the schedule.
STEP V o If g{(e) > 0 for some ¢ LE then q9qo to STEP 1I.

STEP VI I If total cost of the schedule is not more than b,

then conclude ‘YES‘.



ii) GARBAGE; is NP-hard.
For this part, he will show that, PARTITION problem which 1s

already proved to be NP-complete reduces to GARBAGE in polynomial time.

The PARTITION problem is defined as,

Biven a2 set § = ﬁ:a.,al, sss 43,1 0Of n integers such that

2 a; = 2T where T is an integer. Does there exist a set KC § such that

1
[

7. a; = Y a. =T ?

a iR a; R
From an instance of PARTITION, we can produce an instance of

BARBAGE in linear time as follows.

The netuark is a graph of the above fiqure, each edge being

of unit length. The specified node is v, .
Q{{wvy g} = O
gi{u, ,v;2) = a;

and capacity = T.

The question is,"does there exist a schedule of cost < 2n+47",

Now, we will show the equivalence of the two instances regard-

¥
ing their ansuwers.
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If PARTITION instance has an ‘yes’ answer then there is 3 set

RCS such that 2 a = 2. a = T. Without loss of genegrality, we can
Q:ER UZER

assume that, R = ia,,a,_, .o ,akfand S = {am,a ses pa.t. Think of

ﬂ-'
a schedule with two trips

Ty = < VoylUggyU yU, gU, gy see pU U yU,,V, 2
and I, = ¢ Vo sM sl 0 gy gU, . sUgy e gU U, U,V D
Take gi(e) = g{e) if e occurs in T, ,
= 0 othervwise for 1 = 1,2.
Zﬁ g, (e) = ) gl{e) = 2 g((u,,u;)), where i < k.

€ET, K
= Z-‘L “Tn

it
Similarly, é 3,(e) = T,
Hence the conditions are satisfied. Total cost = 2n+4.
Thus, GARBAGE inatance also has an ‘yea® ansver.

On the other hand, if the GARBAGE instance has an "yes' answer,
then there exists a schedule of cost < 2n+4. Since A = 2T = 20, there
must be at least two trips. As each trip uses the edge (v, ,u,) tuice,
and each édge (u,,v; ) having a vertex v:. of degree one,is to be used
twice in at least one trip, there can be no schedule of cost less than
2n+4. Hence the schedule has exactly two trips using (v ,u_ ) twice in
each trip and each edge (u,,v;) is used twice in one of the trips and

not wused at all in the other. Garbage cleared in each trip must be

exactly equal to T as there are only two trips and A = 27,
Note that the two trips partition the set of adgesiﬁuu,vL)}in
two parts. Let R = {a;: (uy,v;? is cleared in first trip.f.
Clearly,{zgi a,= Total garbage cleared in the first trip.

= T,

Hence the answer to the PARTITION instance is 3lso 'yes'.



ACOROLLARY I

GARBAGE is NP-complete even if the underlying graph is acyclic.
COROLLARY II

L ]

GARBAGE is NP-complete even if the underlying graph is planar.

COROLLARY I1I : GARBAGE is NP-complete even if the underlying graph is eulerian.

-

COROLLARY IV : GARBAGE is NP-complete even if A { 2C.

The proof of the theorem directly proves corollaries I,II & IV
) .
as the GARBAGE instance obtained by reduction satisfies conditions in

« these corollaries. For the proof of corollary IlI, we will just give

the method of reducing and the rest part of the proof is similar.

The eulerian graph is given above. Each edge is of unit length.

The garbage-assignment is as follows :

"
-

gV rv ) = glv, ,v,) = glv, ,u,) = gluw,,v,)

glu,,p; ) = glu,,q;) = glu,p;) = glu, ,q;) = a;.
and capacity = 4T.
and the question is "does there exists a solution of cost ¢ 4n+8 7",

The graph is eulerian and this instance can be praoved to be equivalent

to the PARTITION instance. Hence the corollary can be proved.

W
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FHEOREM

CHAPTER IV [ APPROXIMATE ALGORITHMS
As the garbage has been found to be NP-complete,it is computa-
tionally difficult to find the optimal schedule exactly but we can go
for approximate solutions by using polynomial time bounded approximate
algorithas., There are two kinds of such algorithms. One is k-~absolute

approximate algorithms in which the error is always less than a pre-

determined constant k. The other is €-approximate algqorithms in which

-

which the error is less than € times the optimal value.

Let A be any algorithm for problem 7T . Let I be an instance of
n - If wewdenote by C,(I) the cost of the solution returned by A and
by Chrthe cost of the optimal solution then

CaCI) - Co(I) = 0, if A is an exact algorithm,

Call) = Co(I) € k, if A is 3 k-absolute approximate algorithm,

and CrCl) -~ Co(I) ¢ € .C,, if A is an & -approximate algorithm.

By looking at GARBAGE, one can easily realise that there can
be no k-absclute approximate alqorithm for this problem. Still we give

3 brief proof of this fact.

IT : Unless P = Qff, there exists no k-absolute algorithm for GARBAGE.

Proof @ Let there exist a polynomial time algorithm A for

GARBAGE such that
Ca(I) - Co(I) < k, ¥ IE GARBAGE.
Ihen we can use this to solve any instance of GARBAGE
exactly. On any instance I of GARBAGE, apply the algorithm of the next

page.

ra
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ALGORITHM A =

STEP I * Get I'Ir from I by multiplying 1lenqths of all edges
by (k+l1);

STEP II : Apply A on I'.

STEP III : Return the resulting schedule. Optimal cost of [ is
cost of this schedule divided by (k+l) i.e.

Cael) = Co(I)/(k+1).

The explanation of above is immidiate. Note that a schedule
in I is 2lso a schedule in I’ and vice versa as the ad jacency of the
graph, the truck capacity and the gqgarbage function are unchanged. Also
the cost of a schedule in I'is k+l times the cost of the same schedule
in I. The sets of optimal schedules must be the same. Hence

C,(I7) = (k+1).C (1),

By definition of A, 4
€ Call' ) + K

m (k+l).Cq(I) + k.

C, 1)

As Ca(I’) is a multiple of (k+l),

Ca(1’) €=(k+1).Co(I) = Co(1).
Thus, the resulting schedule is an optimal schedule in implying
that this 1% an aoptimal schedule in I also.

This 1ndicates that there exists a polynowmial tiwme exact

algorithm of GARBAGE, leading to the conclusion that P = NP.

Now it‘s the time to search for € -approximate algorithm for
GARBAGE. One such algorithm already follows from the proof of the

following theorem for a very specisl class of instances of GARBAGE.
&
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rTHEOREM ITII = There exists an € -approximate alqgorithm for GARBAGE with

€ = 1 if A ¢ 2C and g{e)>0, ¥Ye € E.

mpl

Froof I The following FILL & RETURN algorithm finds an approximate

schedule for GBARBAGE with relative error not exceeding 1.

FILL & RETURN ALGORITHM :

STEF I & Get the CPP solution of thefgraph. Leiiit be repfeaented
by the list of vertices <vy,V, pyV, 5y rer 3V, »Vm» Where v, =v,..
STEP II ! For each i from 1 to m, define q(i} such that
q(l) = 0O,
q(i) = q(i-1?, 1if the edge (v;., ,v{) has already
occurred before this in the CPFP solution, i>l.
Q(1) = gl(i1-1)+9(( (v, ,v;)}, otherwise, 1i>l.
STEP IIIl © Find out i such that q(i-13)<C and g{(i)>C. This is always
posssible since q(i) is increasing from QO to A:C.
STEF IV ; Split the CPP solution in two paths pl amnd p2, which are

not necessarily simple, with

pl := ‘:Va ,Vl y - nw y Vi_‘ FV‘: :-:'
P2 55 SV yVig » wee Ve p¥Ym
STEF V I If gq¢1)xC then p2d 1= <v_, ,vi ».pd where the .’ means

corncatenation.
STEP VI I g (e} 1= 0, 1f e does not occur in pl.
= C=q(i=-1), 1f e=(v,4 ,v.)
:= gle), otherwise.

(e}, ¥etiE.

[
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STEP VII § The two trips are Tl and T2 where
Tl = pl.p3, p3 is the shortest path from v; to v,.

T2 = p4.p2d, p4 is the shortest path from v, to

the first vert!! of pd.
The above algorithm gives 3 valid schedule as

0 £ 9,¢(e) < g(e) < C, ¥ef E.

0 < g,(e) = gle)-g (e) ¢ C, ¥eEE.

£ g,(e) = 2 gllvi_ ,v;)) + C - qli-1)
e j“i

2 q(i-1) + C - q{i-1)

C-

égife)

§g(e)-—c=ﬁ—c-_§£35ﬁ_§20.

Now to show the error margin, if we denote by C the cost of
the schedule by the algqorithm, then
Ca = length(T1l) + length(T2)
= (Iength(p1)+1en9th(p3)) + (length(p2i+length(p4d))

<. C + C.pop = 20cpp » s8ince p3 and p4 are shortest

CPP

paths.

But by RESULT II, C4 > C.pp and thus C,< 2C,.

An important aspect to be observed here is that the extra
L

distance to be travelled by the trucks over the CPP solution is the

total length of two shortest paths and, if needed, an edage (v,

URPREEPI VIR B

The maximum value is of this is 2.max(length(sp(v,,u)))+max{d(e)).
LN <
Let & = (E.max(lengthfap{vu,u)))+mgx(d(e)))fEcPF.
LA
Ihen (Ca - Cipp } % K .Copp which is a good error bound for

—

dense graphs where the value of & is less.

: 13 1



CHAPTER V : ALGORITHM EOR CPP
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The CHINESE POSTMAN PROBLEM is defined as the following.

A postman delivers mail along the streets of a place which is
represented by a connected graph G. He must traverse each street at
least once. He atarts and ends at a particular vertex of +the graph

that represents the post office. What route should he follow in order

to walk the shortest distance 7

The name of the problem is after the chinese mathematician
Kwan who first solved the problem using the method of ‘augmenting
chains®. Later, Edmonds J. developed an 0(n3) algm for this. The idea
he used was that, as the tour is an eulerian walk, each vertex should
be of even degree. Hence the duplicated edges form a set of paths
between disjoint odd vertices. We have to search for suﬁh a3 set with
shortest total length. This can be done by using the idea of weighted

matching. Here follows Edwmonds’ algorithm for the CPP.

ALGORITHM :

STEP 1 : Identify the odd vertices. If there are none, g0 to
step IV.

STEP 11

Compute the shortest path between each pair of odd

vertices.



STEP III : Partition the odd vertices into pairs so that the

sum of lengths of shortest paths joining pairs is minimal, by solving
the weighted matching problem over a complete graph whose vertices are

the odd vertices of the nstwork and weight of an edge is the shortest

distance betueen the coresponding odd vertices.

STEF IV : The edges in the union of the shortest chains picked
out in step III are the edges to be traversed twice. Use any efficient
procedure to find out an eulerian walk in the 9raph when the edges have

been duplicated.

The above algm takes O(n°) time as the best known algm for the

weighted matching ts of the order 0(n°) C Papadimitriou & steiglitz 1.

[ & |
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CHAPTER VI : HEURISTICS

In this chapter, we are qQoing to develop some heuristics for
s0lving general GARBAGE instances. The alqorithm given in the last
section is an efficient tool to be used in such efforts. The obvious
method that comes first in mind is the DIVIDE & CONQUER STRATEGY that
uses this algorithm repeatedly on the given instance breaking it in

smaller ipstances with less garbage accumulation till this value 1is

below the truck capacity.

ALBORITHN DIVIDE & CONQUER @

INPUT : A network N(V,E,q), 3 vertex vo & V and capacity C.

OUTPUT : A set of trips and corresponding garbage functions.

e

STEP I ¢+ If A < C, then return the CPP solution along with

the garbage function identical with 9 and return.

STEP II | If A < 2C, use FILL & RETURN algorithwm and return.
STEP III : Call the ‘FILL & RETURN algorithm with N, vo 3and
f{C) as parameters (choice of function f is discussed later). Let
the algorithm return trips Tl % T2 with 91 & 92 as garbage functions.

STEP IV : If S gl(e) > C then call DIVIDE 8 CONQUER algm
&

recursively on the graph of Tl with capacity C.

STEP v @ If ég?(e) > C then call DIVIDE & CONQUER algm

recursively on the graph of T2 with capacity C.
STEP VI : Return all trips obtained in steps IV and V with

their respective garbage functions.

: 16 &



In the above alqgqorithm, the function f is still wundefined.

The choice of £ matters a lot in reducing the total number of trips
in the resulting schedule. One condition that is necessary in order
to ensure that the FILL % RETURN algm runs well is that the input to
FILL & REIURN must satisfy the property n+ = 2. For thig, our choice
of £ should satisfy A < 2¢(C). One obvious choice of f is

£(c) = [as2].

but this never gquarantips the msinimum number of trips.

The FILL & RETURN algorithm returns two trips, one of which
clears a truckful amount of garbage and the other clears the rest.
Also the DIVIDE & CONQUER algorithm terminates only when in each
trip, thé totsl garbage cleared is less than or equal to £%(C) where
k is the maximum depth of recursion., Thus, the amount of garbage
in all but possibly thﬁ last trip is exactly equal to fH(C) and that

in the last trip is less than or equal to t“(C).

The value of k can be found out from the fact that k is the

minimum integer for which £ (C) ¢ C. 80, the number of trips in the

output is | aze"(Cy].

To reduce this number, we have to increase fK{C) as much as
possible not exceeding C. Hence, our aim is to choose £ such that
£“(C) becomes equal to C. One su;;tion to this is

f(L) = k€ where k 1s the smallest inteqer with k€ > A/2.

= {as2¢6] .c

for which the number of trips is exactly equal ton , the optimal

oneg.

17 .



CLAIM : The DIVIDE & CONQUER algorithm gives a schedule with error

g’lﬂaln.l:\

not exceeding (1 + K - 1 if g(e) > 0, ¥ e€ E, where

o = (2.max({length(sp(v ;U)))+m%X(d(E)))fcch
-
if the choice of £ is £(C) = [asz2c].c.

PROOF : We will first prove that, if max depth of recursion is k,

then then cost of the solution doesn’t exceed (1l +*x)k.tkrp.
Proof is by induction on k. o
For k = 1, the FILL & RETURN algorithm is called only once
and as we already know, cost of the soln { (14 A).Ccee .
Let k > 1. Egt N be the input network, and N1 & N2 be the
two trips at the first level. As N1 & N2 are eulerian multigraphs,
their cpp-sizes are equal to their graph sizes. 5o

cpp-size{(Nl1) + cpp-size(N2) ¢ (1 + X ).cpp-size(N).

But the depth of recursion ¢ (k-1) for Nl and N2 and thus,

w-|
cost(N1l) ¢ (1 + X ) .cpp_size(N1)
W~
and cost(N2) ¢ (1 +X ) .cpp_s5ize{N2).
Now, cost of the soln = cost{N) = cost(Nl) + cost(N2)

K-
C (1 + o0 ) (cpp_size(Nl)+cpp_size(N2))

¢ (].i-d_)K.cpp_EizE(N)

Thuz the assertion holds.

To establish our claim, note that the maximum depth of

recursion is the minimum integer k for which £(C) ( C and that 1s

—

rlngin{wfor our choice of f. Thus,

[leq ]
cost of soln ¢ (1 + QA ) 2T

‘CCPP‘
Now, using the fact that g{e) > 0, Ye £E, i.e., C,epp ¢ Co

we establish our claim.



CHAPTER VII : AN IMMEBIATE MODIFICATION

The FILL & RETURN strategqy finds out the vertex in wnich
the the truck is just filled and thus the deviation of the cost of
the soln from the cost of the CPP soln is more or less equal to
twice the shortest distance of this vertex from vo. The reazson of
the choice of this vertex is only that this divides the CPP tour
in two parts each with a garbage accumalation less than capacity.
A sligqht change in this strategqy can improve the soln cost and yet

maintaining the partition criteria.

Actually, any vertex v; with q{i) l}ing between A-C and C
divides the tour in two such parts for A < 2C. Why not choose one
of them with the shortest distance ? One problem that arises 1s
that there may not be any such vertex. In that case we can use the
ordinary 3lgorithm. Thus thg.mndificatiuns to be made in the algwm

FILL & RETURN are

STEP III’: Find maximum j and minimum i for which gq¢(j) < A-C and

q(i) > c. If j—-1 = 1 then g0 to STEP IV.

STEF IV': Find out k such that } <k <1 and v, is nearest from v,.

!

STEF V : Split the CPP tour iIin two paths
Pl o= W gV, ¢4 =er sV, 9 Vs
P2 1T VL pVika r mam gV pYm 7
STEP VI': g (e) := 0, if e does not occur in pl.

= g(e), otherwise.
9,(e) 1= g(e) - g3 (e), ¥ ek E,

STEF VII': Go to STEP VII .

19 &



The above modification of the FILL & RETURN algm is sure to
reduce the cost of the soln schedule but the number of trips is no
longer optimal as there is no wore guaranty of one of the two trips
clearing truckful amount of garbage. But the number of trips never
exceedﬁﬁznT 3% will be shown in the next section. So the modified

version of FILL & RETURN algm is acceptable.

20
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CHAPTER VIII : MINIMIZATION OF THE NUMBER OF TRIPS

—"_—“—-_—_——_H_u_-ﬂ.--I--——__-'—“—‘ﬂ“l—“-_—‘_-_—_——_-——

In all discussions in the previous sections, we ignored the
minimization of the number of trips, but mentioned that there is
way so0 that this number can always be kept within some limit. Our
algorithms give optimal number of trips, i.e., n,. , if we run thew
without making the wmodifications we mentioned in the last chapter.
But even if we make the modifications, this npumber never exceeds

2, 4 if we follow the algm in the proof of the following theoren.

IV = For every feasible schedule with more then 2n_, trips, there
exists a schedule with cost no wore than that of the previous one

yvyet having the number of itrips < 2n, .
PROOF : On the given schedule, apply the following algorithwm.

ALGORITHM COMPACT 2

Let § be a list and T a set of trips. Head(lL) denotes the first

element in the list L and Tail(L) denotes the rest part. ‘.’ stands

for the concatenation of two lists/trips as applicable.

STEP I

Let 8 = <> T = trip_set;

STEP 1I1I

For each trip t do

if ¢ clears garbage < C/2 then
{ 8 1= §.<L>;

T 2= T \ {t¥; %
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STEP III : While § contains more than one element do
{ tl = head(8); 8 iw tail(8);
t2 1= head(S); 8§ = tail(8);
t t= t1.t2 (A concatenation of ¢t1 ¢ ¢t2 %)
if garbage cleared by t is more than C/2
then T ¢= T U {t)
else S 1= {t>.8; >
STEP IV : If 8 is not empty then T s T U { head(8) )};

Return(l),;

Ihe above algorithm takes linear time to run and itops only
when all the elements in the initial list 8 is scanned, But at that
instance there can be at most one trip clearing less than or equal
to €C/2 garbage. Let k be the number of trips in the new schedule.
Since total garbage cleared in all these trips is A, and there are
at least (k - 1) trips clearing more than C/2 amount of garbage, we
can say,

(k. - 1).C/2 < A,
or, k - 1 < 2A/C,

or, k € f{2a/¢1 ¢ 2Tarselg=2n., .

Also the cost of schedule is now equal te the cost of the

initial schedule but after some processing as discussed in next

section the cost may decrease as these trips are concatenations of

two or more trips.



CHAPTER IX & FEURTHER IMPROVEMENTS
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PSEUDO PATHS :

The previous chapter used the fact that, the concatenation of
two trips is again a trip 1if the sum of the amounts of garbage cleared
by them doesn’t G;EEEd truck capacity. This concatenated trip may have
used some path clearing no garbage. Let us call such paths as pseudo
paths., The pseudo paths do nething reqarding the clearing of garbage
and thier only necessity is in connecting two vertices so that a cycle
results. Thus, it is intended that a pseudo path between two vertices

must be the shortest path between them.

But the concatenation of two trips does not guaranty this and
we have to process the trips in the resulting schedule in order to
minimize the eoptributiun of the pseudo paths. This can be done by
using many clever methods. ne such method ias to scan through each of

the trips and whenever a pseudo path is met, replace it by the shortest

path between the two terminal nodes of the pseudo path. This algm can

b
be implemented in polynomial time.
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DECOMPOSITION o

The CPP tour of the qiven graph may have a number of occurences

of the initial node v, . In such cases, we can decompose the tour in a
number of tours each starting and ending at v,. Then the algorithms can
be applied to each of them seperately. But this wmay result further
increase in the number of trips required. 8o, the CONPACT algorithm of

the last chapter must be used after this.
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