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Abstract. Let H be a product of countably infinite number of copies of an uncountable
Polish space X. Let X¢ (X¢) be the class of Borel sets of additive class & for the product

of copies of the discrete topology on X (the Polish topology on X), and let B = Uy _, X¢.
We prove in the Lévy—Solovay model that

§€=2§HB
forl <& < w.
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1. Introduction

Suppose X is a Polish space and N the set of positive integers. We consider H = X* with
two product topologies: (i) the product of copies of the Polish topology on X, so that H is
again a Polish space and (ii) the product of copies of the discrete topology on X. Define
now the Borel hierarchy in the larger topology on H. To do so, we need some notation.
An element of H will be denoted by & = (x1, x2, ..., X, ...)and form € N, p,,(h) will
denote the first m coordinates, that is, p,, (k) = (x1, x2, ..., X;;). Forn € Nand A C X",
cyl(A) will denote the cylinder set with base A, that is,

cyl(A) ={h € H: p,(h) € A}.

The Borel hierarchy for the larger topology on H can now be defined as follows:
Yo =y = {cyl(A): AC X", n=>1}

and for & > 0,

25=<Unn> , Mg =—3.
o

n<§
The Borel hierarchy on H with respect to the smaller topology is defined in the usual way:

Y1 = {V: Visopenin H in the smaller topology}, 1| = =%
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and, for & > 1,

¥ :<Uﬁ”> ) ﬁgz—'fg.
o

o

Let
B=|J = M.
§<w) §<w)
The problem we will address in this article is whether
fg:ZgﬂB forl <& < w. (*)

To tackle the problem we will use the methods of effective descriptive set theory. We
therefore have to formulate the lightface version of (x«). We refer the reader to [Mo] and
[L1] for definitions of lightface concepts. We take X to be the recursively presentable
Polish space w® hereafter.

Define

o =TI} = {cyl(A): Ais Al in (0®)", n > 1},

ck
1>

and, for 1 <& < w
BF = Uj(Up<eIT})
and

¥y
Hs— Es,

where U] (Up<gIT}) is a A} union of members of U, ¢ IT. The lightface analogue of ()
is then

Z;‘:A{HZS, for1§E<a)§k. (**)

In order to state the main result of the article, we equip w® with the Gandy—Harrington
topology, that is, the topology whose base is the pointclass of le sets. The key property
of this topology is that it satisfies the Baire category theorem (see [L1]). Consider now the
following statement of set theory:
(O) Every subset of w® has the Baire property with respect to the Gandy—Harrington
topology.

The main result of the article can now be stated.

Theorem 1.1. Assume (O). Let 1 < £ < a)fk. If A and B are Ell subsets of H such that
A can be separated from B by a X¢ set, then A can be separated from B by a E;‘ set.

An immediate consequence is

COROLLARY 1.2
(0) implies (**).
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The above results will be established in ZF 4+ DC. Maitra et al [Ma] proved (*) for
& = 1in ZF + DC by a boldface argument. We will provide a lightface argument in the
Appendix for (**) when § = 1. Again this will be done in ZF 4+ DC. Barua [Ba] proved
Theorem 1.1 and Corollary 1.2. His proof was by induction on &. However, he left out the
proof of the base step (§ = 1). We will fill in the gap in this article. The proof of Theorem
1.1 presented here parallels very closely that of Louveau [L1], whereas the proof in [Ba]
relies on the more abstract developments of [L2]. In consequence, the proof given here is
somewhat simpler.

The paper is organized as follows. Section 2 is devoted to definitions and notation.
Section 3 contains the detailed proof of Theorem 1.1 when & = 1, while §4 sketches how
the proof of Theorem 1.1 can be completed by an inductive argument. In the concluding
section, we will prove (*) under appropriate hypotheses and also mention open problems.

2. Definitions, notation and preliminaries

Forn > 1, the Gandy—Harrington topology on (w®)" will be denoted by 7" and the Gandy—
Harrington topology on H will be denoted by T°°. Following Louveau [L1], we define
for each £ such that 1 < & < wfk a topology Tt on H having for its base the pointclass
T NU,<eld,.

Let S be a second countable topology on (w®)" (respectively, H). Let A be a subset
of (w®)" (respectively, H). By the cosurrogate of A we mean the largest S-open set B
such that A N B is T"-meager (respectively, 7 °°-meager). The surrogate of A is defined
to be the complement of the cosurrogate of A. When S is the topology T", we denote the
surrogate (respectively, cosurrogate) of A by sur” (A) (respectively, cosur” (A)). If A € H
and S is the topology T, the surrogate (respectively, cosurrogate) of A will be denoted by
surg (A) (respectively, cosurg (A)).

Lemma?2.1. Letm > 1. If A C (w®)™ is T™-open, then sur™ (A) is the T™-closure of A.
Consequently, sur™ (A) — A is T™-nowhere dense.

Proof. If B is 211 and A N B is T™-meager, then A N B must be empty, because A N B
is T™-open and the Baire category theorem holds for 7. Consequently, cosur”(A) is
the union of basic open sets of the 7" -topology which are disjoint with A. It follows that
sur” (A) is the T™-closure of A. O

Lemma 2.2. Assume (O). Let m > 1. If A C (w®)™, then AAsur™ (A) is T™-meager.

Proof. Observe that w® and (w®)™ are recursively isomorphic, so (w®, T') and
((w®)™, T™) are homeomorphic. Hence it follows from (O) that there is a 7" -open set B
such that AA B is T -meager. So, if D isa Ell subset of (w®)™, then AN D is T"-meager
iff BN D is T™-meager, so that sur” (A) = sur”(B). Since B is T"-open, it follows from
Lemma 2.1 that sur” B — B is T™-nowhere dense, hence BAsur” (B) is T™- meager.
Consequently, AAsur™ (A) is T"-meager. |

Note that the converse of Lemma 2.2 is true. Indeed, if AAsur'(A) is T'-meager for
every A C w®, then, as is easy to verify, A has the Baire property with respect to T'! for
every A C w®, that is, (O) holds.

3. Thecase& =1

In this section we will prove Theorem 1.1 when & = 1.
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Following [L.1], we fix a coding pair (W, C) for the A} subsets of H, that is,

(i) Wisa Hi subset of w;
(i) Cisa 1'[% subset of w x H;

(iii) the relations ‘n € W & C(n, h)’ and ‘n € W & —C(n, h)’ are both ml;

(iv) for every A} subset A of H, thereisn € W suchthat A = C,, def. {h € H: C(n, h)}.

Define Wy as follows:
meWy<meW&@n > 1)(Vh)(YA')(C(n, h) & pn(h)
= pu(h') — C(n, h)).
Then Wy is H}. Indeed, Wy is just the set of codes of A% cylinder subsets of H.

Lemma3.1. If Ais a Ell subset of H, then cli(A) is I1; and Ell, hence T,-open, where
cli(A) is the T -closure of A.

Proof. Indeed, for any A, clj(A) is 1y, because it is a countable intersection of I1; sets.
Now suppose A is Z!. Then

hé¢cli(A) < (3n > 1)E3B)(Bisa 211 subset of (0”)" & h € cyl(B)
& ANcyl(B) = ¢)

< (3n > 1) (3B) (B isa A} subset of (w®)"
&h € cyl(B) & A N cyl(B) = ¢).

To prove the previous implication —, let B be a Ell subset of (w®)" such that i € cyl(B)
and A Ncyl(B) = ¢. But then p,(A) N B = ¢. Since p,(A) is !, it follows from
Kleene’s separation theorem that there is a A{ subset B” of (w®)" such that B € B’
and B’ N p,(A) = ¢. Hence h € cyl(B’) and A N cyl(B’) = ¢, which establishes —.
Consequently,

hé¢cli(A) < @m)(meWy& C(m,h) & C,y N A = ¢).
So —cly (A) is 1. O
Lemma 3.2. Assume (O). If A is a I1 subset of H, then AAsur|(A) is T°°-meager.
Proof. Choose subsets B, of (w®)", n > 1, such that

A =H — U,>1cyl(By).
Then

sur;(A) — A = sur;(A) NUp>1cyl(By)

C Un>1([suri (A) Neyl(sur” (By))]
U [eyl(By) — cyl(sur” (By)))).



Infinite products of Polish spaces 209

Now
cyl(By) — cyl(sur' (By)) = cyl(B, — sur”(By)).

The set on the right of the above equality is 7°°-meager by virtue of Lemma 2.13 in
[L2]. We will now prove that surj(A) N cyl(sur®(B,)) is T°°-nowhere dense. Note that
sur (A) Neyl(sur” (By)) is T1-closed, hence T *°-closed. Now let A" be a Ell set contained
in sury (A) N cyl(sur(By)). Then

cyl(pn(A)) C cyl(sur (By)).
Hence

ANcyl(pa(A)) € cyl(sur (By)) — eyl(By)

= cyl(sur" (B,) — By).

Consequently, by virtue of Lemma 2.2 and Lemma 2.13 in [L2], A Ncyl(p, (A")) is T°°-
meager. Since cyl(p, (A’)) is Tj-open, it follows that cyl(p, (A’)) C cosur;(A). Hence A’
is empty because A’ is also contained in surj(A). Thus sur;(A) N cyl(sur(B,)) is T°°-
nowhere dense. It follow from (1) that sur; (A) — A is T°°-meager. Since A — surj(A) is
easily seen to be 7°°-meager, we are done. a

Lemma 3.3. If A and B are Ell subsets of H such that A can be separated from B by a
Y set, then ANcli(B) = ¢.

Proof. Suppose D is a I1; subset of H such that AN D = ¢ and B C D. Hence, by
Lemma 3.2, B — surj (D) is T°°-meager. But B — sur{ (D) is T°°-open, so B C sur| (D).

Since sury (D) is Tj-closed, clj(B) C surj(D). Now A N sury(D) is T°°-meager, so
A Ncly(B) is T*°-meager. By Lemma 3.1, A N cly(B) is 211, hence A N cl;(B) must be
empty. |

Lemma 3.4. If A and B are Ell subsets of H such that A Ncly(B) = ¢, then A can be
separated from B by a X} set.

Proof. Define
Ph,n)<>h¢ AvVine Wo& C(n,h) & C, N B = ¢).

Then P is H} and (Vh)(3An) P (h, n). By Kreisel’s selection theorem [Mo], there is a A}-
recursive function f: H — o such that (Vh) P(h, f(h)). Let

D=nhew:neWy&C,NB=¢}.

Then D is l'[{ and f(A) C D. Since f(A) is 211, there is a A% set E C w such that
f(A) CECD.Let

R(h,n) <> ne E&C(n,h),
Then R is A%, because if
R'(h,n) & ne E &—C(n,h),
then both R and R’ are I"Ii, RNR =¢and RUR' = H x E. Set
G, ={h: R(h,n)}, n € .
Then U,,>0G is a X} set which separates A from B. O
Lemmas 3.2, 3.3 and 3.4 establish Theorem 1.1 for & = 1.
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4. Proof of Theorem 1.1

The proof of Theorem 1.1 is by induction on £. So we fix £ > 1 and assume Theorem 1.1
is true for all n < &. Lemmas 3.1-3.4 can be formulated and proved at level &, thereby
completing the proof of Theorem 1.1 atlevel £. We omit the proofs because they are exactly
like the proofs of Lemmas 7, 8, 9 and Theorem B in [L1].

We observe that the inductive hypothesis that Theorem 1.1 hold at all levels n < & is by
itself not sufficiently strong to prove the analogue of Lemma 3.2 at level £ and hence the
theorem itself at that level. For this we need that analogues of Lemma 3.2 hold at all levels
n < &. It is at this point in the proof that assumption (O) is needed to ensure that Lemma
3.2 hold at level & = 1, the higher levels of Lemma 3.2 then being proved by inducting up
from the base level.

5. Concluding remarks
For o € w®, we now consider the following statement of set theory:

() Every subset of w® has the Baire property with respect to the topology whose base is
the pointclass of Ell (@) sets.

It is straightforward to relativize Theorem 1.1 to « under the assumption that (o) holds.
The next result is provable in ZF + DC + (Vo) ((«)).

Theorem 5.1. Let X be an uncountable Polish space and let H = X N Then, for1l <
¢ <o,
Eg =X N B.

Under the assumption that there is an inaccessible cardinal, Solovay [S] proved that
ZF + DC holds in the Lévy—Solovay model. Furthermore, it was observed by Louveau
(p-43 of [L2]) that the statement (Vo) ((«)) holds as well in the model.

Whether Theorem 5.1 is provable in ZFC remains an open problem. Indeed, we do not
have an answer to the problem even when & = 2.

It is not difficult to prove that the axiom of determinacy implies (Vo)((ev)) so that
Theorem 5.1 is provable in ZF + AD (see [Mo]). On the other hand, the axiom of choice
implies —(0O) in ZF.

Appendix

We will now prove Theorem 1.1 for £ = 1 without assuming (O). In view of Lemma 3.4,
it will suffice to prove that A Ncl;(B) = ¢. Define

P(h,n) < (n>1) & (3h")(p,()h" € B),
where p,,(h)h’ is the catenation of p,(h) and h’. Note that P is 211. Let
heB < (Yn>1)P(h,n),

so that B is the closure of B in the product of discrete topologies on H. Consequently,
B € H — A. Define

Qth,n) <> nm>1)& (—Ph,n)vVh¢A).

Then Q is clearly l'[} and (3n)Q(h, n). So there is a A{-recursive function f: H - w
such that (Vi) Q(h, f(h)). Let
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Sth,n) < n>1)&(f(h)#n Vh¢gA).
Claim.

(i) SisTIj,
(ii) (Yh)(Yn > 1)(P(h,n) — S(h,n)),
(i) h ¢ A < (Yn > D)S(h, n).

To see (ii), assume P (h, n). Then we must have h € A — f(h) # n. Hence S(h, n).
For (iii), suppose i ¢ A. Clearly, then (Vn > 1)S(h, n). Suppose now that 7 € A. Then
there is n such that f(h) = n, hence —S(h, n). (iii) now follows.

Now turn each S, into a cylinder set as follows. Define

R(h,n) < (YH)S(pa(W)H', 1),

so R is Hi. Note that P, and R, are cylinder sets, that is,
P(h,n) & pu(h) = pu(h") — P(h',n)

and
R(h,n) & pu(h) = pu(h’) — R(h', n).

Claim. (Yh)(¥n)(P(h, n) — R(h,n)).

So suppose P (h, n). Then, forevery h’, P(p, (h)h’, n), hence S(p, (W), n),so R(h, n).

To complete the proof, let 7 € A. Then there is n > 1 such that —~S(h, n), hence
= R(h,n). Now =R, is Ell and ITp because R, is a cylinder set. Moreover, =R, N B = ¢
because =R, € —P, and =P, N B = ¢. Hence —R,, is a T}-open set containing # and
disjoint from B. So & ¢ cl{(B).
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