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Borel hierarchies in infinite products of Polish spaces
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Abstract. Let H be a product of countably infinite number of copies of an uncountable
Polish space X. Let �ξ (�ξ ) be the class of Borel sets of additive class ξ for the product
of copies of the discrete topology on X (the Polish topology on X), and let B = ∪ξ<ω1�ξ .
We prove in the Lévy–Solovay model that

�ξ = �ξ ∩ B

for 1 ≤ ξ < ω1.
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1. Introduction

Suppose X is a Polish space and N the set of positive integers. We consider H = XN with
two product topologies: (i) the product of copies of the Polish topology on X, so that H is
again a Polish space and (ii) the product of copies of the discrete topology on X. Define
now the Borel hierarchy in the larger topology on H . To do so, we need some notation.
An element of H will be denoted by h = (x1, x2, . . . , xn, . . . ) and for m ∈ N , pm(h) will
denote the first m coordinates, that is, pm(h) = (x1, x2, . . . , xm). For n ∈ N and A ⊆ Xn,
cyl(A) will denote the cylinder set with base A, that is,

cyl(A) = {h ∈ H : pn(h) ∈ A}.

The Borel hierarchy for the larger topology on H can now be defined as follows:

�0 = �0 = {cyl(A): A ⊆ Xn, n ≥ 1}

and for ξ > 0,

�ξ =
(⋃

η<ξ

�η

)
σ

, �ξ = ¬�ξ .

The Borel hierarchy on H with respect to the smaller topology is defined in the usual way:

�1 = {V : V is open in H in the smaller topology}, �1 = ¬�1
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and, for ξ > 1,

�ξ =
(⋃

η<ξ

�η

)
σ

; �ξ = ¬�ξ .

Let

B =
⋃

ξ<ω1

�ξ =
⋃

ξ<ω1

�ξ .

The problem we will address in this article is whether

�ξ = �ξ ∩ B for 1 ≤ ξ < ω1. (*)

To tackle the problem we will use the methods of effective descriptive set theory. We
therefore have to formulate the lightface version of (∗). We refer the reader to [Mo] and
[L1] for definitions of lightface concepts. We take X to be the recursively presentable
Polish space ωω hereafter.

Define

�∗
0 = �∗

0 = {cyl(A): A is �1
1 in (ωω)n, n ≥ 1},

and, for 1 ≤ ξ < ωck
1 ,

�∗
ξ = ∪1

1(∪η<ξ�
∗
η)

and

�∗
ξ = ¬�∗

ξ ,

where ∪1
1(∪η<ξ�

∗
η) is a �1

1 union of members of ∪η<ξ�
∗
η. The lightface analogue of (∗)

is then

�∗
ξ = �1

1 ∩ �ξ , for 1 ≤ ξ < ωck
1 . (**)

In order to state the main result of the article, we equip ωω with the Gandy–Harrington
topology, that is, the topology whose base is the pointclass of �1

1 sets. The key property
of this topology is that it satisfies the Baire category theorem (see [L1]). Consider now the
following statement of set theory:
(O) Every subset of ωω has the Baire property with respect to the Gandy–Harrington
topology.

The main result of the article can now be stated.

Theorem 1.1. Assume (O). Let 1 ≤ ξ < ωck
1 . If A and B are �1

1 subsets of H such that
A can be separated from B by a �ξ set, then A can be separated from B by a �∗

ξ set.

An immediate consequence is

COROLLARY 1.2

(O) implies (∗∗).
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The above results will be established in ZF + DC. Maitra et al [Ma] proved (∗) for
ξ = 1 in ZF + DC by a boldface argument. We will provide a lightface argument in the
Appendix for (∗∗) when ξ = 1. Again this will be done in ZF + DC. Barua [Ba] proved
Theorem 1.1 and Corollary 1.2. His proof was by induction on ξ . However, he left out the
proof of the base step (ξ = 1). We will fill in the gap in this article. The proof of Theorem
1.1 presented here parallels very closely that of Louveau [L1], whereas the proof in [Ba]
relies on the more abstract developments of [L2]. In consequence, the proof given here is
somewhat simpler.

The paper is organized as follows. Section 2 is devoted to definitions and notation.
Section 3 contains the detailed proof of Theorem 1.1 when ξ = 1, while §4 sketches how
the proof of Theorem 1.1 can be completed by an inductive argument. In the concluding
section, we will prove (∗) under appropriate hypotheses and also mention open problems.

2. Definitions, notation and preliminaries

For n ≥ 1, the Gandy–Harrington topology on (ωω)n will be denoted by T n and the Gandy–
Harrington topology on H will be denoted by T ∞. Following Louveau [L1], we define
for each ξ such that 1 ≤ ξ < ωck

1 a topology Tξ on H having for its base the pointclass
�1

1 ∩ ∪η<ξ�η.
Let S be a second countable topology on (ωω)n (respectively, H ). Let A be a subset

of (ωω)n (respectively, H ). By the cosurrogate of A we mean the largest S-open set B

such that A ∩ B is T n-meager (respectively, T ∞-meager). The surrogate of A is defined
to be the complement of the cosurrogate of A. When S is the topology T n, we denote the
surrogate (respectively, cosurrogate) of A by surn(A)(respectively, cosurn(A)). If A ⊆ H

and S is the topology Tξ , the surrogate (respectively, cosurrogate) of A will be denoted by
surξ (A) (respectively, cosurξ (A)).

Lemma 2.1. Let m ≥ 1. If A ⊆ (ωω)m is T m-open, then surm(A) is the T m-closure of A.
Consequently, surm(A) − A is T m-nowhere dense.

Proof. If B is �1
1 and A ∩ B is T m-meager, then A ∩ B must be empty, because A ∩ B

is T m-open and the Baire category theorem holds for T m. Consequently, cosurm(A) is
the union of basic open sets of the T m-topology which are disjoint with A. It follows that
surm(A) is the T m-closure of A. �

Lemma 2.2. Assume (O). Let m ≥ 1. If A ⊆ (ωω)m, then A�surm(A) is T m-meager.

Proof. Observe that ωω and (ωω)m are recursively isomorphic, so (ωω, T 1) and
((ωω)m, T m) are homeomorphic. Hence it follows from (O) that there is a T m-open set B

such that A�B is T m-meager. So, if D is a �1
1 subset of (ωω)m, then A∩D is T m-meager

iff B ∩D is T m-meager, so that surm(A) = surm(B). Since B is T m-open, it follows from
Lemma 2.1 that surmB − B is T m-nowhere dense, hence B�surm(B) is T m- meager.
Consequently, A�surm(A) is T m-meager. �

Note that the converse of Lemma 2.2 is true. Indeed, if A�sur1(A) is T 1-meager for
every A ⊆ ωω, then, as is easy to verify, A has the Baire property with respect to T 1 for
every A ⊆ ωω, that is, (O) holds.

3. The case ξ = 1ξ = 1ξ = 1

In this section we will prove Theorem 1.1 when ξ = 1.
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Following [L1], we fix a coding pair (W, C) for the �1
1 subsets of H , that is,

(i) W is a �1
1 subset of ω;

(ii) C is a �1
1 subset of ω × H ;

(iii) the relations ‘n ∈ W & C(n, h)’ and ‘n ∈ W & ¬C(n, h)’ are both �1
1;

(iv) for every �1
1 subset A of H , there is n ∈ W such that A = Cn

def.= {h ∈ H : C(n, h)}.

Define W0 as follows:

m ∈ W0 ↔ m ∈ W & (∃n ≥ 1)(∀h)(∀h′)(C(n, h) & pn(h)

= pn(h
′) → C(n, h′)).

Then W0 is �1
1. Indeed, W0 is just the set of codes of �1

1 cylinder subsets of H .

Lemma 3.1. If A is a �1
1 subset of H , then cl1(A) is �1 and �1

1 , hence T2-open, where
cl1(A) is the T1-closure of A.

Proof. Indeed, for any A, cl1(A) is �1, because it is a countable intersection of �1 sets.
Now suppose A is �1

1 . Then

h /∈ cl1(A) ↔ (∃n ≥ 1)(∃B)(B is a �1
1 subset of (ωω)n & h ∈ cyl(B)

& A ∩ cyl(B) = φ)

↔ (∃n ≥ 1) (∃B) (B is a �1
1 subset of (ωω)n

& h ∈ cyl(B) & A ∩ cyl(B) = φ).

To prove the previous implication →, let B be a �1
1 subset of (ωω)n such that h ∈ cyl(B)

and A ∩ cyl(B) = φ. But then pn(A) ∩ B = φ. Since pn(A) is �1
1 , it follows from

Kleene’s separation theorem that there is a �1
1 subset B ′ of (ωω)n such that B ⊆ B ′

and B ′ ∩ pn(A) = φ. Hence h ∈ cyl(B ′) and A ∩ cyl(B ′) = φ, which establishes →.
Consequently,

h /∈ cl1(A) ↔ (∃ m)(m ∈ W0 & C(m, h) & Cm ∩ A = φ).

So ¬cl1(A) is �1
1. �

Lemma 3.2. Assume (O). If A is a �1 subset of H , then A�sur1(A) is T ∞-meager.

Proof. Choose subsets Bn of (ωω)n, n ≥ 1, such that

A = H − ∪n≥1cyl(Bn).

Then

sur1(A) − A = sur1(A) ∩ ∪n≥1cyl(Bn)

⊆ ∪n≥1([sur1(A) ∩ cyl(surn(Bn))]

∪ [cyl(Bn) − cyl(surn(Bn))]).
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Now

cyl(Bn) − cyl(surn(Bn)) = cyl(Bn − surn(Bn)).

The set on the right of the above equality is T ∞-meager by virtue of Lemma 2.13 in
[L2]. We will now prove that sur1(A) ∩ cyl(surn(Bn)) is T ∞-nowhere dense. Note that
sur1(A)∩ cyl(surn(Bn)) is T1-closed, hence T ∞-closed. Now let A′ be a �1

1 set contained
in sur1(A) ∩ cyl(surn(Bn)). Then

cyl(pn(A
′)) ⊆ cyl(surn(Bn)).

Hence

A ∩ cyl(pn(A
′)) ⊆ cyl(surn(Bn)) − cyl(Bn)

= cyl(surn(Bn) − Bn).

Consequently, by virtue of Lemma 2.2 and Lemma 2.13 in [L2], A ∩ cyl(pn(A
′)) is T ∞-

meager. Since cyl(pn(A
′)) is T1-open, it follows that cyl(pn(A

′)) ⊆ cosur1(A). Hence A′
is empty because A′ is also contained in sur1(A). Thus sur1(A) ∩ cyl(surn(Bn)) is T ∞-
nowhere dense. It follow from (1) that sur1(A) − A is T ∞-meager. Since A − sur1(A) is
easily seen to be T ∞-meager, we are done. �

Lemma 3.3. If A and B are �1
1 subsets of H such that A can be separated from B by a

�1 set, then A ∩ cl1(B) = φ.

Proof. Suppose D is a �1 subset of H such that A ∩ D = φ and B ⊆ D. Hence, by
Lemma 3.2, B − sur1(D) is T ∞-meager. But B − sur1(D) is T ∞-open, so B ⊆ sur1(D).

Since sur1(D) is T1-closed, cl1(B) ⊆ sur1(D). Now A ∩ sur1(D) is T ∞-meager, so
A ∩ cl1(B) is T ∞-meager. By Lemma 3.1, A ∩ cl1(B) is �1

1 , hence A ∩ cl1(B) must be
empty. �

Lemma 3.4. If A and B are �1
1 subsets of H such that A ∩ cl1(B) = φ, then A can be

separated from B by a �∗
1 set.

Proof. Define

P(h, n) ↔ h /∈ A ∨ (n ∈ W0 & C(n, h) & Cn ∩ B = φ).

Then P is �1
1 and (∀h)(∃n)P (h, n). By Kreisel’s selection theorem [Mo], there is a �1

1-
recursive function f : H → ω such that (∀h)P (h, f (h)). Let

D = {n ∈ ω: n ∈ W0 & Cn ∩ B = φ}.
Then D is �1

1 and f (A) ⊆ D. Since f (A) is �1
1 , there is a �1

1 set E ⊆ ω such that
f (A) ⊆ E ⊆ D. Let

R(h, n) ↔ n ∈ E & C(n, h),

Then R is �1
1, because if

R′(h, n) ↔ n ∈ E & ¬C(n, h),

then both R and R′ are �1
1, R ∩ R′ = φ and R ∪ R′ = H × E. Set

Gn = {h: R(h, n)}, n ∈ ω.

Then ∪n≥0Gn is a �∗
1 set which separates A from B. �

Lemmas 3.2, 3.3 and 3.4 establish Theorem 1.1 for ξ = 1.
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4. Proof of Theorem 1.1

The proof of Theorem 1.1 is by induction on ξ . So we fix ξ > 1 and assume Theorem 1.1
is true for all η < ξ . Lemmas 3.1–3.4 can be formulated and proved at level ξ , thereby
completing the proof of Theorem 1.1 at level ξ . We omit the proofs because they are exactly
like the proofs of Lemmas 7, 8, 9 and Theorem B in [L1].

We observe that the inductive hypothesis that Theorem 1.1 hold at all levels η < ξ is by
itself not sufficiently strong to prove the analogue of Lemma 3.2 at level ξ and hence the
theorem itself at that level. For this we need that analogues of Lemma 3.2 hold at all levels
η < ξ . It is at this point in the proof that assumption (O) is needed to ensure that Lemma
3.2 hold at level ξ = 1, the higher levels of Lemma 3.2 then being proved by inducting up
from the base level.

5. Concluding remarks

For α ∈ ωω, we now consider the following statement of set theory:

(α) Every subset of ωω has the Baire property with respect to the topology whose base is
the pointclass of �1

1(α) sets.

It is straightforward to relativize Theorem 1.1 to α under the assumption that (α) holds.
The next result is provable in ZF + DC + (∀α)((α)).

Theorem 5.1. Let X be an uncountable Polish space and let H = XN . Then, for 1 ≤
ξ < ω1,

�ξ = �ξ ∩ B.

Under the assumption that there is an inaccessible cardinal, Solovay [S] proved that
ZF + DC holds in the Lévy–Solovay model. Furthermore, it was observed by Louveau
(p.43 of [L2]) that the statement (∀α)((α)) holds as well in the model.

Whether Theorem 5.1 is provable in ZFC remains an open problem. Indeed, we do not
have an answer to the problem even when ξ = 2.

It is not difficult to prove that the axiom of determinacy implies (∀α)((α)) so that
Theorem 5.1 is provable in ZF + AD (see [Mo]). On the other hand, the axiom of choice
implies ¬(O) in ZF.

Appendix

We will now prove Theorem 1.1 for ξ = 1 without assuming (O). In view of Lemma 3.4,
it will suffice to prove that A ∩ cl1(B) = φ. Define

P(h, n) ↔ (n ≥ 1) & (∃h′)(pn(h)h′ ∈ B),

where pn(h)h′ is the catenation of pn(h) and h′. Note that P is �1
1 . Let

h ∈ B̄ ↔ (∀n ≥ 1)P (h, n),

so that B̄ is the closure of B in the product of discrete topologies on H . Consequently,
B̄ ⊆ H − A. Define

Q(h, n) ↔ (n ≥ 1) & (¬P(h, n) ∨ h /∈ A).

Then Q is clearly �1
1 and (∃n)Q(h, n). So there is a �1

1-recursive function f : H → ω

such that (∀h)Q(h, f (h)). Let
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S(h, n) ↔ (n ≥ 1) & (f (h) �= n ∨ h /∈ A).

Claim.

(i) S is �1
1,

(ii) (∀h)(∀n ≥ 1)(P (h, n) → S(h, n)),
(iii) h /∈ A ↔ (∀n ≥ 1)S(h, n).

To see (ii), assume P(h, n). Then we must have h ∈ A → f (h) �= n. Hence S(h, n).
For (iii), suppose h /∈ A. Clearly, then (∀n ≥ 1)S(h, n). Suppose now that h ∈ A. Then
there is n such that f (h) = n, hence ¬S(h, n). (iii) now follows.

Now turn each Sn into a cylinder set as follows. Define

R(h, n) ↔ (∀h′)S(pn(h)h′, n),

so R is �1
1. Note that Pn and Rn are cylinder sets, that is,

P(h, n) & pn(h) = pn(h
′) → P(h′, n)

and

R(h, n) & pn(h) = pn(h
′) → R(h′, n).

Claim. (∀h)(∀n)(P (h, n) → R(h, n)).

So suppose P(h, n). Then, for every h′, P(pn(h)h′, n), hence S(pn(h)h′, n), so R(h, n).
To complete the proof, let h ∈ A. Then there is n ≥ 1 such that ¬S(h, n), hence

¬R(h, n). Now ¬Rn is �1
1 and �0 because Rn is a cylinder set. Moreover, ¬Rn ∩ B = φ

because ¬Rn ⊆ ¬Pn and ¬Pn ∩ B = φ. Hence ¬Rn is a T1-open set containing h and
disjoint from B. So h /∈ cl1(B).

Acknowledgement

The authors would like to thank the referee for making a number of helpful suggestions.

References

[Ba] Barua R, On Borel hierarchies of countable products of Polish spaces, Real Analysis
Exchange 16 (1990–91) 60–66

[L1] Louveau A, A separation theorem for �1
1 sets, Trans. Am. Math. Soc. 260 (1980) 363–

378
[L2] Louveau A, Ensembles analytiques et boréliens dans les espaces produits, Astérisque
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