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urn models

GOPAL K BASAK and AMITES DASGUPTA

Stat-Math Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108, India
E-mail: gkb@isical.ac.in; amites@isical.ac.in

MS received 14 June 2006; revised 26 September 2006

Abstract. We take a unified approach to central limit theorems for a class of irreducible
multicolor urn models with constant replacement matrix. Depending on the eigenvalue,
we consider appropriate linear combinations of the number of balls of different colors.
Then under appropriate norming the multivariate distribution of the weak limits of these
linear combinations is obtained and independence and dependence issues are investi-
gated. Our approach consists of looking at the problem from the viewpoint of recursive
equations.
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1. Introduction

In this article we are going to study irreducible multicolor urn models. As an illustrative
example we first start with an irreducible four color urn model, describe the evolution
and state the results. This is done in the next three paragraphs. We will then proceed to
generalize the results to the irreducible multicolor situation.

Consider a four-color urn model in which the replacement matrix is actually a stochastic
matrix R in the manner of Gouet [9]. That is, we start with one ball of any color, which is
the 0-th trial. Let Wn denote the column vector of the number of balls of the four colors
up to the n-th trial, where the components of Wn are nonnegative real numbers. Then a
color is observed by random sampling from a multinomial distribution with probabilities
(1/(n + 1))Wn. Depending on the color that is observed, the corresponding row of R is
added to W′

n and this gives W′
n+1. A special case of the main theorem of Gouet [9] is that if

the stochastic matrix R is irreducible, then (1/(n + 1))W′
n converges a.s. to the stationary

distribution π of the irreducible stochastic matrix R (it should be carefully noted that the
multicolor urn model is vastly different from the Markov chain evolving according to the
transition matrix equal to the stochastic matrix R). Suppose the nonprincipal eigenvalues
of R satisfy λ1 < 1/2, λ2 = 1/2, λ3 > 1/2 respectively, which are assumed to be
real (and hence lie in (−1, 1)), and ξ1, ξ2, ξ3 be the corresponding eigenvectors. Using
πξi = πRξi = λiπξi it is seen that (1/(n + 1))W′

nξi → 0. Thus central limit theorems
are the next interesting statistical results.

In this article we consider the joint limiting distribution of (Xn, Yn, Zn) where

Xn = W′
nξ1√
n

, Yn = W′
nξ2√

n log n
, Zn = W′

nξ3

�n−1
0

(
1 + λ3

j+1

) . (1)
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Special cases of this result are known from Freedman [7], Gouet [8], Smythe [11] and
Bai and Hu [5]. Freedman [7], as well as Gouet [8], consider two color urn, so that there
is only one eigenvector and the corresponding nonprincipal eigenvalue can be one of the
three types. Smythe [11] considers multicolor urn, but all the nonprincipal eigenvalues (or
their real parts) are assumed to be less than 1/2. Recently Bai and Hu [5] have considered
the case when all the nonprincipal eigenvalues (or their real parts) are less than or equal
to 1/2. In this article we consider the joint limit when eigenvalues of all the three types
occur. Analogous results for multitype branching processes are known, for example from
Athreya [1, 2], and the recent paper by Janson [10] contains functional limit theorems
as well as an extensive discussion of related results and applications. The limit theorems
for urn models can be derived through an embedding of the urn model into a branching
process (the Athreya–Karlin embedding) and applying the limit theorems of branching
processes in the above-mentioned articles and the references therein. In particular, Athreya
and Karlin [3], Athreya and Ney [4] and Janson [10] employ this embedding procedure
and derive the results for urn models in various forms. We take a fresh look at this central
limit problem for urn models directly through recursive equations with diagonal drift. The
interesting feature is, which will be clear from the proof, the differences in the rates of
the differences of the three components. Thus we get a direct Markov chain analysis of
the problem without invoking the techniques from branching processes. Also the recursive
equations with diagonal drift and multiple rates may be of independent interest since the
rates 1/

√
n and 1/

√
n log n, particular to urn models, may be replaced with other rates. The

main feature of these rates that we use is that an appropriate ratio, like
√

n0/
√

n0 log n0,
goes to zero as n0 goes to infinity (see for example (13) and (14)).

For the above four color set up the main result is as follows.

Theorem 1.1. (Xn, Yn, Zn) converges in distribution to (X, Y, Z) where X, Y, Z are inde-
pendent, X and Y are (independent) normals with zero means. The convergence of Zn to
Z is also in the almost sure sense.

The variances of X and Y are identified in the proof. The proof indicates EZ = 0 and
gives some idea about the variance, but does not say anything about the distribution of Z.
Some features of this Z in a two-color case are discussed in Freedman [7]. For the above
urn model, we also need to point out the connection of Theorem 1.1 with a class of results
in the literature. These results consider norming the vector (Wn −EWn) and not the linear
combinations from the eigenvectors. Now the eigenvectors ξ1, ξ2, ξ3 and the principal
eigenvector u = (1, 1, 1, 1)′ span R

4, so that any linear combination can be expressed in
terms of them. But W′

nu = n+1, so its effect cancels out after the expectation is subtracted
and we are left with the linear combinations corresponding to ξ1, ξ2, ξ3. These results in
the literature divide (Wn − EWn) by the largest rate, and in the case the real part of the
nonprincipal eigenvalues is less than or equal to 1/2 (actually the rate in that case may
be different from

√
n log n as will be clear in the later sections) which derive asymptotic

normality (see for e.g. [5]).
We have stated the theorem for the four color model for the sake of notational simplicity

in the proof. The theorem also extends to situations (with more than four colors) where there
are more than one eigenvalue(s) of any one or more of the three types. These extensions
involve the same technique, but require more calculations related to the Jordan form of the
replacement matrix. So we have sketched some of these extensions in separate sections.
These sections discuss the main theorem in increasing generality along with development
of suitable notation, and we have indicated the generalizations inside these sections. First,
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all the eigenvalues are considered to be real, the Jordan form thus involves only real vectors.
Next, the eigenvalues can be complex, so the Jordan form involves complex vectors and we
deal with the real and imaginary parts of these vectors. Another interesting feature of these
later sections dealing with the Jordan form is the role of nilpotent and rotation matrices.
The final result is given as Theorem 5.1 along with subsequent discussion of asymptotic
mixed normality for Re(λ) = 1/2.

The proof of Theorem 1.1 for the above four color set up is given in the next section. It
employs an iteration technique involving conditional characteristic functions (an example
of these iterations occurs in Example 2, pp. 79–80 of [6]). We have written this proof in
detail, however the proofs for the generalizations of the main theorem are only sketched
in later sections as the ideas are the same.

2. Proof of Theorem 1.1

A quick guide through the proof is through equations (3), (10), (11), (13), (14), (17), (18)
and (19) and the discussions following them.

We first collect a few computational details. The column vector of the indicator functions
of balls of different colors obtained from the n + 1-st trial is denoted by χn+1. It is clear
that E{χn+1|Fn} = (1/(n + 1))Wn, where Fn denotes the σ -field of observations up to
the n-th trial. This notation leads to

W′
n+1ξi = W′

nξi + χ ′
n+1Rξi = W′

nξi + λiχ
′
n+1ξi . (2)

For the purpose of iteration we shall use a decomposition of the components of the Markov
chain (Xn+1, Yn+1, Zn+1) illustrated with the first component as follows:

Xn+1 = E{Xn+1|Fn} + (Xn+1 − E{Xn+1|Fn}).
The first term will be expressed in terms of Xn and the second term is the martingale
difference that will play an important role in our proof in analogy with the calculations for
the central limit theorem for i.i.d. random variables.

To write the first term in terms of Xn (Yn, Zn respectively) we shall use the following
approximations

(1 + 1/n)−1/2 = 1 − 1

2n
+ O

(
1

n2

)
,

log n

log(n + 1)
= log n

log n + 1/n + O(1/n2)

= 1

1 + (1/n log n) + O(1/n2 log n)
,

√
n log n

(n + 1) log(n + 1)
=
{

1 − 1

2n
+ O

(
1

n2

)}{
1 − 1

2n log n
+ O

(
1

n2

)}

= 1 − 1

2n
− 1

2n log n
+ O

(
1

n2

)
,

�n−1
0 (1 + λ3/(j + 1)) ∼ nλ3

�(λ3 + 1)
.
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Using these and the conditional expectation of (2) it follows that:

E{Xn+1|Fn} = Xn

(
1 − 1/2 − λ1

n

)
+ XnO(1/n2),

E{Yn+1|Fn} = Yn

(
1 − 1

2n log n

)
+ YnO(1/n2),

E{Zn+1|Fn} = Zn, (3)

the second of which crucially uses λ2 = 1/2. Now let us look at the martingale difference
terms which are

M1,n+1 = Xn+1 − E{Xn+1|Fn} = λ1
χ ′

n+1ξ1√
n + 1

− λ1

n + 1

√
n

n + 1
Xn,

M2,n+1 = Yn+1 − E{Yn+1|Fn} = λ2
χ ′

n+1ξ2
√

(n + 1) log(n + 1)

− λ2

n + 1
Yn

√
n log n

(n + 1) log(n + 1)
,

M3,n+1 = Zn+1 − E{Zn+1|Fn} = λ3
χ ′

n+1ξ3

�n
0

(
1 + λ3

j+1

) −
λ3

n+1

1 + λ3
n+1

Zn. (4)

It will be seen that the part involving χ ′
n+1ξi plays a significant role in the second moment

calculations.

2.1 Main idea of the proof

Now we are ready to start the proof of Theorem 1.1.

Step A. Using (3) and the inequality |eix − 1| ≤ |x| for real number x, and remember-
ing that |W′

nξi | ≤ cn, so that Xn/
√

n, Yn/
√

n, Zn/n1−λ3 are bounded, we can expand

eit1XnO(1/n2)+it2YnO(1/n2) to get

∣∣∣∣E{ei(t1Xn+1+t2Yn+1+t3Zn+1)|Fn}

− e
i{t1
(

1−
1
2 −λ1

n

)
Xn+t2

(
1− 1

2n log n

)
Yn+t3Zn}

E{ei(t1M1,n+1+t2M2,n+1+t3M3,n+1)|Fn}
∣∣∣∣

≤ (|t1||Xn| + |t2||Yn|)O(1/n2)

≤ const
1

n3/2
, (5)

for n sufficiently large, say n ≥ n0.
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Step B. Now we want to approximate E{ei(t1M1,n+1+t2M2,n+1+t3M3,n+1)|Fn} by

e− t21
2 λ2

1
〈π,ξ2

1 〉
n+1 − t22

2 λ2
2

〈π,ξ2
2 〉

(n+1) log(n+1) . (6)

We use the inequality
∣∣eix − 1 − ix + 1

2x2
∣∣ ≤ const|x|3 along with the observation that

the martingale differences of (4) are bounded by const/
√

n, const/
√

n log n and const/nλ3

respectively (we approximate �n
0(1 + λ3/(i + 1)) ∼ nλ3 ). This gives

∣∣∣∣E{ei(t1M1,n+1+t2M2,n+1+t3M3,n+1)|Fn}

−
(

1 − 1

2
E{(t2

1 M2
1,n+1 + t2

2 M2
2,n+1 + t2

3 M2
3,n+1

+ t1t2M1,n+1M2,n+1+t1t3M1,n+1M3,n+1+t2t3M2,n+1M3,n+1)|Fn}
)∣∣∣∣

≤ const
1

n3/2
(7)

for n ≥ n0.
To achieve (6) a detailed study of the terms of (7) is necessary. We have given the

complete formulas, but to follow the proof one can start from the argument following
(8) and come back to (8) as necessary. We denote by ξiξj the vector whose components
are products of the corresponding components of ξi and ξj , and similarly ξ2

i denotes the
vector whose components are products of the corresponding components of ξi and ξi .
Remembering that χn+1 consists of indicator functions of observations of balls of different
colors, we get

E(M2
1,n+1|Fn) = λ2

1
〈π, ξ2

1 〉
n + 1

+
⎧
⎨

⎩
λ2

1

〈
W′

n

n+1 − π, ξ2
1

〉

n + 1
− λ2

1
n

(n + 1)3
X2

n

⎫
⎬

⎭
,

E(M2
2,n+1|Fn) = λ2

2
〈π, ξ2

2 〉
(n + 1) log(n + 1)

+
⎧
⎨

⎩
λ2

2

〈
W′

n

n+1 − π, ξ2
2

〉

(n + 1) log(n + 1)
− λ2

2
n log n

(n + 1)3 log(n + 1)
Y 2

n

⎫
⎬

⎭
,
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E(M2
3,n+1|Fn) = λ2

3
〈π, ξ2

3 〉
(
�n

0

(
1 + λ3

j+1

))2

+

⎧
⎪⎨

⎪⎩
λ2

3

〈
W′

n

n+1 − π, ξ2
3

〉

(
�n

0

(
1 + λ3

j+1

))2
− λ2

3

(n + 1)2
(

1 + λ3
n+1

)2
Z2

n

⎫
⎪⎬

⎪⎭
,

E(M1,n+1M2,n+1|Fn) = λ1λ2
〈π, ξ1ξ2〉√

n + 1
√

(n + 1) log(n + 1)

+
⎧
⎨

⎩
λ1λ2

〈
W′

n

n+1 − π, ξ1ξ2

〉

√
n + 1

√
(n + 1) log(n + 1)

−λ1λ2
n
√

log n

(n + 1)3
√

log(n + 1)
XnYn

⎫
⎬

⎭
,

E(M1,n+1M3,n+1|Fn) = λ1λ3
〈π, ξ1ξ3〉√

n + 1
(
�n

0

(
1 + λ3

j+1

))

+
⎧
⎨

⎩
λ1λ3

〈
W′

n

n+1 − π, ξ1ξ3

〉

√
n + 1

(
�n

0

(
1 + λ3

j+1

))

−λ1λ3

√
n

n + 1

1
n+1

(n + 1)
(

1 + λ3
n+1

)XnZn

⎫
⎬

⎭
,

E(M2,n+1M3,n+1|Fn) = λ2λ3
〈π, ξ2ξ3〉

√
(n + 1) log(n + 1)

(
�n

0

(
1 + λ3

j+1

))

+
⎧
⎨

⎩
λ2λ3

〈
W′

n

n+1 − π, ξ2ξ3

〉

√
(n + 1) log(n + 1)

(
�n

0

(
1 + λ3

j+1

))

−λ2λ3

√
n log n

(n + 1) log(n + 1)

1
n+1

(n + 1)
(

1 + λ3
n+1

)YnZn

⎫
⎬

⎭
. (8)
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If σ 2 ≥ 0, then we know that
∣∣1 − σ 2

2 − e−σ 2/2
∣∣ ≤ const σ 4. Using this on the constant

terms of the first two equations of (8) we get
∣∣∣∣1 − 1

2
t2
1 λ2

1
〈π, ξ2

1 〉
n + 1

− 1

2
t2
2 λ2

2
〈π, ξ2

2 〉
(n + 1) log(n + 1)

− e− t21
2 λ2

1
〈π,ξ2

1 〉
n+1 − t22

2 λ2
2

〈π,ξ2
2 〉

(n+1) log(n+1)

∣∣∣∣

≤ const
1

(n + 1)2
. (9)

Step C. Combining (5), (7) and (9) we get the following basic inequality:
∣∣∣∣∣∣
E{ei(t1Xn+1+t2Yn+1+t3Zn+1)|Fn} − e

i

{
t1

(
1−

1
2 −λ1

n

)
Xn+t2

(
1− 1

2n log n

)
Yn+t3Zn

}

×e− t21
2 λ2

1
〈π,ξ2

1 〉
n+1 − t22

2 λ2
2

〈π,ξ2
2 〉

(n+1) log(n+1)

∣∣∣∣∣∣

≤ const
1

n3/2
+ Rn, (10)

where we use Rn to denote the sum of the other constant terms and random terms from
the right of (8) which have not been used in (9) (this is also multiplied by exponentials of
imaginary quantities, but those are bounded by 1 and will not make any difference). We
also use the notation

Cn = − t2
1

2
λ2

1
〈π, ξ2

1 〉
n + 1

− t2
2

2
λ2

2
〈π, ξ2

2 〉
(n + 1) log(n + 1)

.

We then condition again on Fn−1 and iterate backwards. While doing so, in the exponent
the coefficients of ti change as above, we get a sum of Cn−j ’s in the exponent, and
following iteration of (10) on the right we get a sum of conditional expectations of Rn’s and
const

∑n
n0

1/(j +1)3/2. Note that the iteration from n+1 to n has changed the coefficient
of Xn and Yn, and these are assumed to be incorporated in Cn−1 and Rn−1, and so on. Rn−j

also involves terms like eCn−j+1+···+Cn , but it will be seen from Steps 1 and 2 in the next
section that these terms are bounded uniformly and will be absorbed in the ‘const’ term in
(18). We should mention here that the constant term in (5), (7) and (9) and finally (10) can
be taken independently of this iteration because during the iteration the coefficients of t1
and t2 decrease.

The main idea of the proof is to iterate the (conditional) characteristic function backwards
up to a sufficiently large n0, and first make n → ∞. This will make the sum of Cn’s
independent of n0, and the sum of the conditional expectations of the Rn’s given Fn0 will
be bounded by a random variable (which depends on the fixed n0). Taking expectation
of the conditional characteristic function we get the characteristic function. Then we let
n0 → ∞, and a further argument gives us the characteristic function. Before we do this
we provide a few ingredients of the proof in a separate subsection. However the reader
may take a look at §2.3 at this point for an idea of the completion of the proof leading to
the factorization of the characteristic function.
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2.2 Important limits and estimates

So assume we have iterated backwards up to a sufficiently large n0. For ease of exposition
we divide the calculations into a few steps. In Step 1 we concentrate on the nonrandom
terms corresponding to t2

1 and t2
2 , which gives the form of the characteristic function

corresponding to Xn and Yn. In Step 2 we consider the other nonrandom terms, and in
Step 3 we handle the random (second bracketed) terms. Steps 2 and 3 contribute to the
sum of Rn’s.

Step 1. The calculations here will go into Cn. They come from the first (nonrandom)
terms of the first two equations on the right of (8). Because of the presence of the term
(
1 −

1
2 −λ1

n

)
in the characteristic function, it is seen that after iterating backwards up to n0,

the (nonrandom part of the) coefficient of −(1/2)t2
1 is

n∑

n0

fn−j+1λ
2
1
〈π, ξ2

1 〉
j + 1

,

where

fn−j+1 = �n
i=j+1

(

1 −
1
2 − λ1

i

)2

.

As n → ∞, the above sum goes to

λ2
1〈π, ξ2

1 〉
∫ ∞

0
e−(1−2λ1)xdx. (11)

This can be seen from the following calculation. The above sum is bounded by
∑n

1 fn−j+1λ
2
1

〈π,ξ2
1 〉

j+1 , and we can write

n∑

1

fn−j+1
1

j + 1
=

n0−1∑

1

fn−j+1
1

j + 1
+

n∑

n0

fn−j+1
1

j + 1
.

Fixing n0 sufficiently large as we make n → ∞, the first sum on the right goes to zero,
but the terms of the second sum after approximating the product by an exponential give

lim
n→∞

n∑

j=n0

e−(1−2λ1)
∑n

j+1
1
i

1

j + 1
=
∫ ∞

0
e−(1−2λ1)xdx.

Similarly because of the presence of
(
1 − 1

2n log n

)
in the characteristic function, after

iterating backwards up to n0, the (nonrandom part of the) coefficient of − 1
2 t2

2 is

n∑

n0

gn−j+1λ
2
2

〈π, ξ2
2 〉

(j + 1) log(j + 1)
,

where

gn−j+1 = �n
i=j+1

(
1 − 1

2i log i

)2

.
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As n → ∞, the above sum clearly goes to

λ2
2〈π, ξ2

2 〉
∫ ∞

0
e−xdx. (12)

Thus, irrespective of n0, the (nonrandom part of the) coefficients of − 1
2 t2

1 and − 1
2 t2

2 go to
constants as n → ∞. At this point note that as we made n → ∞ the coefficient of Xn0

in the characteristic function t1
√

fn−n0+1 goes to zero and similarly for the coefficient of
Yn0 , which is t1

√
gn−n0+1. Thus, fixing n0, as we let n → ∞, the characteristic function

does not have Xn0 , Yn0 and the nonrandom part of the coefficients of − 1
2 t2

1 and − 1
2 t2

2 go to
constants independent of n0. This takes care of the sum of Cn−j ’s, j = n0, n0 + 1, . . . , n,
as we make n → ∞.

Step 2. The calculations here will go into the upper bound for the sum of Rn’s. The
(nonrandom part of the) coefficient of −(1/2)t1t2 is

n∑

n0

hn−j+1λ1λ2
〈π, ξ1ξ2〉√

j + 1
√

(j + 1) log(j + 1)
, (13)

where

hn−j+1 = �n
i=j+1

(
1 − 1

2i log i

)(

1 −
1
2 − λ1

i

)

.

Clearly

hn−j+1 ≤ �n
i=j+1

(

1 −
1
2 − λ1

i

)

,

and combining the
√

j + 1 of
√

(j + 1) log(j + 1) with the other
√

j + 1, it is seen that
the term (13) is less than

1
√

log(n0 + 1)

n∑

n0

�n
i=j+1

(

1 −
1
2 − λ1

i

)

λ1λ2〈π, ξ1ξ2〉. 1

j + 1
,

which goes to

1
√

log(n0 + 1)
λ1λ2〈π, ξ1ξ2〉

∫ ∞

0
e−( 1

2 −λ1)xdx (14)

as n → ∞. Actually here in the expansion of (1 − 1/(2i log i))(1 − ((1/2) − λ1)/i) the
important contribution comes from 1 − ((1/2)−λ1)/i, which can later be compared with
the comments following Theorem 5.1.

The coefficient of −(1/2)t1t3 is (we approximate �
j

0(1 + λ3/(l + 1)) ∼ jλ3 ),

n∑

n0

fn−j+1λ1λ3
〈π, ξ1ξ3〉√
j + 1jλ3

,
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where

fn−j+1 = �n
i=j+1

(

1 −
1
2 − λ1

i

)

.

Following the argument of the previous paragraph, as we let n → ∞ this coefficient is
less than

1

n
λ3−1/2
o

λ1λ3〈π, ξ1ξ3〉
∫ ∞

0
e
−
(

1
2 −λ1

)
x
dx. (15)

Similarly as n → ∞, the (nonrandom part of the) coefficient of −(1/2)t2t3 is less than
√

(n0 + 1) log(n0 + 1)

n
λ3
o

λ2λ3〈π, ξ2ξ3〉
∫ ∞

0
e−x/2dx. (16)

Also note that when we iterate backwards the coefficient of Zn0 is still t3 and keeping n0

fixed as we let n → ∞ the (nonrandom part of the) coefficient of − 1
2 t2

3 goes to

∞∑

n0

λ2
3

〈π, ξ2
3 〉

(j + 1)2λ3
. (17)

Thus, fixing n0, the sum of −t1t2, −t1t3, −t2t3, − 1
2 t2

3 , multiplied by their respective (con-
stant part of the) coefficients, is bounded by a constant Fn0 as we let n → ∞. The exact
form of Fn0 is easily obtained from (14), (15), (16) and (17), however for us the important
observation will be Fn0 → 0 as we later make n0 → ∞.

Step 3. The calculations here will go into the upper bound for the sum of Rn’s. We now
concentrate on the random terms. First note that

sup
n0≤n<∞

∥∥∥∥
W′

n

n + 1
− π

∥∥∥∥ ,

where ‖.‖ denotes the maximum, is a bounded random variable that converges to 0 a.s.
Also Xn/

√
n = W′

nξ1/n is bounded by a constant and converges to 0 a.s. as n0 → ∞,
hence the same holds for

sup
n0≤n<∞

X2
n/n.

These two observations show that when we iterate backwards the random terms in the
coefficient of −t2

1 /2 contribute a random variable less in absolute value than

const

{
sup

n0≤n<∞

∥∥∥∥
W′

n

n + 1
− π

∥∥∥∥+ sup
n0≤n<∞

X2
n

/
n

} n∑

n0

fn−j+1
1

j + 1
. (18)

The ‘const’ term here is an upper bound for eCn−n0 +···+Cn and all the terms in Step 2 are also
to be multiplied by this. Recall that fixing n0 as we make n → ∞, the sum

∑n
n0

fn−j+1
1

j+1
converges to an integral (see (11), so that the above sum is bounded by a constant for all
n), showing that as we make n → ∞ keeping n0 fixed, the contribution of the random
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terms to the coefficient of −t2
1 /2 is bounded by a bounded random variable. This random

variable is constant times the conditional expectation of the random term in (18) given by
Fn0 , and its expectation converges to 0 using the dominated convergence theorem as we
later make n0 → ∞ (see (19) and (20)).

Similarly, for the other terms involvingYn andZn, we use that
√

log n/nYn andZn/n1−λ3

are bounded random variables. Then exactly as in the previous paragraph and following
the calculations leading to (11), and the other coefficients (12), (14), (15) and (16) we see
that fixing n0 as we let n → ∞, the contribution of the random terms is bounded by a
bounded random variable, say the conditional expectation given by Fn0 of a certain Gn0

(whose expectation goes to 0 almost surely as we later make n0 → ∞).

2.3 Completion of proof

Let us now write Hn0 = Fn0 + Gn0 , that is the remainder term is bounded by the sum of
a constant and a random term uniformly in n. Notice that Hn0 is actually F∞ measurable
and in the calculations what we really use is its conditional expectation given by Fn0 .
Combining Steps 1, 2 and 3, and fixing n0 as we make n → ∞, we get from (10) and the
previous subsection

lim sup
n→∞

|E{ei(t1Xn+t2Yn+t3Zn)|Fn0} − eit3Zn0 e− σ2
1
2 t2

1 − σ2
2
2 t2

2 |

≤ E{Hn0 |Fn0} + const
∞∑

n0

1

j3/2
, (19)

with σ 2
1 and σ 2

2 coming from (11) and (12) respectively. Taking expectation and
using |EV | = |EE{V |Fn0}| ≤ E|E{V |Fn0}|, for any integrable random variable V ,
we get

lim sup
n→∞

|Eei(t1Xn+t2Yn+t3Zn)−Eeit3Zn0 e− σ2
1
2 t2

1 − σ2
2
2 t2

2 |≤EHn0 + const
∞∑

n0

1

j3/2
.

(20)

Now Zn is a martingale, and in the appendix we show that Zn is L2-bounded, so that Zn

converges to some Z a.s. In the calculation so far n0 is arbitrary. We now let n0 → ∞,
recalling that the nonrandom Fn0 converges to 0 and that the bounded random variable
Gn0 also converges to 0 almost surely from Step 3, to get the limiting characteristic
function

Eeit3Ze− σ2
1
2 t2

1 − σ2
2
2 t2

2 .

This shows that Z is independent of X, Y , and that X and Y are independent
normals. �

3. Case of real vectors

In the previous sections we have considered linear combinations corresponding to eigen-
vectors. To consider general vectors we need the Jordan form of the irreducible replacement
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matrix. For simplicity we assume that there are only three real eigenvalues. However now
there exists a nonsingular matrix T such that

T−1RT =

⎛

⎜⎜⎜⎜
⎝

1

	1

	2

	3

⎞

⎟⎟⎟⎟
⎠

,

where

	i =

⎛

⎜⎜⎜⎜⎜
⎝

λi 1 0

0 λi 1

. . .

λi

⎞

⎟⎟⎟⎟⎟
⎠

.

Let us consider the case of 	1. Let the dimension be d1. Then the vectors ξ1 =
(1, 0, 0, . . . )′, ξ2 = (0, 1, 0, . . . )′, . . . , ξd1 = (0, 0, . . . , 1)′ transform according to the
equations 	1ξ1 = λ1ξ1, 	1ξ2 = ξ1 + λ1ξ2, 	1ξ3 = ξ2 + λ1ξ3, . . . , i.e. in matrix form
	1(ξ1, ξ2, . . . , ξd1) = (ξ1, ξ2, . . . , ξd1)	1. Denoting the matrix of ξi’s for the three
matrices 	1, 	2, 	3 by 
1, 
2, 
3 respectively (and necessarily adding 0’s for the other
components) we have

⎛

⎜⎜⎜⎜
⎝

1

	1

	2

	3

⎞

⎟⎟⎟⎟
⎠

(u : 
1 : 
2 : 
3) = (u : 
1 : 
2 : 
3)

⎛

⎜⎜⎜⎜
⎝

1

	1

	2

	3

⎞

⎟⎟⎟⎟
⎠

,

where u denotes the vector (1, 0, · · · ) of dimension 1 + d1 + d2 + d3. It may be noticed
that (u : 
1 : 
2 : 
3) is the identity matrix written in a suitable form.

In our case we have to work with not the above matrix of 	i’s, but the stochastic matrix
R. In that case, using the above mentioned Jordan decomposition of R, we have to use the
vectors T(u : 
1 : 
2 : 
3), and the equation

RT(u : 
1 : 
2 : 
3) = T(u : 
1 : 
2 : 
3)

⎛

⎜⎜⎜⎜
⎝

1

	1

	2

	3

⎞

⎟⎟⎟⎟
⎠

.

As R has principal eigenvalue 1 corresponding to the eigenvector 1 consisting of 1’s, we
have Tu = 1. This implies a trivial limit for W′

nTu/(n + 1). However the limits for the
other linear combinations corresponding to W′

nT
i, i = 1, 2, 3, are nontrivial and are
discussed in the next three subsections. For simplicity with a slight abuse of notation we
shall use the same notation 
i to denote T
i .

Notice that we can write 	i = λiIi + Fi where Fi is a nilpotent matrix. The presence
of this nilpotent Fi changes our calculations in the previous section at certain places and
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we will discuss how. We first note that W′
n+1
i = W′

n
i + χ ′
n+1R
i = W′

n
i +
χ ′

n+1
i	i (remember the abuse of notation mentioned before). We give the most important
contributions, the higher order terms have been ignored for notational simplicity.

3.1 λ1 < 1/2

For notational simplicity from now on we shall restrict ourselves to the highest order terms
significant for the results to hold, and this will be denoted by the notation ∼. For λ < 1/2,
the approximation

√
n/(n + 1) ∼ (1 − 1/(2n)) gives

E

{
W′

n+1
1√
n + 1

∣∣∣∣Fn

}
∼ W′

n
1√
n

(

I1 −
1
2I1 − 	1

n

)

, (21)

leading to the product terms when iterating backwards. On the other hand, the approximate
form leading to the explicit computations for the conditional characteristic function comes
from

W′
n+1
1√
n + 1

− E

{
W′

n+1
1√
n + 1

∣∣∣∣Fn

}
∼ 1√

n + 1

(
χ ′

n+1 − W′
n+1

n + 1

)

1	1. (22)

As before the most important contribution in the conditional covariance comes from the first
term of the right-hand side of (22) after removal of brackets. Notice that E{χn+1χ

′
n+1|Fn}

consists only of diagonal terms and is thus approximately (using the strong law and the
dominated convergence theorem) Dπ , meaning the diagonal matrix with components of
π , namely π1, π2, . . . , as diagonals. This gives for the conditional covariance of (22) the
approximate expression

1

n + 1
	′

1

′
1Dπ
1	1.

This when iterated backwards with terms coming from (21), leads to the limiting covariance
matrix of the asymptotically normal W′

n
1/
√

n, given by

lim
n→∞

n∑

n0

1

j + 1
�n

i=j+1

(

I1 −
1
2I1 − 	1

i

)′
	′

1

′
1Dπ
1	1�

n
i=j+1

(

I1 −
1
2I1 − 	1

i

)

=
∫ ∞

0
e
−
(

1
2 I1−	1

)′
s
	′

1

′
1Dπ
1	1e

−
(

1
2 I1−	1

)
s
ds, (23)

which can be compared with (11) for the case of eigenvector ξ1.

3.2 λ2 = 1/2

In this case the norming for the central limit theorem is
√

n log2d2−1 n, where d2 is the
dimension of 	2. The reason for the 2d2 − 1 power will be clear towards the end. First
note the approximation

√
n log2d2−1 n

(n + 1) log2d2−1(n + 1)
∼
(

1 − 1

2n

)(
1 − 2d2 − 1

2n log n

)
.
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With this we get

E

⎧
⎨

⎩
W′

n+1
2
√

(n + 1) log2d2−1(n + 1)

∣∣∣∣Fn

⎫
⎬

⎭

∼ W′
n
2√

n log2d2−1 n

(
1 − 1

2n

)(
1 − 2d2 − 1

2n log n

)
+ W′

n

n + 1


2	2√
n log2d2−1 n

= W′
n
2√

n log2d2−1 n

(
I2

(
1 − 2d2 − 1

2n log n

)
+ F2

n

)
, (24)

where we have crucially used the form of 	2 to cancel the 1/(2n)’s occurring with opposite
signs. This F2 plays an important role in the computations later explaining the 2d2 − 1
power. On the other hand, the martingale terms for the covariance computations come from

W′
n+1
2

√
(n + 1) log2d2−1(n + 1)

− E

⎧
⎨

⎩
W′

n+1
2
√

(n + 1) log2d2−1(n + 1)

∣∣∣∣Fn

⎫
⎬

⎭

∼ 1
√

(n + 1) log2d2−1(n + 1)

(
χ ′

n+1 − W′
n+1

n + 1

)

2	2. (25)

This gives for the conditional covariance of (25) the approximate expression

1

(n + 1) log2d2−1(n + 1)
	′

2

′
2Dπ
2	2.

This when iterated backwards with terms coming from (24), leads to the limiting covariance

matrix of the asymptotically normal W′
n
1/

√
n log2d2−1 n, given by

lim
n→∞

n∑

n0

1

(j + 1) log2d2−1(j + 1)
�n

i=j+1

(
I2

(
1 − 2d2 − 1

2i log i

)
+ F2

i

)′

× 	′
2


′
2Dπ
2	2�

n
i=j+1

(
I2

(
1 − 2d2 − 1

2i log i

)
+ F2

i

)
, (26)

F2 being nilpotent. In the above products only a few terms will be nonzero. The consid-
eration of the limits of the nonzero terms will explain the log2d2−1 n term in the norming.
We shall now use exponentiation to simplify the calculations. Observe that

�n
i=j+1

(
I2

(
1 − 2d2 − 1

2i log i

)
+ F2

i

)
∼ �n

i=j+1e− 2d2−1
2i log i

I2+ F2
i

= e−∑n
i=j+1

2d2−1
2i log i

I2+
∑n

i=j+1
F2
i ∼ e

− 2d2−1
2 log log n

log(j+1)
I2+F2 log

(
n

j+1

)
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= e− 2d2−1
2 log log n

log(j+1) I2 e
F2 log

(
n

j+1

)

= e− 2d2−1
2 log log n

log(j+1) I2

[
d2−1∑

k=0

(
F2 log

(
n

j + 1

))k/
k!

]

. (27)

A summand of (26) is thus approximated using (27) as

1

(j + 1) log2d2−1(j + 1)
�n

i=j+1

(
I2

(
1 − 2d2 − 1

2i log i

)
+ F2

i

)′

× 	′
2


′
2Dπ
2	2�

n
i=j+1

(
I2

(
1 − 2d2 − 1

2i log i

)
+ F2

i

)

∼ 1

(j + 1) log2d2−1 n

[
d2−1∑

k=0

(
F ′

2 log

(
n

j + 1

))k/
k!

]

× 	′
2


′
2Dπ
2	2

[
d2−1∑

k=0

(
F2 log

(
n

j + 1

))k/
k!

]

. (28)

When we sum (28) from n0 to n and make n → ∞, only the highest powers of F2 survive,
as can be seen from the following calculation (by considering (log n − log(j + 1))m for
m < 2d2 − 2) which is done for the highest power only

1

log2d2−1 n

n∑

j=n0

1

j + 1

(log n − log(j + 1))2d2−2

((d2 − 1)!)2

∼ 1

log2d2−1 n

∫ log n−log n0

0

u2d2−2

((d2 − 1)!)2

= 1

(2d2 − 1) ((d2 − 1)!)2

(
(log n − log n0)

2d2−1

log2d2−1 n

)

→ 1

(2d2 − 1) ((d2 − 1)!)2
. (29)

Thus the limiting covariance matrix obtained from (26) becomes

1

(2d2 − 1) ((d2 − 1)!)2
(F ′

2)
d2−1	′

2

′
2Dπ
2	2F

d2−1
2 . (30)

3.3 λ3 > 1/2

We expect to get an L2-bounded martingale sequence. Notice first that E{W′
n+1
3|Fn} =

W′
n
3

(
I3 + 1

n+1	3
)
. Hence the martingale sequence we work with is

Zn = W′
n
3

{
�n−1

0

(
I3 + 1

j + 1
	3

)}−1

= W′
n
3A−1

n . (31)
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The following calculation is similar to the calculation in the Appendix and we have used
some approximations for notational convenience. Zn satisfies the following equation:

Zn+1 − Zn = W′
n
3

((
I3 + 1

n + 1
	3

)−1

− I3

)

A−1
n + χ ′

n+1
3	3A−1
n+1

∼ − 1

n + 1
ZnAn	3A−1

n + χ ′
n+1
3A−1

n An	3A−1
n

∼ − 1

n + 1
Zn	3 + χ ′

n+1
3A−1
n 	3, (32)

noting that An, A−1
n and 	3 commute. To prove L2-boundedness consider

EE{Zn+1Z′
n+1|Fn}. Using the martingale property and the above decomposition it fol-

lows that

E{Zn+1Z′
n+1|Fn} ∼ ZnZ′

n − 1

(n + 1)2
Zn	3	

′
3Z′

n

+ E{χ ′
n+1
3A−1

n 	3	
′
3(A

−1
n )′
′

3χn+1|Fn}

≤ ZnZ′
n

(
1 − β

(n + 1)2

)

+ Tr{
3A−1
n 	3	

′
3(A

−1
n )′
′

3E{χn+1χ
′
n+1|Fn}}, (33)

where β denotes the minimum eigenvalue of 	3	
′
3 and we have used properties of the

trace of a matrix. Approximating E{E{χn+1χ
′
n+1|Fn}} by Dπ , further expectation of the

above inequality gives

EZn+1Z′
n+1 ≤ EZnZ′

n

(
1 − β

(n + 1)2

)

+ const Tr {
3A−1
n 	3	

′
3(A

−1
n )′
′

3Dπ }. (34)

We need to find the order of the last matrix so that the above equation can be iterated as in
the one dimensional case of the Appendix, giving L2-boundedness of Zn. We show this
by showing that the terms of A−1

n are O(n−λ3 logd3−1 n). First note that

An = �n
1

(
I3 + 1

j + 1
	3

)

= �n
1

(
I3

(
1 + λ3

j + 1

)
+ 1

j + 1
F3

)
. (35)

Using the commutativity of I3 and F3 and the fact that Fd3
3 = 0, An can be approximated as

An ∼ eλ3 log nI3+F3 log n
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Hence

A−1
n ∼ e−λ3 log nI3 ×

[
d3−1∑

k=0

Fk
3 (− log n)k

/
k!

]

∼ n−λ3 logd3−1 n
F

d3−1
3

(d3 − 1)!
. (36)

Thus, A−1
n = O(n−λ3 logd3−1 n), the terms of A−1

n (A−1
n )′ are O(n−2λ3 log2d3−2 n). With

this we now go back to (34) to prove L2-boundedness using 2λ3 > 1.
Then the analysis of §2 proceeds to show independence of the weak limits (strong limit

for Zn). We may state the analogue of Theorem 1.1 as follows:

Theorem 3.1. In case all eigenvalues are real, we consider the linear combinations cor-
responding to the columns of T as identified at the beginning of §3. The weak limits of
the normalized linear combinations corresponding to eigenvalues λ < 1/2, λ = 1/2 and
λ > 1/2 are independent.

For the different eigenvalues all of which are less than 1/2, there may be dependence
among the weak limits coming from the Jordan blocks for different eigenvalues (see The-
orem 5.1 later). For real λ = 1/2 there is only one Jordan block (the situation for complex
λ with real part 1/2 is somewhat different). For λ > 1/2 the weak limits coming from the
Jordan blocks corresponding to different λ’s may be correlated. One instance of this limit-
ing covariance has been computed in the Appendix although we cannot say definitely that
the limit is nonzero.

4. Complex eigenvalues

For complex eigenvalues we consider another canonical form which is similar to the Jordan
canonical form. This form comes from considering the real vectors coming from the real
and imaginary parts of the complex vectors corresponding to the complex Jordan form.
Special cases of this decomposition has been studied in Smythe [11]. We first consider
three types of eigenvalues, one of each type as before (i.e. with real part less than 1/2,
equal to 1/2 and greater than 1/2). There exists a nonsingular matrix S such that

S−1RS =

⎛

⎜⎜⎜⎜
⎝

1

	c1

	c2

	c3

⎞

⎟⎟⎟⎟
⎠

,

where

	ci =

⎛

⎜⎜⎜⎜⎜⎜
⎝

Bi I

Bi

. . .

. . . I

Bi

⎞

⎟⎟⎟⎟⎟⎟
⎠
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and

Bi =
(

λir λic

−λic λir

)

.

I is a 2-dimensional identity matrix and rest of the elements are 0. Let the dimension of 	ci

be 2dci . As before we partition the matrix SI (this I has dimension 1 + 2(dc1 + dc2 + dc3))
into a vector of ones and Si , i = 1, 2, 3 with number of columns in Si equal to 2dci . These
vectors give us the linear combinations.

Notice that, here we can write

	ci = λirIci + λicCci + Fci,

where Ici is an identity matrix of dimension 2dci , Cci is a block diagonal matrix of the
same dimension as 	ci . Each block, say Di , is of dimension 2, where

Di =
(

0 1

−1 0

)

.

Fci is a nilpotent matrix of order dci , i.e., F
dci

ci = 0 and dci is the least such integer.
First observe that the rotation matrix Di satisfies D2

i = −I, D3
i = −Di, D

4
i = I, . . . ,

where I is the identity matrix of the same dimension as Di . Also, it is to be noted that the
matrices Ici , Cci and Fci commute with each other. Thus,

ek1Ici+k2Cci+k3Fci = ek1Ici ek2Cci ek3Fci

= ek1Ici[cos(k2)Ici + sin(k2)Cci]

[
dci−1∑

j=1

(k
j

3F
j
ci)

/
j !

]

.

(37)

We will mention briefly how the proof of Theorem 1.1 go for the complex roots with
the presence of the nilpotent matrix and the rotation matrix. We note that W′

n+1Si =
W′

nSi + χ ′
n+1RSi = W′

nSi + χ ′
n+1Si	ci . We give the most important contributions, the

higher order terms have been ignored for notational simplicity.

4.1 λ1r < 1/2

In this case, since
√

n/(n + 1) ∼ (1 − 1/(2n)), it is to be noted that

E

{
W′

n+1S1√
n + 1

∣∣∣∣Fn

}
∼ W′

nS1√
n

(

Ic1 −
1
2Ic1 − 	c1

n

)

. (38)

Now iterating backwards we get the product terms as before. Thus,

W′
n+1S1√
n + 1

− E

{
W′

n+1S1√
n + 1

∣∣∣∣Fn

}
∼ 1√

n + 1

(
χ ′

n+1 − W′
n

n + 1

)
S1	c1. (39)

As before the most important contribution in the conditional covariance comes from the
first term of the above. Notice that E{χn+1χ

′
n+1|Fn} consists only of diagonal terms and
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is thus approximately (using the strong law and the dominated convergence theorem) Dπ .
This gives for the conditional covariance of (39) the approximate expression

1

n + 1
	′

c1S
′
1DπS1	c1.

This when iterated backwards with terms coming from (38), leads to the limiting covariance
matrix of the asymptotically normal W′

nS1/
√

n, given by

lim
n→∞

n∑

n0

1

j + 1

{

�n
i=j+1

(

Ic1 −
1
2Ic1 − 	c1

i

)′

×	′
c1S

′
1DπS1	c1�

n
i=j+1

(

Ic1 −
1
2Ic1 − 	c1

i

)}

=
∫ ∞

0
e
−
(

1
2 Ic1−	c1

)′
s
	′

c1S
′
1DπS1	c1e

−
(

1
2 Ic1−	c1

)
s
ds, (40)

which can be compared with (11) for the case of eigenvector ξ1. From the calculation in
(37), it can be seen that

e
−
(

1
2 Ic1−	c1

)
s

= e
−
(

1
2 −λ1r

)
s
Ic1[cos(sλ1c)Ic1 + sin(sλ1c)Cc1]

[
dc1−1∑

j=1

(sFc1)
j

/
j !

]

,

which is an integrable function, and hence (40) is finite.

4.2 λ2r = 1/2

In this case the norming for the central limit theorem is
√

n log2dc2−1 n, where 2dc2 is the
dimension of 	c2. From the calculation of the covariance matrix the reason for the 2dc2 −1
power of the the logarithm will be clear. The approximation

√
n log2dc2−1 n

(n + 1) log2dc2−1(n + 1)
∼
(

1 − 1

2n

)(
1 − 2dc2 − 1

2n log n

)

leads to

E

⎧
⎨

⎩
W′

n+1S2
√

(n + 1) log2dc2−1(n + 1)

∣∣∣∣Fn

⎫
⎬

⎭

∼ W′
nS2√

n log2dc2−1 n

(
1 − 1

2n

)(
1 − 2dc2 − 1

2n log n

)
+ W′

n

n + 1

S2	2√
n log2dc2−1 n

= W′
nS2√

n log2dc2−1 n

(
Ic2

(
1 − 2dc2 − 1

2n log n

)
+ λ2c

n
Cc2 + Fc2

n

)
, (41)
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where the form of 	c2 is used to cancel the 1/(2n)’s occurring with opposite signs. We
later discuss the role of Cc2 and Fc2 in the computations that explains the power of the
logarithm. Notice that the computation of the covariance matrix depends on the martingale
terms

W′
n+1S2

√
(n + 1) log2dc2−1(n + 1)

− E

⎧
⎨

⎩
W′

n+1S2
√

(n + 1) log2dc2−1(n + 1)

∣∣∣∣Fn

⎫
⎬

⎭

∼ 1
√

(n + 1) log2dc2−1(n + 1)

(
χ ′

n+1 − W′
n+1

n + 1

)
S2	c2. (42)

Thus, the approximate expression for the conditional covariance of (42) is found as

1

(n + 1) log2dc2−1(n + 1)
	′

c2S
′
2DπS2	c2.

Iterating backwards with terms coming from (41) leads to the limiting covariance matrix

of the asymptotically normal W′
nS2/

√
n log2dc2−2 n, given by

lim
n→∞

n∑

n0

1

(j + 1) log2dc2−1(j + 1)

{
�n

i=j+1

(
Ic2

(
1 − 2dc2 − 1

2i log i

)
+ λ2c

i
C′

c2 + Fc2

i

)′
	′

c2S
′
2DπS2	c2

×�n
i=j+1

(
Ic2

(
1 − 2dc2 − 1

2i log i

)
+ λ2c

i
Cc2 + Fc2

i

)}
. (43)

We shall now use exponentiation to simplify the calculations. Observe that,

�n
i=j+1

(
Ic2

(
1 − 2dc2 − 1

2i log i

)
+ λ2c

i
Cc2 + Fc2

i

)

∼ �n
i=j+1e− 2dc2−1

2i log i
Ic2+ λ2c

i
Cc2+ Fc2

i

= e−∑n
i=j+1

2dc2−1
2i log i

Ic2+
∑n

i=j+1
λ2c
i

Cc2+
∑n

i=j+1
Fc2
i

∼ e
− 2dc2−1

2 log log n
log(j+1)

Ic2+λ2cCc2 log
(

n
j+1

)
+Fc2 log

(
n

j+1

)

= e− 2dc2−1
2 log log n

log(j+1) Ic2 e
Cc2λ2c log

(
n

j+1

)

e
Fc2 log

(
n

j+1

)

= e− 2dc2−1
2 log log n

log(j+1) Ic2

[
Ic2 cos

(
λ2c log

(
n

j + 1

))

+Cc2 sin

(
λ2c log

(
n

j + 1

))][dc2−1∑

k=0

(
Fc2 log

(
n

j + 1

))k/
k!

]

.

(44)
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Combining the contribution of the term in (44) to the two sides of (43) we get

1

(j + 1) log2dc2−1(j + 1)
�n

i=j+1

(
Ic2

(
1 − 2dc2 − 1

2i log i

)
+ λ2c

i
Cc2 + Fc2

i

)′

× 	′
c2S

′
2DπS2	c2�

n
i=j+1

(
Ic2

(
1 − 2dc2 − 1

2i log i

)
+ λ2c

i
Cc2 + Fc2

i

)

∼ 1

(j + 1) log2dc2−1(j + 1)
e−(2dc2−1) log log n

log(j+1)

×
[

dc2−1∑

k=0

(
F ′

c2 log

(
n

j + 1

))k/
k!

]

×
[
Ic2 cos

(
λ2c log

(
n

j + 1

))
+ C′

c2 sin

(
λ2c log

(
n

j + 1

))]

× 	′
c2S

′
2DπS2	c2

[
Ic2 cos

(
λ2c log

(
n

j + 1

))

+Cc2 sin

(
λ2c log

(
n

j + 1

))][dc2−1∑

k=0

(
Fc2 log

(
n

j + 1

))k/
k!

]

= 1

(j + 1) log2dc2−1 n

[
dc2−1∑

k=0

(
F ′

c2 log

(
n

j + 1

))k/
k!

]

×
[
Ic2 cos

(
λ2c log

(
n

j + 1

))
+ C′

c2 sin

(
λ2c log

(
n

j + 1

))]

× 	′
c2S

′
2DπS2	c2

[
Ic2 cos

(
λ2c log

(
n

j + 1

))

+Cc2 sin

(
λ2c log

(
n

j + 1

))][dc2−1∑

k=0

(
Fc2 log

(
n

j + 1

))k/
k!

]

(45)

Now observing that the terms involving sine and cosine are all bounded, one finds that
except the coefficient of the highest power term of Fc2 i.e. Fdc2−1

c2 , the coefficients of other
terms go to zero when n → ∞. Observe that the highest power terms of Fc2 would be mul-
tiplied by cos2

(
λ2c log

(
n

j+1

))
(i.e. (1/2)

[
1+cos

(
2λ2c log

(
n

j+1

))]
), sin2 (λ2c log

(
n

j+1

))

(i.e. (1/2)
[
1 − cos

(
2λ2c log

(
n

j+1

))]
), or, terms such as sin

(
λ2c log

(
n

j+1

))
cos
(
λ2c log

(
n

j+1

))
(i.e. (1/2)

[
sin
(
2λ2c log

(
n

j+1

))]
), separately. Thus, the highest power terms of



538 Gopal K Basak and Amites Dasgupta

Fc2 with sine function give the coefficient

1

log2dc2−1 n

n∑

j=n0

1

j + 1

{
(log n − log(j + 1))2dc2−2

((dc2 − 1)!)2

× sin(2λ2c(log n − log(j + 1)))

2

}

∼ 1

log2dc2−1 n

∫ log n−log n0

0

u2dc2−2

((dc2 − 1)!)2

sin(2λ2cu)

2

= O

(
(log n − log n0)

2dc2−2

log2dc2−1 n

)
→ 0 (46)

(seen by integration by parts) as n → ∞. Similarly, with cosine function, it gives

1

log2dc2−1 n

n∑

j=n0

1

j + 1

{
(log n − log(j + 1))2dc2−2

((dc2 − 1)!)2

×cos(2λ2c(log n − log(j + 1)))

2

}

∼ 1

log2dc2−1 n

∫ log n−log n0

0

u2dc2−2

((dc2 − 1)!)2

cos(2λ2cu)

2

= O

(
(log n − log n0)

2dc2−2

log2dc2−1 n

)
→ 0 as n → ∞. (47)

Now, the terms that involve multiplying by 1/2 only, give

1

log2dc2−1 n

n∑

j=n0

1

j + 1

(log n − log(j + 1))2dc2−2

((dc2 − 1)!)2

∼ 1

log2dc2−1 n

∫ log n−log n0

0

u2dc2−2

((dc2 − 1)!)2

= 1

(2dc2 − 1) ((dc2 − 1)!)2

(
(log n − log n0)

2dc2−1

log2dc2−1 n

)

→ 1

(2dc2 − 1) ((dc2 − 1)!)2
(48)

as n → ∞. Thus, adding two of these terms one obtains the limiting covariance matrix
from (43) as

1

(2dc2 − 1) ((dc2 − 1)!)2

× (F ′
c2)

dc2−1
(

1

2
	′

c2S
′
2DπS2	c2 + 1

2
C′

c2	
′
c2S

′
2DπS2	c2Cc2

)
F

dc2−1
c2 .

(49)

Notice that it does not involve λ2c.
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4.3 λ3r > 1/2

Here also, we show that W′
nS3A

−1
n is an L2-bounded martingale sequence, where An =

�n−1
0

(
Ic3 + 1

j+1	c3
)
. Notice first that E{W′

n+1S3|Fn} = W′
nS3
(
Ic3 + 1

n+1	c3
)
. Hence

the martingale Zn satisfies the following equation

Zn+1 − Zn = W′
nS3

((
Ic3 + 1

n + 1
	c3

)−1

− Ic3

)

A−1
n + χ ′

n+1S3	c3A−1
n+1

∼ − 1

n + 1
ZnAn	c3A−1

n + χ ′
n+1S3A−1

n An	c3A−1
n

∼ − 1

n + 1
Zn	c3 + χ ′

n+1S3A−1
n 	c3, (50)

since An, A−1
n and 	c3 commute. To prove L2-boundedness, first observe

E{Zn+1Z′
n+1|Fn} ∼ ZnZ′

n − 1

(n + 1)2
Zn	c3	

′
c3Z′

n

+ E{χ ′
n+1S3A−1

n 	c3	
′
c3(A

−1
n )′S′

3χn+1|Fn}

≤ ZnZ′
n

(
1 − βc3

(n + 1)2

)

+ Tr{S3A−1
n 	c3	

′
c3(A

−1
n )′S′

3E{χn+1χ
′
n+1|Fn}}, (51)

where βc3 denotes the minimum eigenvalue of 	c3	
′
c3. Approximating

E{E{χn+1χ
′
n+1|Fn}} by Dπ , further expectation of the above inequality gives

EZn+1Z′
n+1 ≤ EZnZ′

n

(
1 − βc3

(n + 1)2

)

+ const. Tr{S3A−1
n 	c3	

′
c3(A

−1
n )′S′

3Dπ }. (52)

We now find the order of the last matrix so that the above equation can be iterated as in
the one-dimensional case of the Appendix, giving L2-boundedness of Zn. We show this
by showing that the terms of A−1

n are O(n−λ3 logd3−1 n).

An = �n
1

(
Ic3 + 1

j
	c3

)

= �n
1

(
Ic3

(
1 + λ3r

j

)
+ λ3r

j
Cc3 + 1

j
Fc3

)
. (53)

Using commutativity of Ic3, Cc3 and Fc3 and the fact that F
dc3
c3 = 0, An can be approxi-

mated as

An ∼ eλ3r log nIc3+Cc3 log n+Fc3 log n
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Hence

A−1
n ∼ e−λ3r log nIc3[cos(−λ3r log n)Ic3 + sin(−λ3r log n)Cc3]

×
[

dc3−1∑

k=0

Fk
c3(− log n)k

/
k!

]

∼ nλ3r logdc3−1 n
F

dc3−1
c3

(dc3 − 1)!
. (54)

Thus, A−1
n = O(n−λ3r logdc3−1 n) and from (52) one gets L2-boundedness of Zn since

2λ3r > 1.
Then the analysis of §2 proceeds to show independence of the weak limits (with strong

limit for Zn). We may state the analogue of Theorem 1.1 as follows:

Theorem 4.1. In case eigenvalues are complex, we consider the linear combinations
corresponding to the columns of S as identified at the beginning of §4. The weak limits of
the normalized linear combinations corresponding to eigenvalues Re(λ) < 1/2, Re(λ) =
1/2 and Re(λ) > 1/2 are independent.

For the different eigenvalues all of which have real parts less than 1/2, there may be
dependence among the weak limits coming from the (modified) Jordan blocks for different
eigenvalues (see Theorem 5.1 later). For Re(λ) = 1/2, there may be different (modified)
Jordan blocks corresponding to different Im(λ). However, inside Re(λ) = 1/2, the weak
limits coming from (modified) Jordan blocks of different dimensions are not independent,
in general. For λ > 1/2, the weak limits coming from the Jordan blocks corresponding
to different λ’s may be correlated (similar to the real eigenvalue case computed in the
Appendix), although we cannot say definitely that they are.

5. General case

In the general case we decompose the replacement matrix into a (modified) Jordan form as
in the previous two sections. That is, corresponding to real eigenvalues we take the form
as in §3, and corresponding to complex eigenvalues by considering the real and imaginary
parts of vectors we take the form as in §4. Without loss of generality, we can now consider
only the real parts of the eigenvalues, and the linear combinations will come from the
(modified) Jordan form.

There are now three types of blocks: for Re(λ) < 1/2, for Re(λ) = 1/2 and the last
type is for Re(λ) > 1/2. According to our previous notation, there exists a nonsingular
matrix M such that

M−1RM =

⎛

⎜⎜⎜⎜
⎝

1

G1

G2

G3

⎞

⎟⎟⎟⎟
⎠

,
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where

Gi =

⎛

⎜⎜⎜⎜⎜
⎝

	i,1

	i,2

. . .

	i,ni

⎞

⎟⎟⎟⎟⎟
⎠

and 	i,j s are either of the form of 	i as in §3 or 	ci as in §4. Also notice that, for
each i = 1, 2, 3, there is a positive integer 0 ≤ ki ≤ ni such that 	i,1, . . . , 	i,ki

blocks
correspond to real eigenvalues and the rest of the ni − ki blocks correspond to complex
eigenvalues. It can be observed that k2 ≤ 1, and it is also assumed that the blocks inside
G2 which have the same dimension (i.e. same d2 or dc2) are arranged next to one another
and put into the same subblock.

Let us recall that the linear combinations come from the columns of MI which we write
with an abuse of notation as (1 : M1 : M2 : M3). With appropriate normalizations they
decompose into the following three classes, independent in the limit.

Theorem 5.1.

(1) Re(λ) < 1/2: For the linear combinations corresponding to columns of M1, the
normalization is

√
n and the limit is normal. The covariance is given by (40) with G1

replacing 	c1 (and M1 replacing S1) and we have to use the decomposition of G1
combining the features of the real and the complex cases.

(2) Re(λ) = 1/2: Recalling the arrangement inside G2, in this case the linear combi-
nations correspond to columns of M2. For the subblock of G2 having dimension d2
or dc2 for the original 	2,k’s (of the same dimension), the normalization for the cor-

responding columns of M2 is
√

n log2dc2−1 n (or
√

n log2d2−1 n as appropriate) and
the limit is normal. The limits for different subblocks are not independent, in general,
and for each subblock the covariance can be found from (30) and (49) by decompos-
ing the subblock of G2 combining the features of the real and the complex cases (and
replacing S2 by the column submatrix of M2 corresponding to the subblock of G2).

(3) Re(λ) > 1/2: For the linear combinations corresponding to columns of M3,

W′
nM3A

−1
n is an L2-bounded martingale sequence, where An = �n−1

0

(
I3 + 1

j+1G3
)
,

and I3 is an identity matrix of the same dimension as G3. The covariance between
some of the components of the (almost sure) limit may be nonzero (although we cannot
say definitely), even though rates are different.

To summarize parts one and two of the above theorem, observe that (1/
√

n) is the
only normalization for part one, i.e., for W ′

nM1 and (not necessarily zero) covariances are
obtained between different Jordan blocks in this part. Whereas, for part two, let us take
M2 = [M2,1 : . . . : M2,n2 ] where M2,j ’s correspond to different Jordan subblocks. Then

W ′
nM2Pn2 = (W ′

nM2,1, W
′
nM2,2, . . . , W ′

nM2,n2

)

⎛

⎜⎜⎜⎜⎜
⎝

Pn2,1

Pn2,2

. . .

Pn2,ni

⎞

⎟⎟⎟⎟⎟
⎠
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is asymptotically normal with covariance matrix given below, where Pn2,j is a diagonal

matrix of dimension pmj with each entry as (1/

√
n log2dmj −1 n). Here dmj equals to d2j if

it corresponds to a real eigenvalue (as in §3), and it is dc2j if it corresponds to a complex
case (as in §4), whereas pmj equals to d2j if it corresponds to a real eigenvalue, and it is
2dc2j if it corresponds to a complex case as in §4). This is a case for asymptotic mixed
normality. In this case, typical entries of the limiting covariance matrix of W ′

nM2Pn2, say
V2, can be seen in (30) and (49) as follows:

V2(j, l) = 1

(dmj + dml − 1) ((dmj − 1)!(dml − 1)!)

× (F ′
mj )

dmj −1
(

1

2
	′

mjM
′
2,jDπM2,l	ml

+1

2
C′

mj	
′
mjM

′
2,jDπM2,l	mlCml

)
F

dml−1
ml ,

where 	mj is the subblock of G2 corresponding to M2,j .

6. Appendix

Suppose Un and Vn are normalized linear combinations corresponding to eigenvectors
ξ3, ξ4, with eigenvalues λ3, λ4, respectively both of which are real and greater than 1/2.
We want to show that the limit of EUnVn exists. This technique has been used in the proof
of Lemma 3.1 of Freedman [7]. Un and Vn satisfy the following equations:

Un+1 − Un = λ3
χ ′

n+1ξ3

�n
0

(
1 + λ3

j+1

) −
λ3

n+1

1 + λ3
n+1

Un,

Vn+1 − Vn = λ4
χ ′

n+1ξ4

�n
0

(
1 + λ4

j+1

) −
λ4

n+1

1 + λ4
n+1

Vn. (55)

Using the martingale property it follows that

E{Un+1Vn+1|Fn} = UnVn

(

1 −
λ3

n+1

1 + λ3
n+1

λ4
n+1

1 + λ4
n+1

)

+ λ3λ4

�n
0

(
1 + λ3

j+1

)
�n

0

(
1 + λ4

j+1

)
〈

Wn

n + 1
, ξ3ξ4

〉
,

EUn+1Vn+1 = EUnVn

(

1 −
λ3

n+1

1 + λ3
n+1

λ4
n+1

1 + λ4
n+1

)

+ λ3λ4

�n
0

(
1 + λ3

j+1

)
�n

0

(
1 + λ4

j+1

)
〈
E

Wn

n + 1
, ξ3ξ4

〉
. (56)
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Notice that by the dominated convergence theorem and the strong law, E Wn

n+1 converges

to 〈π, ξ3ξ4〉. Iterating the above equation and using �n
0

(
1 + λ3

j+1

) ∼ 1
�(λ3+1)

nλ3 , we get
(remembering λ3, λ4 > 1/2) that EUnVn converges, although we cannot definitely say
that the limit is nonzero. In particular, the same technique yields the L2-boundedness of
Zn of §1.
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