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Abstract

We prove a few results on the sufficiency of generic and codimension-one fibre conditions for determina-
tion of the structure of algebras of transcendence degree one. We first show that over a Noetherian normal
domain R, a faithfully flat subalgebra of a finitely generated algebra whose generic and codimension-one
fibres are A ! is necessarily the symmetric algebra of an invertible ideal of R. We next prove a structure theo-
rem for a faithfully Aat al gebra over a locally factorial Krull domain K whose generic and codimension-one
fibres are A'. For R local. we deduce a minimal sufficient condition for the algebra to be finitely penerated
and hence A1,
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1. Introduction

Let R be a commutative ring. For a prime ideal P of B, k({P) denotes the field Rp /PRp.
A polynomial ring in n variables over R is denoted by R A finitely generated flat R-algebra
A will be called an A'-fibration if k(P) @g A =k( P)!V for every P € Spec R.

The following results on A'-fibration were proved in [2, 3.4] and [1, 3.10], respectively.
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Theorem 1.1. Let B be a Noetherian normal domain with quotient field K and A a faithfully flat
finitely generated R-algebra such that K @g A= K'Y and k{P) ®g A is geometrically integral
SJor every prime ideal P in R of height one. Then A = R[1X| for an invertible ideal I of R.

Theorem 1.2. Let B be a Noetherian normal domain with quotient field K and A a flar R-
subalgebra of R such that K @z A= K'Y and k{P) ®g A is an integral domain for every
prime ideal P in R of height one. Then A = R[I X | for an invertible ideal T of R.

A strking feature of both these theorems is that conditions on merely the generde and
codimension-one fibres completely determine an A'-fibration. For a betier insight into such
codimension-one A'-fibration, we first explore if both results emanate from a common general
theorem.

Note that in Theorem 1.2, when A is given to be a subalgebra of a polynomial algebra, we
do not need the hypothesis that A is finitely generated (used in Theorem 1.1}—il turns out
to be a consequence! One wonders whether the two hypotheses “ A is finitely generated™ and
“A = RI"” can be replaced by the common hypothesis “A is a subalgebra of a finitely gener-
ated algebra” The following example of Bhatwadekar 2, 4.1] seems to indicate that Theorem 1.1
cannol be so generalised in s above form.

Example 1.3. Let & be a field and B = k[x] (= &), Fix v € k[[x]] such that v is transcendental
over kix). Let A =Ek[[x]] N &[x, L, v, an K-subalgebra of the finitely generated R-algebra
R[x~!, y]. Then A is a Noetherian factorial domain such that A is faithfully flat over R, the
generic fibre K ®g A is K", and all codimension-one fibres (i.e., closed fibres) are geometrically
integral. But A is not an A'-fibration over B; A is not even finitely generated.

However, in the above example, the codimension-one fibres are not all of the correct (i.e., one)
dimension. Here, A /(x —2)A = k' for every non-zero & in k but A/x A = k. In this paper, we
first show that this degeneracy is the only obstruction for Theorem 1.1 to be extended o subrings
of finitely generated algebras. We prove (Theorem 3.5):

Theorem A. Let R be a Noetherian normal domain with guotient field K and A a faithfully flat

R-algebra such that A is an R-subalgebva of a finitely generated R-algebra B and such that A
satisfies the fibve conditions:

(i) K @g A=K
(i) For every prime ideal P in R of height one, K{P) @x A is an integral domain with
trdegg oy K(P) @g A = Qand k(P) is algebraically closed in k(P) @g A.
Then A = R[TX] for an invertible ideal T of R.
In particular:
Corollary. Over a Noetherian normal domain R, any faithfully flat algebra A, whose generic and
codimension-one fibres are A', and which is an R-subalgebra of a finitely generated R -algebra,

is isomowphic to the Rees algebra of an invertible ideal of R.

When R — A < R we shall prove {Proposition 3.7):
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Proposition. Let R be a Noetherian domain, A (# R) an R -subalgebra of R, and P a prime
ideal in K such that PA is a prime ideal in A. Then tr.degg p A/PA =0 and R/FP is alge-
braically closed in A /P A.

Using the result, we shall show (Remark 3.8) that Theorems 1.1 and 1.2 are really special
cases of Theorem 3.5, The two results (3.5 and 3.7) also put in perspective the extreme mild
hypothesis of integrality of codimension-one fibres in Theorem 1.2 and the somewhat stronger
hypothesis m Theorem 1.1,

We now take a closer look at the hypothesis “A is an B-subalgebra of a finitely generated R-
algebra”™ Iis necessity in Theorem A can be seen from the well-known example of the Z-algebra
A= ?[{% | paprime in Z}]. Here Ap = Rp!! for every prime ideal P in the ring of integers T
and yet A is not finitely generated. Now a question arises:

Question. In Theorem A, can the hypothesis of finite generation (ie., A being dominated by a
finitely generated R-algebra B) be dropped in the case of a nice local domain B (say when R is
a regular local ring)?

Ower a discrete valuation ring (R, ), any faithfully flat algebra satisfying (i) is a subalgebra
of the finitely generated R-algebra A[1/7] (= R[1/7]'"). But the following example shows that
even over a regular local ring B of dimension two, there could exist a faithfully flat algebra A
which satisfies Ap = Rp!'! for every prime ideal P in R of height < 1 but which is not finitely
generated over R,

Example 1.4, Let & be an infinite field and R =k[[#, t2]] where 11, 17 are algebraically indepen-
dentover k. Let A = R[{% | g a square-free non-unit in R}]. For every height one prime ideal P
of the factodal domain B, P = pR for some prime clement p; thus 4 p = RF[%l = Rpltl
However Af{t, 12)A = k. Note that A, being a direet limit of the polynomial rings R[% |, 15 flat
over R and hence faithfully flat over 8 (since (1), 2)A % A). A isnot finitely generated.

In Section 4, we shall show {Theorem 4.6) that Example 1.4 is really a prototype of the general
structure of a faithfully flat algebra A over a factovial domain R satisfving the generic and
codimension-one fibre conditions (1) and (ii). In fact, Theorem 4.6 shows that any such algebra
oceurs as the divect limit of polvaomial algebras. A consequence of the structure theorem is that
at each point P of Spec R, the fibre ring ki P) @ A is either k{ P) or k(P)" (Corollary 4.11).

In Example 1.4, the closed fibre A/(1,12)A (= &) does not have the correct dimension. This
appears (o be the only obstacle to an affirmative answer 1o the above Question. We shall deduce
from the structure theorem that Theorem A indeed holds over a factorial local domain without
the hypothesis that A is dominated by a finitely generated algebra if, along with the conditions on
generic and codimension-one fibres, we also assume that the closed fibre has correct dimension.
More precisely, we prove (Theorem 4.12):

Theorem B. Let (R, m) be a factorial local domain with guotient field K. Suppose that A is a
Sfaithfully flat R-algebra satisfving:

(i) K@gA=Kl,
() For every prime ideal P in R of height one, K(P) ®g A iv an integral domain with
tr.degypy K(P) @g A = Qand k( P) is algebraically closed in k{P) &g A.
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Then the following conditions are equivalent:
(1) A is finitely generated over R.

(2) trdegg;, A/mA =0

(3) dimA /mA = 0.

(4) A=RUI

Theorems A and B will be proved in Sections 3 and 4, respectively. In Section 2, we guole
two local-global results and prove a few general results which will be used in Sections 3 and 4.

2, Preliminary resulis

The following crterion [3, Theorem 2.20] reduces the question of finile generation of a sub-
algebra of a polynomial algebra to the local situation.

Theorem 2.1. Let R be a Noetherian domain and A an overdomain of R such that

(1) There exists a non-zero [ € A for which Ay is a finitely generated R-algebra.
(1) A, iv a finitely generated R -algebra for all maximal ideals m of R.

Then A is a finitely generated R-algebra.

Condition (1) will be satisfied when A is contained in a finitely generated R-algebra ([4, 2.1]
or [5, 2.11]) so that we have

Corollary 2.2. Let R be a Noetherian domain and A a subalgebra of a finitely genevated R-
algebra B.If A is focally finitely generated over B, then A is finitely generated over R.

As a consequence, awell-known result of Eakin and Heinzer [ 3] may be stated in the following
form:

Theorem 23. Let R be a Noetherian domain and A an overdomain of R which is contained
in a finitely generated R-algebra B. If A, = R,V for everv maximal ideal m of R, then A is
isomorphic to the svmmetric algebra of an invertible ideal T of R.

We now present a modified version of the Russell-Sathaye enterion [6, 2.3.1] for an algebra
to be a polynomial ring in one variable.

Theorem 24. Let R © A be integral domains. Let p be a prime element in R such that p remains
prime in A, pANEKE = pR, A[1/p]= R[1/p|Y) and R/pR is algebraically closed in A/pA.
Then there exists a sequence of rings

ApEA S-S - C A (2.1)

such that A, = R and PANA, S pAyy foreachnz0, and A = Uj- Aj.
Maoreover, the following conditions are eqguivalent:
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(1) Ais finitely generated over R.
fz}l [T.dlﬁgﬁl,lpﬁ Alu'rpﬂ = (.
(3) A=rU.

Proof. By assumption there exists ¥ € A such that v is transcendental over R and A[l/p] =
R[1/pllx]. Set Ay = R[x]. Then Ay € A and Ap[1/p] = A[1/p]. If pA N Ay = pAp, then
A = Ap and we are through (Laking A, = Ay foreveryn = 1).

Suppose that pA M Ag £ pAp. Note that

Ao/ pAyg =(R/pR)lx]=(R/pR)!.

Let x denote the image of x in A/ pA. Since pAy g PAN Ag, the natural map Ag/pAp —
A/ pA is not injective. Hence it follows that 1 is algebmic over R/pR. Thus ¥ € R/pR as
R/ pR is algebraically closed in A /pA. Therefore, x — op € pA for some oy € K. For such oy,
the induced map Ag/{(p.x —cp)dp — A/ pA 1s impective since Ap/(p.x —op)Apg = R/pR and
pPANRK = pR. Hence pA NAg =(p. x —cg)Ap. Let vy = (x—ep)/ p (€ A) and set A = R[x].
Then Ag € A; C A, pAN Ap C pA; and Ay[1/p] = A[l/p]. If pAN A =pA;, then A = A
and we are done {taking A, = Ay for every n = 2).

If not, then we can apply the same process as above 1o gel ¢ € R such that pA N A} =
(p.xp—opdd. Setxr = (x) — o)/ pand Az = Rxz], and repeat the above construction.

Thus we get the sequence of rings in (2.1) with A, = R[x, | (= R'Yy and pAn A, € pA,.,
forecach n. Set € =|_J; A;.

We show that A = C. Since C[1/p] = A[1/ p]. it suffices to show that pANC =pC. Let y
be an arbitrary element of pANC. Then y € A; forsome i, sothat vy € pAN A; € pd;jy € pC.
Thus pANC = pC, and hence A =C.

We now prove the equivalence of (1), (2) and (3). It suffices to show (1) = (3) and (2) = (3).

(1) = (3). Write A = R[A..... frl. Since A = U‘. Aj, there exists n o= 0 such that
Friivu fr € Ay. It then follows that A = A, = RI', as desired.

{2) = (3). Note that, by construction, 4; = Rx; |, and if 4; #£ A, then pANA; = (p,x; —
ci)A;, so that A; [{pA N A = R/ pR. Suppose that the sequence (2.1) is of infinite length, that
is, A #£ A, for each n = 0. Then, identfying A; /{pA 1 A;) with its natural isomorphic image
inA/pA, we hawe

AfpA=|_JAi/(pPANA) =R/pR,

which contradicts r.degg, ,p A/pA = 1. Therefore A = A, = RIY for some n. This completes
the proof. 0O

The following result will be used in Sections 3 and 4.

Lemma 2.5. Let R be an integral domain and let a.d be non-zero elements of R, Set [ =
dR[1/a]ln R. Then the following assertions hold.

(1) If I iv an invertible ideal of R, then 1" = d" R[1/a] 7 R for every positive integer n.
(2) Suppose that d iv a unit in S“lR[ l/ja], where § ={s € R | 5 is not a zem-divisor in RfaR }.
If I iv flat over R, then I is an invertible ideal of R.
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Proofl. (1) Let J, =d"R[1/a]| N R. We prove I'" = J,; by induction on n. It suffices 1o show that
(1" = () for every maximal ideal m of R. Since (Jy), = d" B.[1/a] N R, replacing R
by K. we may suppose that R is local. Since [ is invertible, it now follows that I is principal.
Write I =tR. Then t~'d € R because d € I.

MNow let w be an element of J,. Then w e J, € 7 = R, and hence t~'w e R. Thus
t~lwer '\d"R[1/alNR S d" "' R[1/a|N R, sothat t—'w € "~ R by the induction hypothesis.
Therefore w e "R, Thus J,, < 1. Since the converse inclusion is obvious, we have 1% = J,,. as
desired.

(2) For an R-module M, we denote §—' M by M. Note that B[1/a | R = R. Hence, putting
J=RnNdRs wehave I N J =dR and hence 17 C d 8. We show that IJ =d R, Smee T is flat
over R, I/1J is flat over B/J. By construction of J, the map B/J — (RB/J)5 (= Rg/dR5)
is injective. Hence, by flatness of I/1J over R/ J, the map /10 — (I /1J)5 is injective; in
particular, the induced map dR /I F — (dR/10 )5 15 imjective. Now Js = Ry (since d 15 a unit
in 5“'R[1|.-’ﬂ|}l and Jg =d Ry, so that (IJ)g = IsJy = dRs. Thus (dR/1J)5 =0 and hence
dR/IT=01e., IJ =dR Therefore, [ is invertible. 0O

Remark 2.6. Note that the condition “d is aunitin $~'R[1/a]” in (2) of Lemma 2.5 is automal-
ically satisfied when a R has a primary decomposition (for instance, when R is a Noethedan or
a Krull domain). In fact, if aR = £ M --- 1 @y, s an imedundant primary decomposition, then,
with the same notations as in Lemma 25, S =R\ (P U--- U Py) where F; = JE, s0 that
57'R[1/a]= K. the quotient field of R.

We now prove two results on Krull domains which will be used in Section 4.
Lemma 2.7, For a Kl domain R, the following conditions are equivalent:

(1) R is locally factorial.
(2) dR[1/a]l " R is an invertible ideal of R for every non-zeroa,d € R.

Proofl. (1) = (2). ltis enough to show that [ :=d R[1/a] N R is locally principal; if this is the
case, then 1 is flat over R, and hence 1 s invertible by Lemma 2.5 (cf. Remark 2.6). Thus we
may assume that R is local and factoral. Now we may write d = p"' - p/ o ppa ™t py e,
where pp, ..., P re distinet prime elements in the factorial domain & such that p; |a for
l=isnand pyfaforn+1<i<m Setu=p, - p, = Thena is coprime to u and it
follows easily that = u K. Thus { is principal in the local ring 8.

(2) = (1). Suppose that d B[ 1/a] M R is invertible whenever a, d are non-zero elements of £,
Replacing R by R, we may assume that £ is local and show that R is factoral.

Let P be a prime ideal in R of height one, and let p € P be an element satisfying PRp =
pHp. Then the primary decomposition of pR is of the form pR= P QM ---M . Let
P = JE for each i, and take a € (P M--- 1 Py) Y P. Then we have P = PR[l/a]N R =
pR[l/a]ln R. Since pR[1/a| MR is principal by assumption, we know that P is principal. Thus
Ris factorial. 0O

Lemma 28. Let R € A be integral domains such that R is a Kridl ring and A is flat over K.
Then we have

A= ﬂ Ap, (22)

Ped

wherwe A is the set of all prime ideals in R of height one.
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Proof. First of all recall that, for 2. .... B of A setling §= R\ (P, U---UPF,;), we have
Ap,N---NAp, =5""A. (2.3)

To verify the equality in (2.3), let f e Ap, N---MAp, and I =({A:g f), which 15 an 1deal
of R. Then I € P; foreach i, sothat f € PPU--- U P, Take s € I (P U---U Py). Then
f=sfise 8§ A, as desired.

Now we prove the equality in (2.2). Let f be an element of [ Ap. Then f =a/t for some
aecAand 0 e R Since R is a Krull domain, there exist only finitely many prime ideals of
height one containing r, say Py, ..., Fp . Then fe Ap M---MAp,, sothat, by Eq.(23), f =b/s
forsomebe Aands e RY (P U--- U P,). Note that 5 is a non-zero divisor in R /1 B and hence
in A/rA as A is flat over RB. Since sa = th, it then follows that a € rA. Thus f =a/ft € A, and
the assertion is venfied. [0

For convenience, we state below an easy lemma.

Lemma 29, Let A = R[IX] be the Rees algebra of an invertible ideal T of R and let O be a
prime ideal of B. Then QA is a prime ideal of A.

Proof. A, being a Rees algebra, is an A'-fibration. In particular, A is flat over R and
KO) @ A (=ki)'") is a domain. Thus A/QA(=— k(Q) ®g A) is a domain, ie.
QA eSpecA. [

3. On A'-fibrations of subalgebras of finitely generated algebras

We use the techniques of [1,2] w prove a version of the Paiching Lemma which reduces
Theorem A to the case of semi-local PID.

Lemma 3.1 Let B C A be integral domains with A being a faithfully flat R-algebra. Let a 0
beanelement of R, § = {5 € R | 5 is not a zem-divisorin RfaR}, and L = S7R| Lfal. Suppose
that x and y are transcendental elements of A over R such that x € S“lR[_rl and Llx]= L[y].
Set D= R[1fallx] N 51 Rlv| If D is flat over R, or if R is locally faciorial, then

o=#[1(*7)]

SJor an invertible ideal I of Rand c,d £ R.

Proof. If g isa unitin B, then D = R[x] and all assertions follow wivially; so we assume that a
15 i non-unit.
Since x € 5~ R[y] and L|x]= L[v]. we can write

dy+d’

¥

X =

forsomed, d € B and s € § such that ¢ 15 a unit in L. Then

d =sx —dye(s,dJANK=(s,d)R
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by faithiul flamess of A over R, so that d' = sc — de’ for some o, ¢" € R. 1t then follows that

Iy +3c—dd div—1¢
=.r_1r+1.c' de _ (¥ c}+c'_

b &
Hence, setting z = (x —¢)/d = (v — ') /s, we have ™' R[y] = §~' R[z] and

D =5"'RIzINR[1/alldz] = ED(S~'RNd"R[1/al) " = @D(R Nd"R[1/a])"

n 2zl n il

usmg R = 57IR NE[lfal.Let I =RNdR[][al.

We show that 7 is an invertible ideal of 8. If D is flat over R, then 1, being isomorphic 1o a
direct summand of [, is also flat over R and hence, as  is a unit in L, 1 is invertible by (2) of
Lemma 2.5 If R is locally factorial, then [ is invertible by Lemma 2.7,

It thus follows from (1) of Lemma 2.5 that

o=mia=af1(5°)]

This completes the proof. [0

Corollary 3.2. Let R © A be integral domains with A being a faithfiully flat R-algebra. Suppose
that there exists a non-zero eflement a R such that

() A[l/a]l= R[1/a]".
(1L 57la = {S‘lR}“], where § = {s € R | 5 iv not a zem-divisor in RjaR}.

Then there exists an invertible ideal I in R such that A= R[TX].

Proof. Since R = R[1/a] N 5~ 'R, from flatness of A, it follows that A = A[1/a] N S~ A. By
(1) and (1), there exist x, v € A such that A[l/a] = R[]l /a][x] and 5714 = S“'R[_rl. Then
A=ER[l/a |[x|ﬁ5_lR[_F|. MNote that S“lA[ll."ﬂlz Lix] =L[y], where L = S“lR[ll.-’ﬂl.Thus,
by Lemma 3.1, A = R[I X] for an invertible ideal I in R. O

Remark 3.3. Note that if A is a subalgebra of a faithfully flar R-algebra (for instance, when
A s Ry then JAN R = J for every ideal J in R, so that A is faithfully flat over B if and
only if A is flat over K.

The next result follows from [3]. We give below a proof based on Corollary 3.2,

Corollary 3.4. Let R be a semi-local domain with maximal ideals my .. ity Suppose that A is
an overdomain of R such that A, = R, M fori=1,..., n. Then A = R",

Proofl. Cleady A is finitely generated and faithfully flat over B. We prove the result by induction
onn. The casen = 1 isobvious. Let T = R (m U--- Uy, ). By induction hypothesis, T-'a=
(7' R, Since A is finitely generated, there exists a € T such that A[1/a] = R[1/a]'". Every
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element of R Y my, is comaximal with a. Hence, from condition Ap, = Rm“], we have 5714 =
(5~ 'R where § is as in Corollary 3.2. Therefore, A = RI'! by Corollary 3.2. 0

We now prove Theorem A

Theorem 3.5. Let R be a Noetherian normal domain with guotient field K. Let A be a faithfully
flat R-algebra such that A is an R-subalgebra of a finitely generated R -algebra B. Suppose that
A sarisfies the fibre conditions:

(i) K@pdA=K,
() For every prime ideal P in R of height one, K(P) @g A iy an integral domain with
tr.degy g k(P @g A =0 and k{ P) ix algebraically closed in k(P) @ A

Then A = R I X| for an invertible ideal T of R.

Proof. Since A is contained in a finitely generated R-algebra B, by Theorem 2.3, it is enough
to show that A, = R,!" for every maximal ideal m of R. Note that if T is a multiplicatively
closed subset of B, then T™'A € T-!'B and 7' A is a faithfully flat 7—' R-algebra satisfying
the fibre conditions (i) and (ii). Thus, replacing R by R, we may assume that £ is a local ring
with maximal ideal m.

We use induction on dim . The case dim R = 1 follows from Theorem 2.4 Assume that
dim& Z 2. Choose an arbitmary non-zero element ¢+ in s Then dim R[1/t] = dim R, so that
by the induction hypothesis A[1/¢] is locally finitely generated over R[1/1] and hence finitely
generated by Cormollary 2.2,

Since K @gp1y Al1/t] = K" by (i), there exists @ € R such that A[1/a] = R[1/a]".. Let
s Py be the associated prime ideals of aR, and let S =R\ (P U---U B). Then 57IR
15 a4 semi-local PID because R 1s a Noethenan nommal domain and Rp, 15 a diserete valuation
ring for each i. Now Ap, = Rp !l for each i (using Theorem 2.4). Hence 51 A = (5~'R)!' by
Corollary 3.4. Hence, by Carollary 3.2, A = R, as desired. O

Remark 3.6. We give below some examples o illuswrate the hypotheses in Theorem 3.5,

(1) The hypothesis on flatness is needed even when A is a finitely generated subalgebra
of R, For instance, consider R =k[[t;.12] and A = R[1 X, nX] ZR[U, V(U —n V).

i2) The hypothesis on faithful flainess is also necessary. Consider B = k[[f, 2] and A =
R, V]/AnU +8uV —1).

(3) It is also easy to see that the condition “k({P) is algebraically closed in £{P) @x A for
each height one prime ideal P in hypothesis (i) is necessary. Let R = B[[t ]| be the power series
ring over the field B of real numbers and A = R[U, V]/(tU/ + V> 4+ 1). Then A is a finitely
generated flat R-algebra, the generic fibre of A is A' and A/rA = C' is an integral domain
of positive transcendence degree over B/t (=R). But A # R!Y. The condition may be dropped
when A = R (see Remark 3.8).

(4) A slight modification of Example 1.3 shows the necessity of condition “tr.degy p, k(F) @ g
A = (" in hypothesis {ii) even over a discrete valuation dng. Let k be a field, B = &[x]i,
and A = kf[x]] N k{x)[v] where v € k[[x]] is transcendental over kix). Then A is a flat B-
algebra contained in the finitely generated R-algebra R[1/x, v]. the generic fibre of A is A' and
AfrA =k Bul A is not finitely generated over B. The condition may be dropped if A is given
to be finitely generated or A — R (see Remark 3.8).
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For further discussion on Theorem 3.5, we study certain properties of the domain A/ P A when
R A= R" and P is a prime ideal in R which remains prime in A,

Proposition 3.7, Let R be an integral domain and A an R -subalgebra of B where B = R, Let
P be a prime ideal in R such that PA ix a prime ideal in A. Then R/ P iv algebraically closed
in A/PA. Moreover trdegg, p A/ PA = 0if R ix Noetherian and A # R.

Proofl. Let 0 = PBMA . Then PAC Qand ONR=FPBNRE=P. We will show that B/P is
algebraically closed in A/ PA. For a € A, we denote by @ the image of a in A/ (= (R/ P)!"])
and by a™ the image of a in A/ PA. Suppose that a* is algebraic over B/ P. Let @(X) be the
monic minimal polynomial of a* over the quotient field of B /P and let . € R /P be anon-zero
element satisfying f{X) == e(X) e (R/PIX]. Then fla*) =10, and hence fia) =0, because
A/Q is a surjective image of A/ PA. Since R/ P is algebraically closed in (R/P)™], it then
follows that @ € R/P. Thus there exists ¢ € K such that ¢ = a and fi{¢) =0, which implies
@(X)= X — ¢. Since @(a®) =0, from this we have a* =¢ € B/ P, as desired.

MNext we will show that irdegg p A/ PA = 0 when R s Noetherian and A = R By [5, 18],
we have

hi{ @/ PA) +trdegg,p A/ Q < tr.degg,p A/PA.

Hence if tr.deg g p A/ PA =0, then ht(Q/PA) = 0, sothat Q = PA. Thus R/ P — A/PA —
(R /P which implies A/ PA = R/P. From this we have A = R 4+ PA, and hence A =
R+ P"A for every n = (. Since R is Noetherian, it follows that

A=[)(R+P"A)[(R+P"B) =R,

n=il n=l

a contradiction. Thus trdegg, p A/PA = 0, as claimed. [

Remark 3.8. We now show how the eardier results, quoted as Theorems 1.1 and 1.2 in Introduc-
tion, can be interpreted in terms of Theorem 3.5,

Theorem 3.5 = Theorem 1.1, Note that condition (1) in Theorem 3.5 1s satisfied when
the fibre ring &iP) @x A is geometrcally integral and of positive transcendence degree
over k{ P). 1t suffices to show that when A is finitely generated then one can drop the condition
“tr.degy py K(P)@g A = (7 from hypothesis (i) of Theorem 3.5. This follows from Theorem 2.4,

Theorem 3.5 = Theorem 1.2, Recall that A is faithfully flat over R when A is flat over R
and A = R Now it suffices to show that when A = R then one can drop both conditions
“tr.degy p k(P) @g A = 07 and “k( P) is algebraically closed in k(F) @g A” from hypothesis
(11) of Theorem 3.5.

Observe that since A is flat over B, if a fibre ring £{ P) @ A is a domain for a prime ideal P
in £, then sois A/ PA. Now the implicaton follows from Proposition 3.7,

Remark 3.9. When R is a Noetherian or a Krull domain, the patching technique gives an alterna-
tive proof of the result [3] that finitely generated locally polynomial R-algebra A is a symmetric
algebra. Clearly there exists a € R such that A[1/a] = R[1/a]lYl. Apply the argument in last
paragraph of the proof of Theorem 3.5,
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4. On generic and codimension-one A'-fibration over a UFD
Hypotheses and notations
Throughout the section we will assume that

(1) R isa locally factorial Krull domain with quotient field K.
(2) Ais a faithfully flat B-algebra satisfying the following conditions:
(i) K@gA=KI,
(i) For every prime ideal P in R of height one, k(P) ®g A is an inegral domain with
tr.degg py k(P @ A = 0, and k(P 15 algebraically closed in k(P &g A,

The results in this section were orginally proved over a factorial domain B. The authors thank
S.M. Bhatwadekar for his suggestive query on generalisation to the locally factorial case.
For ready reference, we list below the notations that will be frequently used.

A={PeSpecR |htP=1}.

- I,={PecA|aec P} where 0 £a € R. Note that Iy, = I, U [}, for a, b € R. Note also
that pR € I}, < p|a for a prime element p in K.

— x: A fixed element of A such that x is ranscendental over & and

T4 =K[x],

where T = R {0}, (Such an x exists by condition (i).)
— ep: Foreach P e A, ep will denote the unique non-negative integer ¢ such that

x—rc
r= e[ 7]

for some ¢ € R, where p 5 a uniformizing parameter of the discrete valuation ring Rp.

iExistence of ep will be shown in Corollary 4.3.)
- Apg={PeAl|ep =0}
- Ap(m) ={P € Ag| P € m} where m is a maximal ideal of B.
- A Foreach0# a € R, Ap, will denote the R-subalgebra of A defined in Lemma 4.1,
- X={I,|0£acR)
- lim A, : Direct limit of the direet system {Ar, | Iy € X} (defined in Lemma 4.5).

Lemma 4.1. For 0#£a € R, let §= R\ | Jp -, P and define

Ar, = S'ANR[1/a]lx].

A5=R|:f(r;")] (4.1)

Sfor an invertible ideal I of R and c.d € R. In particular, A, i faithfully flat over R. Further-
mare, we have:

Then
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(1) Ap, € A
(2) (A, )p=Ap for P [,
(3) (Ar,)p =Rplx] for P I,.

Proofl. Since all assentions follow trivially when @ s a unit in R, we assume that @ is 8 non-unit.

Note that 'R is a semi-local Krull domain of dimension one, and hence S~' R is a PID.
Since $7'A C K[x] = S7'R[1/a]lx]. it follows from Theorem 3.5 that §~'A = (§~!R)I']
Hence 5—'A = 5~ 'R[y] forsome y € A. Then K[x] = K[y]andxr e AC S~ A= (S~ ' R)[y].
Thus, by Lemma 3.1, there exist an invertible ideal § in £ and elements ¢, d € R satisfying (4.1).

The assertions (2) and (3) follow from the definition of A . For the assettion (1), note that
R =585"'RnR[1/a] since R is a Knll domain. Since A is flat over B, it then follows that
A=514 MA[lfal,sothat A, © A, because R[1/allx] < Al[l/fa]l. O

Remark 4.2. For the ring A, defined above, by Lemma 2.8, we have
Ap, = ﬂmr,,n-:( N Ap)rw( N Rpm). (4.2)
Ped Pl Per,

which shows that such a faithfully flat R-algebra A i, that satisfies the three conditions (1)—(3)
in Lemma 4.1 is unigue.

Corollary 4.3. For P € A, letting p € P be an element such that PRp = pRp, we have

X—c
Ap=Rp "
r

Sfor some c € R and ¢ = 0. Furthermore, the integer e iv uniguely determined for P.

Proof. Since P e Iy, it follows from Lemma 4.1 that
x —C
Ap=(Ar)p=Rp|I| —||= Rp[a(x —c)].

where I is an invertible ideal of R; c.d € R; and o is an element of K satisfying (d~'N)p =
aRp. Note that x € Ap. Hence vpla) < 0, where vpe 18 the valuation of K whose valuation
ring is Rp, s0 that we may take o = p~* with ¢ = 0. Since Kp is a discrete valuation ring with
uniformizing parameter p, the uniqueness of e is obvious. [

For P e A, we denote by ep the (unigue) integer ¢ given in Corollary 4.3 above.

Corollary 4.4. Suppose that R is factorial. Let a be an element in B with prime factorisation
pr™ e py™e et Py = piR, and set e; = ep. Then

x—c
A, =R 1 n
Py ot Pa

SJor some ¢ € R.
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Proof. Note that I, ={P...., P}, The proof of 4.1 shows that there exist ¢, d € R such that
Ap, = R[I{%}l where = RN dR[1/a] is an invertible ideal of R. Since R is factonal, 1 is
g

actually a principal ideal, say, I =u R. The proof of Lemma 2.7 shows that u/d = pl_r’ ey "
for some non-negalive integers ry, . .., ry. Thus

i el 03 X —C
RlI copl L ETE L]
[( d )] [p’l’---pﬂ”]

Then, agam by Lemma 4.1, we have

I—c
Ap =(Ar)p=Rp|—— |
(]
s0 that r; = ¢; for each i by Corollary 4.3, This completes the proof. [0
Lemma 4.5. Let a, b be non-zem elements of B If T, © Iy, then Ap, T AR,

Proof. Since Rp[x] S Ap for P e A, the assention easily follows from Eg. (4.2). 0O

Let ¥ =, | 0% a e R}. Then Lemma 4.5 shows that the rings A, together with mclusion
maps, form a direct system {A -, | [ € X} indexed by X We now prove the structure theorem:

Theorem 4.6. A =limA ;.
Prool. Set C=limAr,. Then C © A, because each A is a subring of A, First we show that C
is faithfully flat over R. For this purpose, let 0 — M — N be an exact sequence of B-modules.
Then the sequence

00— M@g A, > N@g A,

is exact for every Iy because Ap, is flat over R by Lemma 4.1, Since direct limit is an exact
functor, it follows that

00— lm(M@g Ap,) = lim(N @z Ap)
is exact. Recall that direct limit commutes with tensor product, namely,
lim(M ®g Ar,) =M ®g (limAp) = M ® C.
Thus 00— M @5 C — N @g C is an exact sequence, and hence C is flat over A. Moreover,
for any maximal ideal m of R, we have mC © mA £ A, so that mC s C. This shows that C is
faithfully flat over R.
Next we show that Cp = A p for every P e A ln fact, note that (A )p =Ap or (Ap)p =
Rplx] forevery I; e X and P e A, and Rp[x] C Ap for any P e A It then follows from

commutativity of direct limit with tensor product that

Cr=Rp@rC=Rp@p(lmAr)=lm{Rr@g Ar,)=lm{Ar,)p=Ap,
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as desired. Now, from Lemma 2.8, we have

C= mi:pz ﬂﬂp:ﬂ,

Fed Ped

which completes the proof. [
As g consequence of the theorem, extensions of all prime ideals in B remain primes in A.
Corollary 4.7. [f 0 is a prime ideal of R, then QA is a prime ideal of A.

Proof. Let f. g € A be elements such that fg e QA and write fg = ajh| +--- 4 a,h, with
clements ay, ..., ag € Qand hy, ..., fiy £ A, Then, by Theormem 4.6, there exists Ty € X such
that f.g. fp, ..., hy e A, sothat fge QAp,. Nowe that A, is the Rees algebra of an invertible
ideal of R, so that QA is aprime ideal of Ay, (Lemma 2.9). Thus we have f e QA € 0A
org € QAr, € QA Hence QA isa prime ideal of A. [

From Theorem 4.6, we shall now deduce that finite generation of A is equivalent 1o the finite-
ness of the setl

ﬂt]z{PEdlfF}ﬂ}.
MNote that, for P € A, we have P e Ay ifand only if A p &£ Rp|x].

Lemma 4.8, Let Ty, Ty be elements of X such that Ty © Ty, Then A, g Ay, if and only if there
exists P e Iy 0\ Iy such that P € Ag.

Proofl. First suppose that there exists P e I 4 [ such that P € Ap. Then we have (Ap)p =
Rplx] and (Ap)pe # Kplx] so that Ap, & Ap,. Since Ap, © Ap, in general, we have
Ar, g Ap,.

Next suppose that there does not exist P € I\ I, such that P e Ay, Then, for Pe '\ T,
we have (Ap )p = Rplx] sothat A, = Ay, by (42). O

Corollary 4.9. The foflowing conditions are equivalent:
(1) A is finitelv generated over R.
(2} Apix a fmite set.

(3) A= R[IX] for an invertible ideal T of R.

Prool. (1) = (2). Recall that, by Theorem 4.6, we have

A=limAr, =|_JAr,. (4.3)
Iy

LetA=R[A. ..., Sl By (4.3), for each i there exists 0 £ a; € R such that f; € :"!f'h, . Then,
sellng a =@ ---ay, wehave fj € Ap, foreach i, which implies A = A, Now suppose that Ag
is an infinite set. Then there exists P € Ag '\ I, because Iy is a finite set. Let ¢ be a non-zero
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element of P and let b = ar. Then I, © I and P e I} T, Thus Ar, # A, by Lemma 4.8,
Om the other hand, by Lemma 4.5, we have

A=Ap CAp CA,

s0 that Ay, = Ap,, a contradiction.

(2)= (3). Let Ag ={Py,..., Py} and ket a be a non-zero element of Py 0--- 0N Py, Then
Ap C Iy, and hence, by Lemma 4.8, we have A, = A forevery 0 £ 6 & R such that I, € I,
1t thus follows from (4.3) and Lemma 4.1 that A = Ay, = R[1X] for some invertible ideal |
of R. 0O

We now show how, for any maximal ideal m of R, the structure of the closed fibre A fmA is
related 1o the finiteness or otherwise of the set

Ap(m)=1{P € Ag| P Sm}.
Corollary 4.10. Let m be a macimal ideal of B and & = R/ m.

(1) I Ag(m) is a finite set, then AfmA = k1,
(2) If Apim) is an infinite set, then A/ mA = k.

Proof. Note that A, /mA, = A/mA because m is maximal. Hence, replacing R and A by
R and A, mespectively, we may assume that B s a local nng with maximal ideal m and
Agim) = Ag. In particular, B is factorial.

(1) This is an immediate consequence of Corollary 4.9,

(2) For I; € X, wehave Ar, = Rlx, |, where x, is of the form

X —C
3] £n
P

i P

g =
as given in Corollary 4.4, Since Ay is an infinite set, there exists P e Ay such that P ¢ I, Let
P=pRand b=ap. Then Iy = I, U P} sothat, again by Lemma 4.4,

xr—c

= e

Py pt
forsomec’' € Rande =ep. Let w = pi' --- pp*. Then

o

& —C

&
P xp=2Xa—
uw

which implies that (¢’ —c)/w € R, because x, € A, CAp, = Rlap]. Leth = (¢ —¢)fw. Since
pemand e = 1, it follows that

tg=pxp+Ai=2 (mod mAp). (4.4)
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As Ap fmApn = Kim &g Ar,, the direct system {Arﬂ, | Iy & X} with direct limit A induces a
direct system {Ap, fmA | I € E}owith direct limit R/m @5 A = A/mA. Equation (4.4) shows
that under the homomorphism

Jap A fmAn — Ap, fmAp
we have fupl Ap fmA ) = k. Therefore

AfmA=lm(Ar, /mAr) =k,
as claimed. This completes the proof. [

Corollary 4.11. At each prime ideal Q € Spec R, either k(Q) @ A=k(Q)N orkiQ) @ A=
k(Q).

Proof. Note that k{Q)® r A = Ap/ 0Ag. Replace the extension R C A by Rg C Ag and apply
Corollary 4.10. O

The preceding results kead o Theorem B.

Theorem 4.12. Suppose that R is afocal ring with maximal ideal m and vesidue field k (= R fm).
Then the following conditions are equivalent.

(1) A is finitely generated over R.
(2) trdeg, A/mA = (.

(3) dimA fmA = (.

(4) A= R

Proofl. The assertion is an immediate consequence of Corollares 49 and 4.10. [0
Corollary 4.13. Under the hypotheses of this section, if all closed fibres of the extension R C A
are af positive dimension (or positive transcendence degree), then A is a locally pofyvnomial
algebra.

We record below the initial example constructed by the authors, dunng the mvestigations
of non-finitely generated codimension-one A'-fibrations, that eventually led to Theorem 4.6.
The example could give a concrete illustration of how infinitely generated algebras described in

Theorem 4.6 can arise from a given infinite set of primes.

Example 4.14. Let & be an infinite field and R = &[[t;, 12 ]| where 1), 12 are algebraically indepen-
dent over k. Let

M =|aty + bt |a.bek, (a, b)#(0,0)}
and

Q={pip2---palnzl, picll, piR#p;Rfori#j}.



ALK Duta, N. Onada ! Joumal af Algebra 313 {2007 ) W05-02] g21

Thus [T is a set of primes in B and £2 the set of elements of R which can be expressed as a
product of distinct (non-associate) primes from 7.
Now for i = 1.2, let C; = R[1/4][{X | p € 1T}] and let C = €\ N C2. Note that R[{X |

pelll] g ' ; for instance, JL e E"'-.,R[{% | pe I}

ez

We show that C = R[{% | g € £2}]. It is enough to prove that C; = R| ll.-’f,-l[{f | g € £2}] for

i =1,2 lisuffices 1o check that % e C; foreach g € 2 and eachi. Let g = pyp2--- py where

sy Py € 1T, We show that ff £ C; by induction on n. Now p, =at; + btz and p,_| =
ct) +ditz forsome a, b, o, d €k such that ad — be #£ 0. Setr = pypz--- py_2. Let
X X X X
y= =y = i
FPr—1 FPy FPr—1 Py
X

By induction hypothesis, both
Now

.= €Cp,sothat y,z € C;. Hence (b+d)y —(b—d)z € (.

FPg—-1

X
(b+dy —(b—diz=2Xad —bcin—.
q

Since £ 18 a unit in C, it follows that % e C. Again, (a +c)y — (a — o)z € C;. Now

la+c)y —ila—c)z =2{be —ﬂﬂ'}lfg‘-x’
q

Therefore, as t2 18 a unit n Ca, it follows that % € (3. The description C = R[{f |g € £2}]
shows that € is a faithfully flat B-algebra satisfying Cp = Rp!!! for every height one prime
ideal P of R, but € is not finitely generated over . Here C is, in fact, a direct limit of finite
subsets of the set of principal prime ideals of the form pR where pe IT. For Pe A, ep =1 if
P = pR forsome prime p in IT; otherwise ep = 0. Note that C is a subalgebra of the R-algebra
A in Example 1.4.
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