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Abstract. For every positive real number p that lies between even integers
2(m − 2) and 2(m − 1) we demonstrate a matrix A = [aij ] of order 2m such
that A is positive definite but the matrix with entries |aij |p is not.
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1. Introduction

Let A = [aij ] be an n × n complex matrix, and let |A|◦ = [|aij |] be the matrix
obtained by replacing each entry of A by its absolute value. Suppose A is positive
semidefinite. When n = 2, this is equivalent to the conditions a11 ≥ 0, a22 ≥ 0, and
|a12|2 ≤ a11a22. This shows that |A|◦ is also positive semidefinite. A small calcula-
tion with determinants shows that if A is a 3×3 positive semidefinite matrix, then
so is |A|◦. When n = 4, this is no longer true as can be seen from the instructive
example [5, p.462]
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⎥⎥⎦ . (1)

If A = [aij ] and B = [bij ] are two n × n matrices, we denote by A ◦ B their Had-
amard product (entrywise product) [aij bij ]. By a famous theorem of I. Schur, if A
and B are positive semidefinite, then so is the product A ◦ B. As a consequence,
all Hadamard powers A◦m = [am

ij ] of a positive semidefinite matrix A share the
same property. Obviously, the matrix A = [aij ] is positive semidefinite along with
A. Hence by Schur’s theorem all matrices

[|aij |2m
]
, m = 0, 1, 2, . . . , are positive

semidefinite.
Let p be any nonnegative real numbers. If aij ≥ 0, we use the notation A◦p

for the matrix [ap
ij ]. If aij are complex numbers we let |A|◦p

◦ stand for the ma-
trix [|aij |p].
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The following fact is known. It seems remarkable and is the object of this
note.

Theorem 1. Let p be a positive real number not equal to any even integer. Then
there exists a positive integer n, and an n × n matrix A such that A is positive
semidefinite but |A|◦p

◦ is not.

Though this will be subsumed in the ensuing discussion, the reader may
check that for the matrix A given in (1), none of the matrices |A|◦p

◦ is positive
semidefinite for 0 < p < 2.

Theorem 1 can be derived from two other theorems of wider range and
greater depth. The first of them addresses the most general question of the type
we are discussing. Let ϕ be any function of a complex variable. When does ϕ
have the property that whenever [aij ] is a positive semidefinite matrix (of any size
n), then so is the matrix [ϕ(aij)]? The answer, following from the work of I. J.
Schoenberg [9], C. Herz [4], and W. Rudin [8] is that ϕ satisfies this (rather strin-
gent) requirement if and only if it has a series expansion of the form

ϕ(z) =
∞∑

k,�=0

bk�z
kz�, (2)

with coefficients bk� ≥ 0.

It is not difficult to see that if ϕ(z) = |z|p, then ϕ can be expressed in this
way if and only if p = 2m. Theorem 1 follows as a corollary.

The second theorem from which we can derive Theorem 1 concerns positive
definite functions. A function f : R → C is said to be positive definite if for all n and
for all choices of points x1, x2, . . . , xn in R the matrix [f(xi −xj)] is positive semi-
definite. Continuous positive definite functions with the normalisation f(0) = 1
are characteristic functions of probability distributions and have been extensively
studied in that context. It is known that if a positive definite function f is analytic
on an open interval of the form (−a, a), then it is analytic on R. See [6]. So, if g
is a positive definite function such that g(x) = f(x) for −a < x < a, then g = f
everywhere on R.

The function f(x) = cos x is positive definite and the general theorem we
have just cited can be used to show that |cos x|p is a positive definite function if
and only if p = 2m. See [2, Theorem 2.2]. We remark here that the entries of the
matrix (1) are aij = cos (xi −xj) with x1 = 0, x2 = π/4, x3 = π/2, and x4 = 3π/4.

We carry further the idea behind this example to obtain another proof of
Theorem 1. The merits of this proof are that it is constructive, does not depend
on deeper general theorems, gives more information about the dependence of n on
p, and suggests further questions. Our main result is the following.

Theorem 2. Let n = 2m be an even integer, m = 2, 3, . . . , and for 0 ≤ j ≤ n−1 let
xj = j π

n . Let A be the n×n matrix with entries aij = cos (xi−xj). Then the matrix
|A|◦p

◦ is not positive semidefinite for any p in the range 2(m − 2) < p < 2(m − 1).
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2. The Proof

To avoid cluttering the proof of our theorem we record separately the principal
ideas and facts that we use. A circulant matrix C is one whose rows are cyclic
permutations of its first row. Thus

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

c0 c1 . . . cn−1

cn−1 c0 . . . cn−2

. . . . . .

. . . . . .

. . . . . .
c1 c2 . . . c0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let ω = e2πi/n. Then the eigenvalues of C are given by the formula

λj = c0 + c1ω
j + c2ω

2j + · · · + cn−1ω
(n−1)j , (3)

0 ≤ j ≤ n − 1.
The following lemma is well-known. See [7, p46] for a more general statement.

For the reader’s convenience we outline a quick proof.

Lemma 1. Let λ0 > λ1 > · · · > λn > 0 be any positive real numbers and for x ∈ R

let
f(x) = a0λ

x
0 + a1λ

x
1 + · · · + anλx

n,

where aj ∈ R, a0 �= 0. Then f has at most n zeros on the real line.

Proof. We use induction. When n = 1, we have

f(x) = a0λ
x
0 + a1λ

x
1 = λx

1 (a0μ
x
0 + a1) = λx

1g(x),

where g(x) = a0μ
x
0 + a1, and μ0 = λ0/λ1. Since μ0 > 1 and a0 �= 0, g(x) has at

most one zero. Since f(x) = 0 if and only if g(x) = 0, the statement of the Lemma
is true for n = 1. Suppose it is true for some n ≥ 1. Then consider

f(x) = a0λ
x
0 + a1λ

x
1 + · · · + an+1λ

x
n+1 = λx

n+1g(x),

where g(x) = a0μ
x
0 + a1μ

x
1 + · · · + anμx

n + an+1, and μj = λj/λn+1. Note that
μ0 > μ1 > · · · > μn > 1. Differentiating, we get

g′(x) = b0μ
x
0 + b1μ

x
1 + · · · + bnμx

n,

where bj = aj log μj . We have b0 �= 0. So, by the induction hypothesis g′ has at
most n zeros. By Rolle’s theorem g has at most n + 1 zeros. The functions f and
g are zero at exactly the same points. �

We will use the vanishing of a special trigonometric sum. This is given by

Lemma 2. Let p and n be positive integers such that p < n and p+n is even. Then
n−1∑
j=0

(−1)j

(
cos

jπ

n

)p

= 0. (4)
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Proof. Let ω = eπi/n. Then ωn = −1, and we have

n−1∑
j=0

(−1)j

(
cos

jπ

n

)p

=
n−1∑
j=0

ωnj

(
ωj + ω−j

2

)p

=
1
2p

n−1∑
j=0

ωnj

p∑
k=0

(
p

k

)
ωj(p−k)(ω−j)k

=
1
2p

p∑
k=0

(
p

k

) n−1∑
j=0

ωj(n+p−2k)

=
1
2p

p∑
k=0

(
p

k

)
Sk, (5)

where

Sk =
n−1∑
j=0

ωj(n+p−2k), 0 ≤ k ≤ p. (6)

Now note that n+p−2k is an even number smaller than 2n. Since ω is a primitive
root of unity of order 2n, Sk = 0. �

Proof of Theorem 2. For any real number p, the matrix |A|◦p
◦ in the statement of

the theorem is a Hermitian circulant matrix. The entries on its first row are

1,
∣∣∣cos

π

n

∣∣∣
p

,

∣∣∣∣cos
2π

n

∣∣∣∣
p

, . . . ,

∣∣∣∣cos
(n − 1)π

n

∣∣∣∣
p

.

Since n = 2m, one of the nth roots of unity is −1. So one of the eigenvalues of the
matrix |A|◦p

◦ is

f(p) = 1 −
∣∣∣cos

π

n

∣∣∣
p

+
∣∣∣∣cos

2π

n

∣∣∣∣
p

− · · · −
∣∣∣∣cos

(n − 1)π
n

∣∣∣∣
p

. (7)

Using the relation |cos θ| = |cos (π − θ)| , this can be expressed also as

f(p) = 1 − 2
(
cos

π

2m

)p

+ 2
(

cos
2π

2m

)p

− · · · + (−1)m−12
(

cos
(m − 1)π

2m

)p

. (8)

An application of Lemma 1 shows that the function f(p) is zero for at most m− 1
values of p. On the other hand from the expression (7) and Lemma 2 we see that
f(p) is zero when p = 2, 4, . . . , 2(m − 1). These are then all the zeros of f(p). At
p = ∞, f(p) is equal to 1. The last sign change of f(p) occurs at p = 2(m − 1).
Thus f(p) is positive for p > 2(m − 1), and negative for 2(m − 2) < p < 2(m − 1).

We have shown that one of the eigenvalues of the n × n matrix |A|◦p
◦ is neg-

ative when 2(m − 2) < p < 2(m − 1), and hence this matrix cannot be positive
semidefinite. �
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3. Remarks

• An interesting question raised by our analysis is the following. Let p be a
positive real number not equal to any even integer. What is the smallest n
for which there exists an n×n positive semidefinite matrix A such that |A|◦p

◦
is not positive semidefinite?

• Lemma 2 is included in a more general result given as Formula (18.1.8) on
page 257 of [3]. This says that if n is any positive integer, then

n−1∑
j=0

(−1)j

(
cos

jπ

n

)p

=
{

1
2 [1 − (−1)n+p] , p = 0, 1, . . . , n − 1
n/2n−1, p = n.

(9)

The case p = n of this with a proof similar to ours is given in [10]. We give
here a proof of all the cases for completeness. Proceed as in the proof of our
Lemma 2 upto (5) and (6). Let p = n. Then

Sk =
n−1∑
j=0

ωj2(n−k).

This sum is zero for 0 < k < n and it is equal to n when k = 0 or n. This
proves (9) when p = n. Let p < n. The only case left to consider is that when
n + p is odd. In this case

Sk =
1 − ωn(n+p−2k)

1 − ωn+p−2k
=

2
1 − ωn+p−2k

, (10)

since ωn = −1 and n + p − 2k is odd. Using the identity

1
1 − x

+
1

1 − 1/x
= 1, (x �= 1)

we have
1

1 − ωn+p−2k
+

1
1 − ωn+p−2(p−k)

= 1.

So, from (10) we have

Sk + Sp−k = 2 for 0 ≤ k ≤ p.

Note also that when p is even we have from (10)

Sp/2 =
2

1 − ωn
= 1.

Thus when n + p is odd we have
p∑

k=0

(
p

k

)
Sk =

p∑
k=0

(
p

k

)
= 2p,

and the expression (5) reduces to 1. This establishes (9) in all cases.
• Positivity preserving maps of various kinds have been studied extensively in

the last few decades. The recent book [1] describes some of the major results.
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