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Abstract

The torus group (S1)**! has a canonical action on the odd dimensional sphere Sg”l.
We take the natural Hilbert space representation where this action is implemented and
characterize all odd spectral triples acting on that space and equivariant with respect to
that action. This characterization gives a construction of an optimum family of equivariant
spectral triples having nontrivial K-homology class thus generalizing our earlier results for
SU,4(2). We also relate the triple we construct with the C*-extension

0— K®C(S") — C(SFF?) — O(S2H!) — 0.
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1 Introduction

In noncommutative geometry (NCG), a geometric space is described by a triple (A, H, D), called
a spectral triple, with A being an involutive algebra represented as bounded operators on a
Hilbert space H, and D being an unbounded selfadjoint operator with compact resolvent and
having bounded commutators with the algebra elements. The operator D should be nontrivial
in the sense that the associated Kasparov module should give a nontrivial element in K-
homology. A natural question is, are there enough spectral triples around us? The answer
is both yes and no. If we do not demand any further properties then by a theorem of Baaj
and Julg ([1]; [7], chapter 4, appendix A), given any countably generated subalgebra A of a
C*-algebra there exists a spectral triple (A, H, D). But if we demand further properties like
finite summability then given a dense subalgebra of a C'*-algebra it may not admit a finitely
summable spectral triple ([6]). Therefore given a natural dense subalgebra of a C*-algebra it
is meaningful to ask whether it admits finitely summable nontrivial spectral triples. Also, the
result of Baaj & Julg starts from a Fredholm module, so one has very little control over the

Hilbert space or the representation.



In an earlier paper ([5]), the authors studied spectral triples for the odd dimensional quan-
tum spheres taking the Hilbert space to be the Lo space of the sphere and the representation
to be the natural representation by left multiplication there. In the present article, we fix a dif-
ferent representation space dictated by the torus action on the sphere, and investigate spectral
triples for that. The results here generalize those in [4].

We will use the method described in [5] and used implicitly in [3] and [4]. Observe that
the self-adjoint operator D in a spectral triple comes with two very crucial restrictions on it,
namely, it has to have compact resolvent, and must have bounded commutators with algebra
elements. Various analytic consequences of the compact resolvent condition (growth properties
of the commutators of the algebra elements with the sign of D) have been used in the past by
various authors. We will exploit it from a combinatorial point of view. The idea is very simple.
Given a selfadjoint operator with compact resolvent, one can associate with it a certain graph
in a natural way. This makes it possible to do a detailed combinatorial analysis of the growth
restrictions (on the eigenvalues of D) that come from the boundedness of the commutators,
and to characterize the sign of the operator D completely.

We take a representation space where the canonical action of (S1)“! on C (5’3”1) is imple-
mented. If we further want our Dirac operator D to be equivariant with respect to the torus
action then D should commute with the unitary implementing that action. Hence D respects
the spectral subspaces. This allows us to write down the form of the Dirac operator. Then
using the boundedness of the commutators we completely characterize all equivariant Dirac
operators. We also produce a nontrivial optimal equivariant Dirac.

0Odd dimensional quantum spheres of successive dimension are related through a short exact
sequence that says that the (2¢+ 3)-dimensional sphere C'(S 3”3 ) is an extension of the (2¢+1)-
dimensional sphere C(Sg”l) by C(S'). One can naturally associate a KKl(C(SgeH), C(sh)
element with such an extension (for a discussion on the relation between C*-extensions and
KK-elements, see chapter 8, section 17, Blackadar [2]). In the last section, we compute this
KK-element and show that the generic spectral triple that we construct in section 3 comes from
this KK-element.

2 Torus action on quantum spheres

Let ¢ € (0,1). The C*-algebra Ay = C (Sg“l) of continuous functions on the quantum sphere
Sg”l is the universal C'*-algebra generated by elements z1, 29, ..., 2¢+1 satisfying the following
relations (see [8], [10]):

2izj = qz%, 1<j<i<i+1,
zizp = qziz, 1<i#£j<t+1,
22} —zfzi—i—(l—qQ)szz}:. = 0, 1<i<[/l+1, (2.1)
k>



l+1

Z ziz; = L

i=1

Let N be the number operator given by N : e, +— ne, on La(N) and S be the shift S : e, —
en—1. We will use the same symbol S to denote shift on Lo(N) as well as on La(Z). In the case
of Ly(N), S(ep) is defined to be zero. Let

Hy = Ly(N) @ - ® Ly(N) @ Lo(Z).

¢ copies

Let 7y be the representation of Ay on the space L(Hy) of bounded operators on H; given on
the generators by

N N *
V1—g¢?N§S I, 1<k</,
Zk — ¢ ® ®qg ® q ®1I® ® < k<
k—1 copies l+1—k copies
Zeg41 Ne- oY est,
—_————
¢ copies
Then 7, gives a faithful representation of Ay on H, (see lemma 4.1 and remark 4.5, [8]). Observe

that the C*-algebra generated by the operator S on Lo(Z) is isomorphic to C'(S'). Using this

and the identification
L(Ly(N') ® C(51)) 2= L(K(L2(N)) ® C(S1),

where L£(-) denotes the space of bounded adjointable operators and K(-) denotes the space
of compact operators, one can see that for all a € Ay, the operators my(a) actually lift to
adjointable operators on the Hilbert C'(S')-module Ly(N%) @ C(S1).

The K-groups of these C'*-algebras have been computed by Vaksman & Soibelman and
Hong & Szymanski:

Proposition 2.1 ([10],[8]) Ko(A) = K1(4y) = Z.
The group (S1)“*! has an action on C (Sg”l) given on the generating elements by
Tw(2i) = w;zi, w = (w1, wa, ..., we) € (S

If Uy, denotes the unitary w) @ w) @ --- @ wp}, on Hy, then one has my(tw(a)) = Uwme(a)Us,
for all a € C(S2°"!). Thus (7, U) is a covariant representation of (A, (S1)**,7) on H,. In
the next section, we characterize all equivariant spectral triples for this representation and

construct an optimal triple using this characterization.



3 Equivariant spectral triples

Let I' = N x - -« x N xZ, so that Ly(I') = H,. For v = (v(1),7v(2),---,7({+1)) € ', e, denotes

¢ copies
the basis element of Hy given by e,y ® -+ @ €y(p41)-

Theorem 3.1 Let D be a self-adjoint operator with compact resolvent on Hy that commutes
with the operators Uy,. Then D must diagonalise with respect to the canonical basis, i. e. must
be of the form

ey i d()es (32)
where d(y) € R for all v € T.

Moreover, such an operator D will have bounded commutators with elements from the *-
subalgebra of C(Sg“‘l) generated by the z;’s if and only if the d()’s obey the following condition:

|d(y) — d(y + ex)| = O(q W= 7*=D) 1 <k <+, (3.3)
where €}, stands for the vector whose kth coordinate is 1 and all other coordinates are 0.

Proof: The first part is immediate. For the second part, just observe that

[D,7(z)les = (d(y+ex) —d(y))g? DT T ED 1 —gk)t2e, 0 1<k <,

[D,7(zee1)ley = (d(y +e1) = ()"0,

d

By a compact perturbation, one can ensure that all the d()’s are nonzero in the above theorem.
We will assume from now on that d() # 0 for all 7. Using (3.3) we get a constant ¢ such that
d(y) — d(y +e)|g 7M7) < ¢ with ¢, as in the theorem. Now join two elements v and
v in T by an edge if |d(y) — d(v")|] < ¢. Call the resulting graph G the growth graph for D.

Lemma 3.2 Let k be an integer with 1 < k < {4+ 1. Let
Y= (0,...,0,T,ik+1,... 7Z.Z+1)7 7/ = (07"'7078>ik+17"'7i€+1)-

Then there is a path in G of length |r — s| joining v and ' such that all vertices on this path
are of the form (0,...,0,t, ik 1, 0p11)-

Proof: Assume without loss in generality that (k) < v/(k). Write t = +'(k)—~(k). From (3.3),
it is clear that if 6(i) = 0 for 1 < i < k — 1, then there is an edge joining § and ¢ + €;. Thus
(v, v + €k, + 26k, . ..,7v + teg) will give us a required path. O



Lemma 3.3 Let k be an integer with 1 < k < {4 2. Let

Y= (ila"wikflvikv"' 7Z.f+1)7 7/ = (07 N UR T 7Z.f+1)'
Then there is a path of length |i1| + ...+ |ig—1| joining v and ' such that all vertices on this

path are of the form (ji,...,Jk—1,%k,---,le+1), where each jy lies between 0 and |iy)|.

Proof: For 1 < j <k, let ; denote the element of I' whose first j — 1 coordinates are 0 and
4th coordinate onwards coincide with those of 4. Thus v, = v and v, = 7'. Now apply the
previous proposition to get a path of length |v;(j) — vj41(J)| = v(j) joining v; and 7,41 for
1 <j <k —1. Joining all these paths together, one gets the required path. O

Proposition 3.4 Let D be a Dirac operator that commutes with the operators Us,. Then D

must be of the form e, — d(v)e, where
[d()] = O0(y(1) + ... +9(0) + Y (L + 1) +1).

Proof: Note that if + is an arbitrary element of the growth graph G, then by the previous
lemmas v can be connected with 0 by a path of length (1) + ... +~(£) + |y(¢ + 1)|, hence the

result. O

Theorem 3.5 Write 't = {y € ' : d(vy) > 0}, and '™ = I'\I'". There exist nonnegative
integers My, Ms, ..., My 1 such that for each k € {1,2,... 0} and for each

L
(ik+1>ik+2> s 7i5+1) € b = H {07 1,... an‘} X {—Mngl, _Merl +1,... aMf+1}7
r=k+1

none of the following sets intersect both T and I'":
Al = {’7 el: ’y(ﬂ + 1) > Mg_|_1}, Ay = {’)’ el: ’y(ﬂ + 1) < —Mg_,_l},
Bl i1 vinsoriosr) = {yeTl:vk)>Mg~y(r)=1i fork+1<r<{+1}.

Proof: We will construct these numbers M;, M, - -- My, inductively starting from Mpyy.

Assume there are two sequences of elements v, € 't and §, € I'™ such that
Yol +1) <d(l+1) <ml+1) <h(l+1)<---.

For each k, use lemma 3.3 to get a path py from % to d; such that for any vertex on the path,
the (¢ + 1)th coordinate lies between (¢ + 1) and 63 (¢ + 1). This last condition would ensure
that the paths py are all disjoint. Since pj connects points of I'" with '™, there is a vertex iy,
in pg such that d(ux) € [—c,¢]. Moreover disjointness of the py’s implies that the vertices py



are all distinct. Therefore counted with multiplicity, the compact interval [—c, ¢] has infinitely
many eigenvalues of D, a contradiction to compact resolvent condition for D. Therefore there
exists My, such that {y € I': y(¢ +1) > M;_,} does not intersect both 't and T'~. One can
similarly show that if there are elements v, € I'" and §;, € I'" such that

’)/0(€+1)>50(€+1)>71(£+1)>(51(€+1)>"',

then there is some big enough natural number M/ ; such that the set {y € T': y(£ + 1) <
—My, |} is either in T'* or in I'". Now taking My, = max{ M, ,, M/ ,}, we get that neither
of Ay, Ay intersect both I't and I'~.
Next, given Myy1,..., Myy1 and (igy1,0k42,---,i011) € Fp, if there are elements v, € T'"
and 6, € I'” with
V(i) =15 =0,(j), k+1<j<Ll+1,

’Yo(ki) < 50(k¢) < ’)/1(]6) < (51(k1) < --e,

then using lemma 3.3 again, one can join each pair (v,,d,) by disjoint paths and arguing
as above arrive at a contradiction to the fact that D has compact resolvent. Therefore the

existence of M}, follows. O

Theorem 3.6 Let Dyorus be the operator ey — d(vy)e, on H, where the d(v)’s are given by

d( )Z{7(1”“'”“”!7(“1)\ FA(+1) >0,
~(Y (1) + O + Y+ D) if e+ 1) <O

Then (C’(Sg”l),?'{g, Diorus) is a nontrivial (£ + 1)-summable spectral triple.
The operator Diorys is optimal, i. e. if D is any Dirac operator acting on H that commutes

with the Uy ’s, then there exist positive reals a and b such that
‘D| <a+ b|Dtorus|'

Proof: Clearly Dyorys is a selfadjoint operator with compact resolvent. That it has bounded
commutators with the m(z;)’s follow by direct verification.
From the commutation relations that the generators z; obey, it follows that 2,1 is normal

and the element z; ;241 has spectrum {¢*" : n € N} U {0}. Let

u = xq1y(20412041) (2041 — 1) + 1.

It is easy to see that u is a unitary. We will now compute the pairing between Dyyys and 7(u).

First observe that the action of m(u) on H is given by

[ eytey, (i) =0for1<i<V,
m(u)ey = .
€y otherwise.



Write P = %(I + sign Dyorus). Then P is the projection onto the closed linear span of {e, :
v(0 + 1) > 0}. It follows that the index of PuP is —1.

Summability follows from the observation that the number of elements in {(i1,...,%p41) €
NCx Z - S ik + lieg1] < n}is of the order nft1.
Optimality is a consequence of proposition 3.4. O

Theorem 3.7 Let D be a Dirac operator on H that commutes with the operators Uy,. Then

either D 1is trivial or has the same K-homology class as Digrys 07 —Diorys-

Proof: If D is a self-adjoint operator with compact resolvent on H that commutes with the
operators Uy, and if P = %(sign D+1), then by theorem 3.5, P is the projection onto the closed

linear span of {e, : v € I'"} where I'" must be of one of the following form:

Al U (UerB:v)a (3'4)
As U (UgerBy), (3.5)
Al U A2 U (U:BGEBLB) ) (3'6)
U$€EB$7 (3'7)

where E is some finite subset of Uf;:l{k} x Fj. By direct calculations in the first two cases
the index of Pm(u)P turns out to be —1 and 1 respectively, whereas in the last two cases, the

index is zero. Thus one always has
([u], (C(SZ™), H, D)) =0 or 1.

By [9], we have K(C (5’3”1)) = Z. therefore the result follows. O

4 Relation with ("*-extensions

In this section we will denote the generators for A, by z; and the generators for Ay, by yx. Ag
will denote the *-subalgebra of A, generated by the z’s. Let JE denote the two-sided *-ideal
in A? generated by zsy1 and let Jp denote the norm closure of J, ? in Ay. Thus Jy is the ideal in
Ay generated by the element zyy.

For a Hilbert C*-module F, we will denote by L(F) the C*-algebra of bounded adjointable
operators on E, and by K(FE) its ideal of ‘compact’ operators. We denote by K the C*-algebra
K(H) for an infinite dimensional Hilbert space H.

Lemma 4.1 Let C*(S) denote the C*-algebra generated by the operator S on Lo(Z). Then
one has J; = K(Lo(N)) ® C*(S) = K @ C(S1).



Proof: We will identify A, with m(Ay).
For 1 < k </, denote by X the operator

o0 I®..0I
k copies £+ 1 — k copies

on Hy. Write Xg = I. Then it is easy to check that one has the relations
i =Xp - XE, 1<k</t.

It follows that X € Ay for all 1 < k < /.
Write p;; for the rank one operator |e;)(e;| on Ly(N). Then

Dirji @ - @ Diyjy ®Sk

can be written in the form

AKX fol(X)z a1 (X)L ge(X)

where f;, g; are continuous functions on the spectrums of the respective X;’s. Therefore p;, ;, ®
.- ® piyj, ® S* € Jy. It follows from this that K(La(N%)) @ C*(S) C J,.

For the reverse inclusion, observe that any polynomial in the z;’s and their adjoints is a
finite sum of the form ). T; ® S*i where Tj € L(Lo(N%)) and k; € Z. Therefore JJ is contained
in K(Ly(N%)) ® C*(S). Same is therefore true for its closure J. O

Proposition 4.2 Let oy : Apy1 — Ay be the homomorphism given by
{Zi ifl1<i</l+1,
Yi = s
0 ifi=0+2.

Then we have the following short exact sequence
0 — Jpp1 — A1 5 A4y — 0. (4.8)
We will need the following lemma for the proof.

Lemma 4.3 Let A be the universal C*-algebra in noncommuting variables x1, xs, - - - T, subject
to relations Ri(x1,22, -+, 2p), -+, Rj(x1,22, -, 2y). Let J be the ideal of A generated by non-
commutative polynomials Q1(x1,22, -, Tyn), Q2(x1, 22, -, xn), -+, Qr(x1,22, -, 25). Then
A/J is isomorphic to the universal C*-algebra A(J) generated by x1,x2,- -, , subject to the
relations Ry,---, R;,Q1,-- -, Qk.



Note that it is part of the hypothesis that the universal C*-algebras A and A(J) exist.

Proof: Let &1,---,&, be the generating elements of A(J). Clearly we have a surjection q :
A(J) — A/J mapping & to x;. To show that this is injective it is enough to show that given
a polynomial o = f(&1,---,&n) € A(J), one has ||¢(o)|| = ||la||, where a = f(z1,---,zy). Now

observe that

lla]| = sup{||w(a)| : 7 is a representation of A, 7(J) =0}
= sup{||m(a)| : 7 is a representation of the algebra generated by z1, 9, -z,
subject to Ry,---, Rj,Q1,... Qi)

= [lafl

Thus the proof is complete. a

Proof of proposition 4.2. Clearly Jy1 C ker(oy) and lemma 4.3 gives Api1/Jp11 = Apyp1(Jog1).
Also note that in the defining relations for the generators for Ay, if we put ysro = 0 we get
the relations for Ay, hence Ayy1(Jpi1) = Ayp. Therefore ker(oy) = Jy11, hence the result. a

Proposition 4.2 gives a homomorphism 1 : Agy; — M(Jpy1). Using lemma 4.1 we get
M(Jpy1) = L(La(NF1) @ C(SY)). Thus gy 1 is given by:
N N *
. VI-¢NS* @ I®---@, 1<k</({+]1,
Yo — ¢ Q8¢ & q O <k< L+
k—1 copies ¢+2—k copies
N N
Yy — ¢ R Q¢ Q2.
—_——
¢+1 copies
Here Z : C(S') — C(S') denotes the operator given by (Zf)(z) = zf(2).
Define 64 : Ay — L(H, ® C(S1)) by
N N *
V1—¢*NS I®---®1 1<k</?
2z — ¢ ®--®¢® q ®I®- -1, SRS
k—1 copies (+2—k copies
2 — VR0 oS el
—_——
¢ copies

Let

Ep = K(La(N)) @ --- @ K(L2(N)) @C(S'),  Fy= La(N) @ - - @ Ly(N) @C(5").

£ copies ¢ copies

Let U be the unitary from Lo(N) @ Lo(N) onto Lo(Z) given by

en®0— e,, 0de,—e_pn_1, n € N.



Using this unitary in the (¢ 4+ 1)th copy, one can identify H, ® C(S') with Fy.; @ Fyq. Let
P € L(L2(Z)) be th jecti to the Lo(N t and let =I® ---®IRP®I. Defi
€ L(L2(Z)) be the projection onto the Lo(N) part and let Qy ®---I’P® efine
¢ copies
Cp: L(Hy ® C(SY) — L(Fyp1) by Co(T) = Q/TQp. Now define 64 : Ay — L(Fyyq) by
de(a) = Cpoy(a). For convenience, we summarize various maps and the spaces between which

they act in the following diagram:

oy

Jot1 Apya Ay
= Yot1 G
Ern Ve (Aepr) 7/ L(He® O(SY)
- c =
M(Egi1) L(Fei1) < L(Frpr © Fiyn)

Theorem 4.4 The element (H,QC(S1),5,2Q—1I) gives the K K -class in KKl(C(SgeH), C(sh)

corresponding to the extension (4.8).

Proof: Let r € N and let p be a polynomial in noncommuting variables and their adjoints.
Using the observation that Q, commutes with 6,(z;) for 1 < k < ¢, one gets

L Go(zpp(21, 20,2755 7)) = Ge(2p 1) 0e(P(21, -+ 20,215+, 27))-

2. 60((27) P21,y 20,205 27)) = 60((2740) )0e(p(21, -+ 20, 215+ 7).
Using this one can now easily show that

L oy(p(z1, 20,20, 27)) = err (p(yns -5 e,y -+ 47))-

2. 60(zp41) — Ve (Ypy,) € K(La(NH)) © C*(S) = o1 (Jesa)-

3. 60((25:1)") — Vo1 (Wi 1)) € K(L2(NF) @ C*(S) = thogr (Jog)-

It follows from these that for any polynomial p we have

~

U@(p(zh T )Z€+17Z>1k7 T 722—1—1)) - d]f-f—l(p(yh T )y€+17yT7 e 7y2<+1))
€ K(L2(N™1) ® C(8") = g1 (Jern)- (4.9)

Let 7 : Ay — M(Jy41)/Je41 be the Busby invariant for the extension (4.8), and let @ :
M(Jps1) — M(Jps1)/Jes1 be the quotient map. For a polynomial p in noncommuting variables
and their adjoints, we now have from (4.9),

T(p(zly“‘,Z£+172T7“‘7ZZ+1)) = (I)O¢€(p(yla"',yé-i—hyi(r”,92-1-1))

= @ Oa—f(p(zlv T 7Ze+17z>1k7 T 7ZZ<+1))‘

10



Since such elements are dense in Ay, we get

(a) =®ody(a), ac A

Thus by (4.9) 7 admits the completely positive lifting 6, and the result follows. O
Thus one now has the following commutative diagram:
Jit1 Ara L Ay
= Yey1 7 gy
G
B Yer1(Apy1) L(He @ C(SY))
c c ~
C,
M(E41) L(Fr41) ~ L(Fp41 © Fopa)

Let ev; denote the following representation of C'(S') on C:

evi(f) = f(1).
Now take the trivial grading on C. Then (C, evy, 0) gives an even Fredholm module for C'(S1).

Lemma 4.5 The Fredholm module (C,ev1,0) is a generator for the group KK°(C(S'),C).

Proof: This can be seen as follows. The identity projection gives a generating element for
KKO(C,C(SY)) = Ko(C(S')) = Z. The pairing of this with [(C,ev1,0)] gives 1. One can
conclude from this that [(C, ev1,0)] must be £1. O

Proposition 4.6 (Hy, 7, sign Diorus)] = (He @ C(S1),64,2Qp — I) ®ey, (C,evy,0).

Proof: For this, one needs to note that (H, ® C(S!)) ® C = H, where the tensor product is
the internal tensor product of Hilbert C*-modules, and under this isomorphism, (2Q; — I) ® I

is just the operator sign D;ypys- O

Thus on multiplying the even Fredholm module (C, evy,0) from the left by the K K-element
we just computed, one gets the odd fredholm module corresponding to the spectral triple

(He¢, 74, Diorus) We have constructed in the last section.
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