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1. Introduction

Supersaturated designs have received considerable attention in the recent past due to their usefulness in factor screening. In
a factorial experiment involving m two-level factors and n runs, n is required to be at least m + 1 for the estimability of all main
effects. A design is called supersaturated if n <m + 1. Under the assumption of effect sparsity that only a small number of factors
are active, supersaturated designs can provide considerable cost saving in factor screening.

We represent an n-run supersaturated design for m two-level factors by an n x m matrix X of 1’'s and —1’s where we assume that
each column of X has an equal number of 1's and —1’s and n >4 is even. We also assume that for any two columns u = (uy, ..., un)
and v =(vq,...,vn) of X, u # +v. The number of possible factors that can be accommodated is at most M, where

M 1(n n-—1
=31 n_q
2 2

Thus we have n—1 <m < M. The choice of two-level supersaturated designs has mainly been based on the E(s2)-optimality criterion
proposed by Booth and Cox (1962). An E(s2)-optimal supersaturated design is one that minimizes E(s2) = Yikj sizj/{m(m - 1)}

where sjj is the (i,j)-th entry of X'X.

* Corresponding author.
E-mail address: ashish@isid.ac.in (A. Das).
1 On lien from Stat-Math Division, Indian Statistical Institute, New Delhi 110 016, India.

0378-3758/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j,jspi.2007.12.014


http://www.sciencedirect.com/science/journal/jspi
http://www.elsevier.com/locate/jspi
file:ashish@isid.ac.in

3750 A. Das et al. / Journal of Statistical Planning and Inference 138 (2008) 3749 - 3757

Nguyen (1996) and Tang and Wu (1997) independently derived the lower bound (LB)

(m—n+1)n?
(m-1)(n-1) (1.1)

for any supersaturated design with m factors and n runs. When n = 0 (mod 4), this bound can be achieved only if m is a multiple of
n—1; when n = 2(mod4), m needs to be an even multiple of n — 1. Bulutoglu and Cheng (2004) and Butler et al. (2001) provided
better LBs for E(s2) than (1.1).

In Section 2, we obtain further improved LBs on E(s2). After the first version of this paper was submitted, our attention was
drawn to a recent work of Ryan and Bulutoglu (2007) who also derived similar improved bounds. However, our analysis towards
finding improved LBs provides more details as it precisely identifies the situations when an improvement is possible. Such details
are not provided in Ryan and Bulutoglu (2007); see the discussion in Section 2. In Section 3, we present in simpler terms the
improved LBs. In the process, the equivalence of the bounds obtained by Butler et al. (2001) (in the cases where their result
applies) and those obtained by Bulutoglu and Cheng (2004) is established. Finally in Section 4, we give two simple methods for
constructing E(s2)-optimal designs, one of which has also been described by Ryan and Bulutoglu (2007). The proofs of all the
results are postponed to Section 5.

E(s?)>

2. Improved LBs on E(s?)

From Theorem 3.1 of Bulutoglu and Cheng (2004), it follows that for given m and n, m>n — 1 (im not a multiple of n — 1
when n = 0(mod4); or, m not an even multiple of n — 1 when n = 2(mod4)) there exists a unique integer q such that
(q—=2)(n—-1)<m<(q+2)(n—1)and (m+ q) = 2 (mod 4). However, if we do not put the restriction of (i) m not being a multiple
of n — 1 when n = 0(mod4) and (ii) m not being an even multiple of n — 1 when n = 2 (mod 4), then we show that there exists
a unique non-negative integer q such that (q — 2)(n — 1)<m<(q + 2)(n — 1) and (m + q) = 2(mod 4). An explicit expression
for q is also given. It can be verified that the Bulutoglu—Cheng proof goes through even for m =n — 1 and for g such that
(q=2)n—-1)<m<(q+2)n-1)and (m+ q) = 2(mod4). Thus, subject to this minor modification, Theorem 3.1 of Bulutoglu and
Cheng (2004) would hold for all m and n with m>n — 1. Note that even though supersaturated designs have been defined only
for m>n — 1, the bounds are still meaningful for m > n — 1. For given m and n, the following result gives an explicit expression for
g. Throughout, for z> 0, [z] stands for the largest integer contained in z.

Lemma 2.1. For given n = 0(mod2), m = k(mod4), 0<k<3 and m>n — 1, there is a unique non-negative integer q such that
(q-2)n—-1)<m<(q+2)n—-1)and (m+ q) = 2(mod 4). This unique q is given by q = 4[(m + k(n — 1))/4(n — 1)] +2 — k.
Let
g@)=n((m+qy* —n(g® +m)), a;=(g-2)n-1), ay=(q-2)n-1)+n2,
a3=(q-1)n-1), a=(q+1)(n-1), as=(q+2)n—-1)-n/2,
ag=(q+2)n—1), ay=(q-3)n—-1)+3n/2, a5=(q+3)n—1)-3n/2,
ay=(q-1)n-1)-n/2, al=(q+1)(n—1)+n/2.
Also, let
R={m:ag<m<ag}, R11={m:a3<m<ay} =Ry =%31,
Rip={m:ay<m<azorag<m<as}, A13={m:ay<m<ay or as<m<ag},
PRy ={m:ay<m<az or ag<m<das}, Hy3={m:a;<m<a, or a;<m<dag},
PR3y ={m:ay<m<az orag<m<as}, Az3={m:a;<m<a, or as<m<dag).
Note that Z covers the entire range of m and
A=R11 U R12UR13 =K1 U R0 U Rz =H31 U A3 U A33.

Bulutoglu and Cheng (2004) in their Theorem 3.1 had considered the set {m : a3 <m<ay} instead of the sets %#;1,i=1,2,3.
However, since m + q is even, m # (q £+ 1)(n — 1), in the definition of %;1, i =1, 2,3, we kept the closed intervals for m, without
affecting the results. The LBs given in Theorem 3.1 of Bulutoglu and Cheng (2004) can now be rephrased as below.

When n = 0(mod4)and m € #4;,i=1,2,3, E(s2)>Bq;/m(m — 1), where

By1 =g(q)+2n(n - 2),
Biy =g(q)—2n(n—2)+4nm—q(n— 1),

n —
B13 =g(q) +4n(n—1). (2.1)
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Whenn =2(mod4), m e #,;,i=1,2,3, qis even, E(s2)> max(Byj/m(m — 1),4), where

By =g(q)+2n(n—2)+8,

By =8(q) —2n(n—10) + 4(n - 2)im — q(n — 1) - 24,

By3 =g(q) +4n(n —1). (2.2)
When n = 2(mod4),m e #34,i=1,2,3, qis odd, E(s2)> max(Bsj/m(m — 1),4), where

B31 =g(q) + 2n(n —2),

B3y =g(q) — 2n(n - 2) +4njm — q(n — 1),

B33 =g(q)+4n(n—3)+8m—q(n—1) +8. (2.3)

For obtaining the LBs for E(s2), Bulutoglu and Cheng (2004) and Butler et al. (2001) used structural properties of the matrix
XX'. We use a property of the matrix X’X to improve the abovementioned LBs of E(s2). We shall use A(v) to denote a term which
has a factor v. The following three lemmas are useful in the sequel.

Lemma 2.2. For n = 0(mod 4), each of By1,B13 and By3 is a multiple of 32.
Lemma 2.3. For n = 2(mod4) and q even, each of By; — 4m(m — 1), By, —4m(m — 1) and By3 — 4m(m — 1) is a multiple of 64.

Lemma 2.4. For n = 2(mod4) and q odd, B3y — 4m(m — 1) and B33 — 4m(m — 1) have a factor 64, whereas B3; — 4m(m — 1) has
a factor 32. Moreover, B3; —4m(m — 1) has a factor 64 unless (i) m = 1(mod 4) and (m + q) = 6 (mod 8) or (ii) m = 3 (mod4) and
(m+q)=2(mod8).

Based on Lemmas 2.2—2.4, one can prove the following result.

Theorem 2.1. Let n = 0(mod2), m = k(mod4), m>n— 1, q = 4[(m + k(n — 1))/4(n — 1)] + 2 — k, g(q) = n((m + q)® — n(q? + m)),
0=m(m—1)and fori=1,2,3, Byj, Byj, B3j are as in (2.1)—(2.3), respectively. Then,

(1) whenn = 0(mod4) and m € #y;, E(s?)>B4i/5,i=1,2,3;
(2) whenn =2(mod4), m € #,; and q is even, E(s2)> max(B;i/5,4). i=1,2,3, where fori=1,2,3, B5; = By;;
(3) whenn = 2(mod4), m e %3; and q is odd, E(s%)> max(B%,/5,4),i=1,2,3, where for i =2,3, B}; = B3; and B, = B31 +x with

Xe 32 ifm=(1+2j)(mod4)and (m+ q)= (6 —4j)(mod8), forj=0or1,
_{0 if m=(1+ 2j)(mod4) and (m + q) = (2 + 4j)(mod 8), for j=0 or 1.

The LB improvements of Ryan and Bulutoglu (2007) are the same as above. This can be seen by noting the following:

(i) For n = 2(mod4), the Ryan—Bulutoglu bounds are E(s2) >4 + 6401 [6(h — 4)/641F, where h takes different values same as
our respective B,-j/é of (2.2) and (2.3);

(ii) 4+ 6451 [o(h — 4)/641F = max(4 + 6451 [(Bjj —46)/641,4) = max(Bl’.;./éA).

However, unlike that in Ryan and Bulutoglu (2007), our analysis is more transparent as it tells exactly when an improvement
is possible and by how much. This also allows one to establish an equivalence result in the next section. Ryan and Bulutoglu
(2007) found an E(s2)-optimal supersaturated design for all cases with n< 16 except the 14 run and 16 factor case; see Ryan and
Bulutoglu (2007) for details.

3. Equivalent form of the improved LBs

Bulutoglu and Cheng (2004) were the first to present a complete solution on LBs to E(s2) for any m >n — 1. Earlier, Butler et al.
(2001) had obtained LBs to E(s2) for m = p(n — 1) + r, 0<r<n/2, where (i) p is positive and n = 0(mod4) and (ii) p is even and
n = 2(mod4).

Bulutoglu and Cheng (2004) made a numerical comparison to see how their bounds compare with those of Butler et al. (2001).
The numerical comparison suggested that Bulutoglu—Cheng bounds are in agreement with Butler et al. (2001) bounds in the
cases where they are applicable. We now give an equivalent form of the improved LBs. This equivalent form also establishes
the equivalence of the bounds obtained by Bulutoglu and Cheng (2004) and those obtained earlier by Butler et al. (2001) for all
cases where their result applies. In the process, we present in simpler terms the LBs of Bulutoglu and Cheng (2004) and their
improvements. We have the following result for the improved LBs covering the full scenario in a more elegant form which in
particular, includes the case of p being odd, a case not covered explicitly by the earlier results.



3752 A. Das et al. / Journal of Statistical Planning and Inference 138 (2008) 3749 - 3757

Theorem 3.1. For a supersaturated design with n runs and m = p(n — 1) £ r factors (p positive, 0 <r<n/2), E(s?) is greater than or
equal to the LB, where LB is as defined below:

(1) Let n = 0(mod4). Then,

LB:"Z(m_n+l)+ n )(D(n,r)— r2 ]

(n-1)(m-1) mim-1 n-1
where
n+2r—3 forr=1(mod4),
D(n,r) = 2n—-4 for r = 2(mod4),

n+2r+1 forr=3(mod4),
4r for r = 0(mod4).

(2) Let n = 2(mod4). Then,

n2(m-n+1) n 12
m—Tm=1) T mm=1) {D(’”) 11_1}’4}’

LB = max

where
(i) when p is even,

n+2r—-3+x/n forr=1(mod4),
2n—4+38/n for r =2(mod4),
n+2r+1 for r =3 (mod4),
ar for r =0(mod4),

D(n,r)=

(ii) when p is odd,
2r—8r/n+n—-16/n+9 for r=1(mod4),

D(n,r) = 4r —8r/n—8/n+8 for r =2(mod 4),
T 2r+n+8mn-3 for r =3 (mod4),
2n —4+x/n for r = 0(mod4),

andx =32 if {(m —1=2i)/4+[(m+ (1 +2i)(n—1))/4n—-1)]} =(1 —i)(mod2),fori=0o0r1;elsex=0.

Note that LB in (1) and in (2) with p even (except r = 1(mod 4), x # 0) of Theorem 3.1 are the same as in Butler et al. (2001).
The LB in (2) for p even, r = 1(mod 4), x # 0 and for p odd, r = 0(mod 4), x # 0 are an improvement over the earlier bounds of
Bulutoglu and Cheng (2004) but the same as that of Ryan and Bulutoglu (2007).

4. Methods of constructing E(s2)-optimal designs

In this section, we give two methods for constructing E(s2)-optimal supersaturated designs. In the first method, Hadamard
matrices are used to obtain E(s2)-optimal designs for m =n + 1 or m = n factors each at 2 levels in n runs where n = 2 (mod 4).
In the second method we use complement of a supersaturated design and show that the complementary design is E(s2 )-optimal
if the original supersaturated design is E(s?)-optimal. This idea exists, for example, in Bulutoglu and Cheng (2004) and Eskridge
et al. (2004). However, in their case, this property was attributed to augmentation of two balanced incomplete block designs.
The result given in Theorem 4.2, which was also obtained by Ryan and Bulutoglu (2007), generalizes the idea to cover all cases.
In fact, this result reduces the general problem of identifying E(s?)-optimal designs to half. That is, one needs only to look for

E(s2)-optimal designs with m < }l < g > = M/2. The two methods of construction follow.

Theorem 4.1. For n = 2(mod 4) if a Hadamard matrix of order n + 2 exists then an n run, (n + 1) factor, E(s?)-optimal supersaturated
design X with E(s2) = 4 can be obtained. The design remaining after deleting any one column of X is an n run, n factor, E(s?)-optimal
supersaturated design with E(s?) = 4.

Note that since for a 2"*+1 experiment in n runs (n = 2 (mod 4)), the design X has E(s2) = 4, therefore any subset of the columns
of X would give rise to a design having minimum E(s2). A useful connection can be drawn from the result of Theorem 4.1 to that in
Cheng and Tang (2001). These authors show that B(n, 2) <n+2, when n = 2 (mod 4), where B(n, 2) denotes the maximum number
of columns a supersaturated design can have under the constraint that max |s| < 2. Theorem 4.1 shows that B(n,2)>n + 1.

Theorem 4.2. Let d be an E(s?)-optimal supersaturated design for a 2™ experiment in n runs, where n — 1<m-<M. Then the design
d’ having M — m columns of Y which are not columns of d is an E(s?)-optimal supersaturated design for a 2M—m experiment in n runs,
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where Y is an n x M matrix, whose columns represent the M factors, such that for any two columns u=(uy, ..., un) andv=(vq,...,vn)
of Y, u # +v.

Let g’ be a design obtained by taking all the M — m columns of Y which are not columns (or —1 times the columns) of a given
design g involving m factors. Also, let Eg be the value of E(s2) for the design g. Then using the structural properties of Y'Y, it can
be shown that

n2(M — 2m)M(n — 1)~" + m(n? + (m — 1)Eg) — (M — m)n?

Eg = M—mM—m—1)
or
2
P n2(M=2m(M—-n+1) m(m — 1)Eg (4.1)

-1 M-mM-m—-1) " M-mM-—m-1)
Based on the above observation, it would be natural to ask whether the relation between Eg and E./, namely (4.1), can be used
to further improve the bounds of Theorem 3.1. In what follows, we show that the LBs of Theorem 3.1 agree (except when
n = 2(mod4) with either m<n+1orm>M — n — 1) for the designs g’ when one uses the LB of Theorem 3.1 for g in (4.1). In
other words, the LB for g’ can simply be obtained by substituting the LB for g in (4.1).

Let t=n/2. Then we can write M as M = p*(n — 1), where p* =t~1 (Z(tt__ll )) is a positive integer (being a Catalan number). Now,
for the design g, let m=p(n — 1) & r (p positive, 0 <r<n/2, m>n+ 2). Then, for g’ the number of factorsisM —m=M —p(n—1)F
r=(p* —p)(n—1)=Fr.Also, when tis odd (i.e., the case when n = 2 (mod 4)), by taking t =2w+ 1 for some w, p* =(2w+1 )‘] (%)

4w

is even since (2W

) is even. Thus, when n = 2 (mod 4), for p even (odd), p* — p is even (odd). Therefore, while obtaining LB using
Theorem 3.1, the values of {D(n, 1) — r2/(n — 1)} = H (say), are same for g and g'. Let g attain the LB. Then, substituting the LB value
in place of Eg in (4.1) gives (on simplification)
_n’(M-m-n+1) nH
- m-—1)M-m-1) M—mM—-—m—1)
This establishes our claim.
When n =2 (mod4), LB=4form<n+2andLB>4 form>n+ 2, since

n2(m-n+1) n

+ Y {D(n,r)—

= 4 whenm=n+2,

n-1], 4 whenm>n+2.

2 < 4 whenm<n+2,
(n-1)(m-1) m(m }
This is the reason why, for n = 2(mod 4) with m<n + 1, on substituting Eg = 4, (4.1) gives Eg (with M — m factors) leading to a
sharper LB than what is provided by Theorem 3.1.
In closing this section, we make some remarks on near optimal designs obtained by Eskridge et al. (2004) for n = 2 (mod 4)
and m=j(n — 1),j odd, using the properties of regular graph designs (RGDs). For their designs obtained from generators of cyclic
RGD,

n2m-n+1) 4(n-1)n-2)

2y _
) = tm—1) T mm=1)

(4.2)

With n>>10 and j>2, Eskridge et al. (2004) obtained the LBs to the E(s?)-efficiency (using Nguyen—Tang—Wu bounds) and also
showed that their designs have E(s?)-efficiency greater than 0.9493. Now, for n = 2 (mod 4), m=j(n — 1), j odd, based on Theorem
3.1, the LB for E(s2) is given by

n2(m-n+1) n(2n-—4+x/n)

2)>
B2 o m -t mm -1 (43)
where x =32 if {(m -1 —2i)/4+[(m+ (14 2i)(n—-1))/4n—-1)]} =(1 —i)(mod2),fori=0o0r1;else x=0.
Using (4.2) and (4.3) we get a sharper LB to the E(s2)-efficiency, given by
- 1+b
2 _ >
E(s*)-efficiency > Tra (4.4)

Wherea=4(n—2)(n—l)2/{mn2(m—n+1 b b=(2n—4+x/n)(n—1)/{mn(m-n+1)} and x=32if {(m — 1 — 2i)/4 + [{m + (1 + 2i)(n — 1)}/
{4(n—1)}]} =(1 —i)(mod?2),fori=0or1; else x=0.

From (4.4), it follows that the designs based on an RGD have E(s?)-efficiency greater than 0.9774. This shows that RGD based
designs have efficiencies higher than what is presently known. However, in the light of results in Ryan and Bulutoglu (2007), it
should be noted that for n = 2(mod 4) and m =j(n — 1), j odd, the RGD based designs are not necessarily E(s?)-optimal and there
exist examples in which these are not so.



3754 A. Das et al. / Journal of Statistical Planning and Inference 138 (2008) 3749 - 3757

5. Proofs

Proof of Lemma 2.1. Given m, q = 4x + 2 — k for some integer x, since m = k(mod4) and (m + q) = 2 (mod 4). Now, (q — 2)(n —
1)<m<(q+2)(n — 1) implies m/(n — 1) — 2<g<m/(n — 1) + 2 which, on substituting for g, yields {m + k(n — 1)}/{4(n — 1)} —
1<x<{m+k(n—1)}/{4(n — 1)}. Thus, x = [{m + k(n — 1)}/{4(n — 1)}] and we get the desired expression for g. By substituting the
four possible values of k in the expression for g, it follows that g is non-negative. [l

Proof of Lemma 2.2. For t >0, let n = 4t. Now, since (m + q) = 2 (mod 4), it follows that g2 + m is even. Let g + m = 4w + 2 for
some positive w. Then g(q)=n((m +q)2 —n(q?+m)) :4t(4w+2)2 —16t2A(2)=64tw(w+ 1)+ 16t — A(32)=A(32) + 16t. Therefore,
By1 =8(q) +2n(n — 2) =A(32) + 16t + 32t2 — 16t =A(32), By =g(q) — 2n(n — 2) + 4njm — q(n — 1)| = A(32) + 16t — 32t + 16t +
16t12(2w — 2tq + 1) = A(32), B13 = g(q) + 4n(n — 1) = A(32) + 16t + 64t2 — 16t =A(32). O

Proof of Lemma 2.3. For t >0, let n =4t + 2. Now, since (m+q) = 2(mod 4) and q is even, it follows that either (i) m = 2 (mod 4)
and q = 0(mod4) or (ii) m = 0(mod 4) and q = 2 (mod 4). This implies that for some non-negative integers y, s,and i=0or 1,
we have m =4y + 2i and q = 4s + 2 — 2i. Now, substituting for n, m and q, and using the fact iZ = i, we have after simplification,
2(q) — 4m(m — 1) = n((m + q)% — n(q% + m)) — 4m(m — 1) =322t + DYy + 1) — s(s + 1) — 4ts(s + 1) + 2ys — 4ts} — 64{t2 + y2 +
yt(t + 1)} — 48t — 8 + 64i{4st(t + 1) + y + s} + 32it(t + 1) = A(64) — 48t — 8. Therefore, By; — 4m(m — 1) = g(q) — 4m(m — 1) +
2n(n—2)+8=A(64) — 48t — 8 + 16t(2t + 1) + 8 = A(64) + 32t(t — 1) = A(64), Byy —4m(m — 1) =g(q) —4m(m — 1) — 2n(n — 10) +
4n—2)im—q(n—1)] — 24 =A(64) — 48t — 8 — 32t% 4+ 48t + 8 £ 64t(y —s — 4st + 2t(i — 1) + i) F 32t = A(64) — 32t(t £ 1) = A(64),
By3z —4m(m —1)=g(q) — 4m(m — 1) + 4n(n — 1) =A(64) — 48t — 8 + 8(8t2 + 6t + 1) = A(64) + 64t% = A(64). [

Proof of Lemma 2.4. For t>0, let n = 4t + 2. Now, since (m + q) = 2(mod4) and q odd, it follows that either (i) m = 1(mod 4)
and g = 1(mod4) or (ii) m = 3(mod 4) and g = 3 (mod 4). This implies that for some non-negative integers y, s,and i =0 or 1, we
have m = 4y + 2i + 1 and q = 4s + 2i + 1. Now, substituting for n, m and g, and using the fact i2 = i, we have after simplification,
g(q) — 4m(m — 1) = n((m + q)* — n(q? + m)) — 4m(m — 1) = 64(2t + 1)(ys + yi — ts — 2ts2 — 2tsi) — 64t(y? — s2 — ty — 2ti) — 64yi —
32it(t + 1) — 32(y% + 5% + t2) — 16t = A(64) — 32(y? + s% + t2) — 16t. Therefore, B3; — 4m(m — 1) = g(q) — 4m(m — 1) + 2n(n —
2)=A(64) — 32(y% + 5% + t2) — 16t + 32t2 + 16t =A(64) — 32(y2 + 52), B3y — 4m(m — 1) =g(q) — 4m(m — 1) — 2n(n — 2) + 4n|m —
q(n — 1) =A(64) — 32(y2 + 52 + t2) — 16t — 32t2 — 16t + 32(2t + 1)|y — s — t — 2t(25 + 1)| = A(64) — 64t(t — [y — s — t — 2t(25 +
D)=32(yyF1)+s(s+1)£2t(2s+ i)+ t+t} =A(64),B33 —4m(m —1)=g(q) —4m(m — 1) +4n(n - 3) + 8m —q(n — 1)| + 8
=A(64)—32(y2 +5% +1t2)— 16t +64t% + 16t + 32|y —s—t — 2t(25+1)|=A(64)+64t2 —32{y(yF1)+5(s£ 1)+ t(t+1) £ 2t(25+1)} =A(64).
Now, B3 — 4m(m — 1) is an odd multiple of 32 if and only if y% + s2 is odd. Also, y% + s2 is odd if and only if y + s is odd. Let
y+s=2w+ 1 for some w. Then m + q=4(y + S) + 2 + 4i = 8w + 6 + 4i and either of the following holds:

(i) i=0,(m+q)=6(mod 8),
(ii) i=1,(m+ q) = 2(mod 8).

Similarly, it follows that y + s is even when m + q = 8w + 2 + 4i, implying either (i) i =0, (m + q) = 2(mod8) or (ii) i =1,
(m+q)=6(mod8). O

Proof of Theorem 2.1. The result basically follows from Lemmas 2.2—2.4 and the following facts:

(i) For n = 0(mod4), s;; is an integral multiple of 4 for all i # j. Therefore, Z#jsizj is a multiple of 32.
(ii) For n = 2(mod4), we have Isijl =2 (mod 4). This means that 51.2]. = A(32) + 4. Therefore, iz 51.2]. —4m(m — 1) = A(64).
Forn = 0(mod 4), we have already seen in Lemma 2.2 that each of By1, B13 and B3 is a multiple of 32. Also, whenn = 2 (mod 4),
Lemmas 2.3 and 2.4 show that each of By; —4m(m — 1), By —4m(m —1),By3 —4m(m —1),B3y —4m(m — 1) and B33 —4m(m—1)is

a multiple of 64 while B3; — 4m(m — 1) is a multiple of 32 but not necessarily a multiple of 64. This leads to the LB improvement
for the bound involving B3 by increasing B3¢ to B3q + 32 in all those cases where B3; — 4m(m — 1) is not a multiple of 64. [

Proof of Theorem 3.1. For some integersiandr, letm=(qFi)(n—1)+r.Then,

_mFr
=57

+i and m+qg=(qFi)n+(i+r)=2(mod4). (5.1)
Substituting the value of q from (5.1) in g(q) and after some simplification, we have

2
. r
12—

g(a)=n(m+q)* —n*(g* +m)=m(m — DT +n 1 2ri —(n = )i — —— 1.

(5.2)
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where T = n2(m — n + 1)/{(n — 1)(m — 1)}. We now consider the various ranges of m that have been used in Theorem 2.1, leading
to different cases detailed below.

Case 1: m € %14 ifand only if m = (q ¥ i)(n — 1) & r for some r € [0,n/2) and either i = 0 or 1 where r = (2 — i)(mod 4). Then,
using (5.2), the LB B11/{m(m — 1)} in Theorem 2.1 is equivalent to

2

8(q) + 2n(n —2) n [2n—4—(n—1)i2+2ri—r— (5.3)

m(m-1) :T+m(m—1)

For n = 0(mod4) and m =p(n — 1) & r for some positive p and 0 <r<n/2, substituting i =0 and 1 in (5.3) gives the respective LBs
as

n-1\"

n r2
LB:T+m(2n—4—ﬁ], r=2(mod4), (5.4)
LB=T n n+2r-3 r2 r=1(mod4) (5.5)
= tamon "t oA ' : '

Case 2: m € #1y ifand only if m=(qFi)(n — 1) = r for some r € [0,n/2) and i = —1 where r = 3(mod 4). Then, withi= —1,
using (5.1) and (5.2), the LB Byy/{m(m — 1)} in Theorem 2.1 is equivalent to

g(q)—2n(n—2)+4nim—q(n—1)| _ n r2
mim — 1) _T+m(m—]) n+2r+1——n_] . (5.6)
For n = 0(mod4) and m = p(n — 1) & r for some positive p (0 <r<n/2), (5.6) gives the LB as
I LN PPN r = 3(mod 4) (5.7)
- m(m—1) n-1("  — ’ )

Case 3: m € #q3 ifand only if m = (q +i)(n — 1) £ r for some r € [0,n/2) and i = 2 where r = 0(mod 4). Then, with i = 2, using
(5.2), the LB By3/{m(m — 1)} in Theorem 2.1 is equivalent to

g(g)+4n(n—1) n r2
m(m—1) _T+m(m—1) Tn-1| (58)
For n = 0(mod4) and m = p(n — 1) & r for some positive p (0 <r<n/2), (5.8) gives the LB as
T AL PO r=0(mod4) (5.9)
a m(m—1) n-1[" ’ ’

Case 4: m € #y if and only if m = (q xi)(n — 1) £ r for some r € [0,n/2) and either i = 0 or 1 where r = (2 + i) (mod 4). Also,
(gFi)=1i(mod2),i=0,1.Then, using (5.2), the LB By1/{m(m — 1)} in Theorem 2.1 is equivalent to

ga)+2n(n-2)+8 . n {2n(n1)i2+2ri4+i- (5.10)

m(m—1) T m(m-1)

For n = 2(mod4) and m = p(n — 1) + r for some positive p = i(mod 2) (0 <r<n/2), substituting i = 0 and 1 in (5.10) gives the
respective LB as

n 8 r2
LB:T+m(2n_4+ﬁ_nl}’ peven, r=2(mod4), (5.11)
Bors " lp 8 5 odd, r=3(mod4) (5.12)
a m(m—1) n n_1( Pod%T= ’ )

Case5: m € Ao ifand only if m=(q=Fi)(n—1)+xrforsomer € [0,n/2—1)andi=—1wherer = 1(mod 4). Also,(q+1) = 1(mod 2).
Then, with i = —1, using (5.1) and (5.2), the LB By,/{m(m — 1)} in Theorem 2.1 is equivalent to

g(q)—2n(n—-10)+4(n—-2)m—-q(n—-1)| - 24

m(m-1)
n 8r 16 r2
=T+m(m_1)=2rn+nn+9n_]}. (5.13)

Note that since n = 2(mod4) and r = 1(mod 4), (n/2 — 1) = 0(mod 2) and r # n/2 — 1. Thus in the above range of r, we can take
r<n/2.
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For n = 2(mod4) and m =p(n — 1) & r for some positive p = 1(mod 2) (0 <r<n/2),(5.13) gives the LB as

2
BoTs " o 80, 16 g T
m(m-1) n n n—

1}, podd, r=1(mod4). (5.14)

Case 6: m € X3 ifand only if m=(qFi)(n—1)+r for some r € [0,n/2] and i =2 where r = 0(mod 4). Also, (g +2) = 0(mod 2).
Then, with i = 2, using (5.2), the LB By3/{m(m — 1)} in Theorem 2.1 is equivalent to

g(q)+4n(n71): n {4r r2 }

T —
* n-1

m(m—1) m(m — 1) (5.15)

Note that since n = 2(mod4) and r = 0(mod 4),1n/2 = 1(mod 2) and r # n/2. Thus in the above range of r, we can take r <n/2.
For n = 2(mod4) and m = p(n — 1) & r for some positive p = 0(mod 2) (0 <r<n/2),(5.15) gives the LB as

2
n r
LB—T+m(m_1)!4r—n_]}, peven, r=0(mod4). (5.16)

Case 7: m € #31 if and only if m = (q +i)(n — 1) £ r for some r € [0,n/2) and either i = 0 or 1 where r = i(mod4). Also,
(qFi)=(1-1i)(mod2),i=0,1.Then, using (5.2), the LB B31/{m(m — 1)} in Theorem 2.1 is equivalent to

r2

n-1\’

g(@)+2n(n—2)+x n i . )
m(m —1) _T+m(m_]){2n—(n—1)l +2n_4+ﬁ_

(5.17)

where x =32 if m = (1 + 2j)(mod 4), (m + q) = (6 — 4j)(mod 8), forj=0or 1, else x = 0.

Now, using Lemma 2.1, it follows that m = (1 + 2j)(mod4) ifand only if m+qg=m +4[(m+ (1 + 2j)(n — 1))/4(n - 1)] + 2 —
(1+2))=m—(1+2j)+4[(m+(1+2j)(n—-1))/4(n — 1)] + 2. Therefore, m = (1 + 2j)(mod 4) and (m + q) = (6 — 4j)(mod 8) is
equivalent to saying m — (1 + 2j) + 4[(m + (1 + 2j)(n — 1))/4(n — 1)] = 4(1 — j)(mod 8). Thus,

m—(1+ 2j) m+(1+2j)n-1)
1 +[ 4n—1)

] =(1-j)(mod2), j=0,1

are the conditions when x = 32. Similarly, it can be verified that

m—(1+ 2j) m+(1+2j)n-1)
2 +[ 4n—1)

] =j(mod2), j=0,1

are the conditions when x = 0.
For n = 2(mod4) and m=p(n — 1) & r for some positive p = (1 —i)(mod 2) (0 <r<n/2), substitutingi=0and 1 in (5.17) gives
the respective LB as

r2
-1

n X
LB:T-’-m{zn—‘l—Fﬁ—n }, podd, r:0(m0d4), (5]8)

r2

n-1

n X
LB:T+m:n+2r—3+E— ] peven, r=1(mod4), (5.19)

wherex=32ifm=(1+2j)(mod4)and (m—-1-2j)/4+[(m+(1+2j)(n—1))/4n—-1)]=(1-j)(mod2),j=0,1,else x=0.
Case 8: m € A3y ifand only if m=(q=i)(n—1)+r for somer € [0,n/2] and i=—1 where r = 3(mod 4). Also, (q+ 1) = 0(mod 2).
Then, with i = —1, using (5.1) and (5.2), the LB B3/{m(m — 1)} in Theorem 2.1 is equivalent to

g(q) —2n(n —2) + 4njm — q(n — 1)| n { r2 }

=T+ n+2r+1—- ——

m(m — 1) m(m—1) n-1 (5.20)

When r = n/2, it can be verified that the expression in (5.20) is the same as the expression that one would get on substituting
r=n/2 —1in(5.22). Therefore in the above range of r, we can take r<n/2.
For n = 2(mod4) and m = p(n — 1) & r for some positive p = 0(mod2) (0 <r<n/2),(5.20) gives the LB as
BTt lnpariro even, r=3(mod4) (5.21)
- m(m—1) n-i P T ’ ’
Case9:m € #A33ifand only if m=(qFi)(n—1)+rfor somer e [0,n/2—1)and i=2 where r = 2(mod 4). Also, (q2) = 1(mod 2).
Then, with i = 2, using (5.1) and (5.2), the LB By3/{m(m — 1)} in Theorem 2.1 is equivalent to

m(m—1) _T+m(m—1)

n n Tn-1|"

2
gq)+4n(n—3)+8m—qn—-1)|+8 _ n {4_§ 8 g T (5.22)
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As noted in the previous case, when r = n/2 — 1, the expression in (5.22) is the same as the expression that one would get on
substituting r = n/2 in (5.20). Therefore in the above range of r, we can take r <n/2.
For n = 2(mod4) and m = p(n — 1) & r for some positive p = 1(mod 2) (0 <r<n/2),(5.22) gives the LB as

n 8r 8 r2

B=T+— ——+8———1, podd r=2(mod4) (5.23)

m-1n|" "
Summarizing all the above cases, we have the following:

(i) Eqgs. (5.4),(5.5), (5.7) and (5.9) give the LBs for E(s2) when n = 0(mod4), m = p(n — 1) £ r, p positive and 0 <r<n/2,
(ii) Egs.(5.11),(5.16),(5.19)and (5.21) give the LBs for E(s2 ) (subject to the fact that E(s?) > 4) whenn = 2 (mod 4), m=p(n—1)r,
pevenand 0<r<n/2,
(iii) Eqgs.(5.12),(5.14),(5.18)and (5.23) give the LBs for E(s2) (subject to the fact that E(s?) > 4) when n = 2 (mod 4), m=p(n—1)+r,
poddand0<r<n/2. O

Proof of Theorem 4.1. For n = 2(mod4), let H be a Hadamard matrix of order n + 2 where without loss of generality, the first
row and first column of H has all +1's. Delete the first row and first column of H and call the resultant (n + 1) x (n + 1) matrix
G. Now, there are /2 columns of G, each of which has +1 in the first row. Let these columns be labelled as ¢y, ¢, ..., ¢p/p and let

€ ={cq,c3, s G2l % ={1,2,...,n+ 1} — €. Delete first row of G and call the resultant n x (n + 1) matrix F.

Consider the n x n/2 sub-matrix E consisting of the columns ¢y, ¢3, ..., ¢y Of F. Carry out the following operation: In any row
of E replace all —1’s by +1’s. This would affect only certain columns of E where a —1 was replaced by +1. Do the same operation
for the remaining 'unaffected’ columns of E and carry out this process iteratively till there are no unaffected columns in E. Call
the resultant matrix E.

Let X be the n x (n + 1) matrix obtained by replacing E by E in F. Let Sjj be the (i,j)th element of X'X. Then, Sij=+2 foralli #j,
since

(i) fori,j e 4, sjj=-2,
(ii) fori,j € €, sjj = £2,
(iii) forie ¥ andj e €', Sij = +2.

The rest of the proof follows from the fact that for n = 2 (mod4), E(s2)>4. O
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