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AETRACT. We obtain sufficient and necessary conditions for the Choguet-Deny the-
orem to hold in the class of compactly generated totally disconmected locally compact
groups of polynomial growth, and in a larger class of totally disconnected general-
imed FC-groups. The following conditions turn out to be equivalent when (7 is &
metrizable compactly gererated totally disconnected locally compact group of poly-
nomial growth: (i} the Choquet-Deny theorem holds for €& (ii) the group of inner
automorphisms of (¢ acts distally on G (iii) every inner automorphism of 7 is distal;
(iv) the contraction subgroup of every inner automorphism of & is trivial; (v) ¢ isa
SIN group. We also show that for every probability messure p on & totally discon-
nected compactly generated locally compact second countable group of polynomial
growth, the Poisson boundary is a homogeneous space of {7, amd that it is & compact
homogeneous space when the support of g generates .
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1. Introduction

Let p be a regular Borel probability measure on a locally compact group . A
bounded Borel function h: G — C is called p-harmonic if it satisfies

hg) = f hgg) w(dg’), g€G. (L1)

e

The classical Choguet-Deny theorem asserts that when 7 is abelian then every
bounded contimous p-harmonic function is constant on the (left) cosets of the
smallest closed subgroup, G, containing the support of .

The Choquet-Deny theorem remains true for many nonabelian locally compact
groups, e.g., 2-step nilpotent groups [10], nilpotent [SIN| groups [11], and compact
groups. But it does not hold for all groups. If the theorem holds for a probability
measure g then G, mst necessarily he an amenable subgroup [7,27]. It follows



that proups for which the theorem is valid are necessarily amenable. However, the
theorem & not true for every amenable group [20].

The stronger condition, that ¢ have polynomial growth, is sufficient for the the-
orem to hold when G is a finitely generated (dicrete) group [20,18). When G &
finitely generated and solwble then the theorem holds if and only if 7 has poly-
nomial growth [18]. In general, the theorem fails for discrete groups of polynomial
growth that are not finitely penerated, in particular, it is not true for locally finite
groups [20]. It appears that the larpest class of discrete groups known today for
which the Choquet-Deny theorem is true is the class of FC-hypercentral groups
[12]. This class is a proper subclass of the class of discrete groups of polynomial
growth, while finitely penerated FC-hypercentral proups are precisely the finitely
generated groups of polynomial prowth. We do not know of any discrete groups for
which the Choquet-Deny theorem is true and which are not FC-hypercentral.

A probability measure g on a locally compact group & is called spread out if
for some n the convolution power g is nonsingular. With the restriction that p
be spread out the Choguet-Deny theorem holds for all locally compact nilpotent
groups [2,16] and for compactly generated locally compact groups of polynomial
growth [16]. When G & almost connected, then & has polynomial growth if and
only if the Choquet-Deny theorem holds for every spread out measure [16]. The
same is true when G is a Zariski-connected p-adic algebraic group [24, Theorem
4.2]. While it remains an open question whether the spread out assumption can be
disposed of when 7 is nilpotent! | it is known that the Choquet-Deny theorem i
not true for arbitrary probability measures on compactly penerated locally compact
groups of polynomial growth (13, Remark 3.15].

The main goal of the present article is to obtain necessary and sufficient con-
ditions for the walidity of the Choquet-Deny theorem in the class of compactly
pgenerated totally disconnected locally compact proups of polynomial growth, and
in a larger class of totally disconnected ‘generalized FC-groups’ [3.21]. It turns out
that the key to finding such conditions is a study of distal properties of totally dis-
comnected proups. This motivates our investigations in the next section, which can
also be of quite independent interest. The Choguet-Deny theorem for peneralized
FC-groups s discussed in Section 3. In Section 4 we remark on the structure of
boundaries of random walks on compactly generated totally disconnected groups
of polynomial growth and certain related groups.

2. Distal properties of totally disconnected locally compact groups

Let (7 be a Hansdorff topological group and I' a subgroup of Aut((7), the group
of topological automorphisms of G. We will say that I' is distal (or acts distally on
() if for any = € G — {e}, the ientity element € is not in the closure of the orbit
I'e = {y{z):~v € I'}. A single automorphism v € Aut(G) will be called distal if
the subgroup {~) it generates acts distally on 7. An element g of G will be called
distal if the corresponding inner automorphism ~(-) = g- g~ ! is distal. We will say
that (& is distal if the proup Inn{G) of inner antomorphisms of 7 acts distally on G.

Trivially, if 7 is distal then every g € 7 is distal. While the converse & not true in
general, Rosenblatt [26] proved that when G is an almost connected locally compact
group then G is distal if and only if every g € G is distal; moreover (7 is distal if and
only if it has polynomial growth. According to [23] this remains true ako for certain



classes of p-adic Lie gronps. However, there are many locally compact proups of
polynomial growth that are not distal. For example, the semidirect product K x: &
where K is a nontrivial compact metric proup and 7 is an ergodic automorphism
of K, will never be distal.

Given v € Aut(G) the contraction subgroup of v i the subgroup C'(v) = {x € G;
lim, . v"(z) = €}. When ~ i the inner automorphism (-] = g- g~ "', we will
write C(g) for C(v). Obviously, if 7 € Aut(G) & distal then C{7) = C{771) = {e}.
When & is a Lie group, the three conditions: I' is distal; every ~ € I is distal; and,
C'(~) = {e} for every v € I', are equivalent for every subgroup I' of Aut{() [1].

Recall that a subgroup I' of Aut{(7) is equicontipnous (at ) if and only if &
admits a neighbourhood base at e consisting of neighbourhoods that are invariant
under I'. When & i locally compact and totally disconmected then I' is equicontin-
uons if and only if compact open subgroups invariant under I form a neighbourhood
base at e. Equicontimons automorphism groups are obviously distal. A SIN proup
is a topological proup G for which Inn((3) is equicontinnous. SIN groups are distal
but, in general, distal groups are not SIN groups (e.g., a nilpotent group need not
be SIN but every nilpotent group is distal [26]).

Our goal in this section is to prove that for a class of compactly generated totally
disconnected locally compact proups, including groups of polynomial growth, the
four conditions: G is distal; every g € G is distal; Cg) = {e} for every g € G; and,
(5 is SIN. are equivalent. In the following section we will show that for this class of
groups the four conditions and the condition that & have polynomial growth, are
equivalent to the condition that the Choguet-Deny theorem hold for 5.

Some of the recent results of Baumgartner and Willis on contractions subgroups
[4], based on Willis’ theory of tidy subgroups [29], play a key role in our argument.
These results are proven for metrizable groups, hence, in many of our results we
need to assume metrizability.

Proposition 2.1. [f (7 is a totally disconnected metrizable locally compact group
then for every T € Aut{(G) the following conditions are equivalent:
(i) T is distal,
(i) C(r) = C(r) = {e},
(i) for every compact open subgroup U there exists B = 0,1,... such that
ke irTT ke i
T(Mizo 7 (1)) = Nicp (),

(iv] {7} is epuicontinwous.

Proaf. The only nonobvious implication in the chain (i)=-(ii)=(iii) ={iv)=(i) &
{ii)=+(ii1). Let I’ be a compact open subgroup. Since C(r) is closed, by [4,
Theorem 3.32] there exists k such that V = HLHTE{U:I is tidy for 7. But as
Clr) = Clv7Y) = {e}, [4, Proposition 3.24] implies that s(v) = s(+— ') = 1
where s: Aut(G) — M is the scale function. Since s(7) = [#(V) : V no (V)
and s{v— 1) = [+4V): Vs V)], so (V)= V. O
Lemma 2.2, Let I be a subgrowp of Aut(G) where G 15 a totally disconnected
metrizable locally compact group. If 7y, 7o, o0 T € Aut((T) are distal and for every
g alag n, [ LU {m,...,5}) C{TU{n,...,1j-1}), then for every
compact open subgroup U invariant under I there exists a compact open subgroup
V C U invariant under (LU {m1,...,7u}}.

Proaf. It is clear that the lemma follows by induction once it is verified for n = 1.
S0 we suppose that n = 1.
4



By Proposition 2.1 there exists £ such that V' = r]:;ﬂ TH{UT) satisfies 7y (V) = V.
It is enough to show that (V') = V for every v € I'. But our assumption implies
that [r],I"] C I' for every i = 0, 1,... . Hence, given v € I' we obtain (V) =
Ni=olr)(©) = NiZelrirbr U = Nig V) = V. O
Lemma 2.3. Let I be a subgrowp of Aut(G) where G s a totally disconnected
metrizable locally compact group. Suppose that every ~ € 1 s distal and that I has
a normal equicontinuwous subgroup Iy with the guotient '/ 1) containing a polycyelic
subgroup of finite index. Then I' is equicontinuous.

Proaf. Let £2 be a neighbourhood of e Denote by P the polyeyclic subgroup of
finite index in I'/I} and let Py = P, P, = [F, P}, P, = [P, P),..., B, = {11} be
the derived series for P. Write  for the canonical homomorphism 7: I' — '/ I}
and put ﬁ’:. = 4P for j=0,1,...,m.

Suppose that for some j = 1,2, ._.om, V' C 2 is a compact open subgroup
invariant under ﬁ‘} We will show that there is then a compact open subgroup
W C V invariant under ﬁ:.:;_l. Now, since P is polycyelie, Fj_; is generated by
a finite set {py,...,pu}. Foreveryi=1,2,... nfind », € Ji}_I with p; = w(m).
Applying Lemma 2.2 to Ji:. and 1y, ..., 7, we conclude that there i a compact open
subgrounp W C V' invariant under {ﬁ’:. Ul mmhh = JE’}_I.

Our assumption is that there is a compact open subgroup V' C 2 such that
V) =V for every ~ € By = . With the aid of the preceding paragraph it
then follows that there is a compact open subgroup W C £ invariant under B.
Next, since P = Fj has finite index in I'/ 1}, ﬁ’h has finite index in . Hence, the
intersection IV = [, . 7(W) & a compact open subgroup invariant under I' and
contained in {2, O

Corollary 2.4, Let (¢ be a totally disconnected metrizable locally compact group.
If a subgroup I' of Aut{(57) contains a polycyclic subgroup of finite index then the
following conditions are equivalent:
(1) I' is distal,
(ii) every v e I' is distal,
(i) I is equicontinuows.

As the following examples show, ‘polycyclic’ in Corollary 2.4 cannot be replaced
by ‘solvable’. In fact, the three conditions can be different for conntable abelian
groups of automorphisms. We do not know if *polyeyelic’ can be replaced by ‘finitely
generated solvable’.

Example 2.5. Let ¢: B — T denote the function ¢(f) = €2 and let H be any
infinite subgroup of ((}). Note that every h € H has finite order. Let 7 he
the totally disconnected compact abelian group G = Z¥. H acts on G by left
tramslations: (hf)iz) = fih'z) (he H, f € G,z € H). Let I' be the resulting
subgroup of Aut((7). Then every element of I' i distal because it has finite order.
However, I' is not distal. Indeed, let f € ¢ be the function f{z) = 4, and let U
be any peighbouwrhood of ¢ in . Then for some finite subset F C H, [ contains
the set {g € G; g{z) = 0 for every z € F}. Hence, if h € H — F then (hf)(z) =0
for every r e Fie, hf e U.

Thus for a countable abelian proup of automorphisms (ii) does not imply (i) (nor

(iii}).



Example 2.6. Let for j € Z, G; = {x € ZZ;2; = Oforeveryi < j} and let
5= U_-.iEE (7. There iz a locally compact totally disconnected group topology on
G in which the subgroups &, j € &, form a neighbourhood base at e (and are
compact open). Given j € M define 7; € Aut{7) by 7j(z) = y where 3 = =; for
i€ L —{+j}, yj = v, and y_; = z;. The subgroup I of Aut(G) generated by
7j, § € M, is then abelan and distal: if z # € and j is the smallest integer with
z; # 0, then 7(z) ¢ G);| for any T € I'. However, I' is not equicontinnous because
if it were, there would exist & = 0 with 7{z) € Gy for every 2 € G and 7 € I'.
However, if £ = (8110 )nez then x € G, but (req(2)) -1 = 71 = 1, =0 that
T}_—+1 {Ej é Gﬂ.

Thus for a countable abelian group of antomorphisms (i) does not imply (iii).

Theorem 2.7. Suppose that a totally disconnected metrizable locally compact group
& admits an open normal SIN subgrowp N such that the guotient G /N contains a
polyeyclic subgrowp of finite index. Then the following conditions are eguivalent:
(i) G is distal
(ii) ewvery g € (7 is distal,
(ii) & is SIN.

Proaf. (ii)=+(iii): Let I' = Inn({{) and a : 7 — I' be the canonical homomorphism.
Put It = a{N). I is a normal subgroup of I' and I'/ I} is a homomorphic image
of G/N. Therefore I'/ I} contains a polyeyelic subgroup of finite index. Since N is
open and SIN, it follows that I is equicontimons. Thos Lemma 2.3 applies. O

Following [3] and [21] we call a locally compact group a generalized FC-group if
( has a series G = Gy 2 Gy 2 ... 2 G, = {e} of closed normal subgroups such
that for every i = 0.1, ....n— 1, G;/G;4; is a compactly generated group with
precompact conjugacy classes. Every compactly generated locally compact group
of polynomial growth is a generalzed FC group [21, Theorem 2]. Every closed
subgroup of a generalized FC group is compactly generated [21, Proposition 2). A
locally compact solvable group G is a generalized FO group if and only if each closed
subgroup of G is compactly generated [10, Théoréme IIL1]. Using Propasitions 1
and 7(ii) in [21] it is straighforward to give the following characterization of totally
disconnected generalized FC' groups:

Proposition 2.8, A totally disconnected locally compact group G is a generalized
FC group if and only if it admits a compact open normal subgrowp N with the
gquotient G /N containing a polyeyclic subgroup of finite index.

Theorem 2.9. Conditions (1), (i), and (iil) of Theorem 2.7 are eguivalent when
(7 is a totally disconnected generalized FOC -group.

Proof. When G is metrizable, this is a special case of Theorem 2.7. We need to
show that the implication (ii)=+{iil) is also true when (¢ is not metrizable.

Note that (7 is necessarily g-compact (as it is compactly penerated). Let [V
be a neighbourhood of € contained in the subproup N of Proposition 2.8, Find a
neighbourhood V' of e with V2 C U. By [8, Theorem 8.7] V contains a compact
normal subproup K such that /K is metrizable. Let 7: ¢ — /K denote the
canonical homomorphism. Since N & compact, we can use the theorem stating
that a factor of a distal flow is distal [5, Corollary 6.10, p. 52| to conclude that the
restriction of every inmer antomorhism of /K to N/K is distal. As N/K & open,
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every g € (/K is then distal. Hence, by Theorem 2.7, /K is SIN. Thus 7(V")
containg a compact open normal subgroup W, Then W= 7" { W) C VK C U and
W iz a compact open normal subgroup of . O

Since nilpotent groups are distal, Theorem 2.9 implies that a totally disconnected
compactly generated locally compact nilpotent group i a 8IN group, a result duoe
to Hofmamn, Liukkonen, and Mislove [9].

We note that for totally disconnected groups of polynomial growth which are not
compactly generated, conditions (i),(ii),(iii) are different. In fact, the equivalence
fails already for metabelian groups of polynomial growth. Examples of totally
disconnected 2-step nilpotent groups which are not SIN groups can be found in [9]
and [28]. An example of a metabelian group of polynomial growth which satisfies
(ii) but not (i) (nor (iii)) is also readily available:

Example 2.10. Let H be as in Example 2.5 and let W be the complete wreath
product W = Zs | H. Evidently, W is not distal but every w € W has finite order,
s0 i distal.

In the remainder of this section we prove that conditions (1).(ii),(iii) of Theorem
2.7 are equivalent for every metrizable compactly generated totally disconnected
locally compact metabelian group.

Lemma 2.11. If a locally compact group (G contains a normal finitely generated
subgroup N and a compact set K such that KN =G, then G is a SIN group.

Proof. Recall that the group of automorphisms of a finitely penerated group s
countable. Since the centralizer Cn{ N) of N in (7 is the kernel of the homomorphism
which maps g € & to the restriction of the inner automorphism g - g~ ! to N, it
follows that G/Ce(N) is countable. As Cg(N) is a closed subgroup and & is of
the second category, we conclude that Cin( N is open.

Let UV be a neiphbourhood of e. Put V' = N Cg(N) and let V' be a neigh-
bourhood of & with g~ 'V'g C V for every g € K. Then W = MNec gVg !t =
ﬂgEK gVg~! 2 V', Thus W is a neighbourhood of e, invariant under Tom(G) and
contained in [, O

Proposition 2.12. [f a compactly genermated totally disconnected locally compact
group (& contains a closed cocompact normal SIN subgroup, then G is a SIN group.

Proof. Let N denote the closed cocompact normal SIN subgroup and let a compact
open subproup 7 of G be given. A routine arpument shows that Inn(G) acts
equicontinuously on N. Hence, [V contains a compact subgroup V' of N which &
open in N and normal in .

Let w: 7 — G/V denote the canonical bomomorphism. Since N is cocompact, it
is compactly generated [22]. Since V is open in N, 7(N) & then finitely penerated.
It is also normal and there is a compact K C G/V with K7x(N) = G/V. Hence,
by Lemma 2.11 G/V is a (totally disconpected) SIN group. Thus 7(I7) contains
a compact open normal subgroup W. Then 7~ Y(W) is a compact open normal
subgroup contained in UV = 7. ]

It is well known that Proposition 2.12 & fake for locally compact groups in
general (e.g . the motion groups). The following example shows that it can also fail
for totally disconnected proups which are not compactly generated:

G



Example 2.13. Let Z*" = {z € Z¥; 7, # 0 for finitely many i} and give Z* the
discrete topology. Give the multiplicative group {—1,1}" the product topology.
Let @2 {—1, LT Aut(Z*) be given by o((wi),) (7)) = @iz, and ket
G be the semidirect product G =2 x {1, 1}

ZH % {e} is trivially a closed cocompact normal SIN subgroup of G but G &
not a SIN group because for every nonidentity element g = (e, w) € {e} x {-1,1}"
there is a € Z*Y with (a,e)(e, w)(a,e) ™' & {e} x {—1, 1} Indeed, if w; = —1 and
a= (#;):2, then (a,e)(e, w)a,e) ™ = (v,w) where v; = 2.

Lemma 2.14. Let G be a locally compact compactly generated totally disconnected
solvable group. Then there exists a closed normal cocompact subgroup N such that

G, G| C N and N/|G.G] is topologically isomorphic to T2 for some d = (.

Proof. G/|G, G| is a compactly generated totally disconnected abelan group. Hence,
it i the direct product AR where A = 29 and B is a totally disconnected com-
pact abelian group. Put N = 77'(A) where 7: G — G/|G,G] is the canonical
homomorphism. O

Theorem 2.15. Conditions (1), (i), and (iii) of Theorem 2.7 are equivalent when G
is a metrizable compactly generated totally disconnected locally compact metabelian

group.

Proaf. Let N be as in Lemma 2.14. To prove the nontrivial implication (i) =-(iii)
observe that as [G, G| is abelian, Theorem 2.7 applies to N. Thus if (ii) holds then
N is a S5IN proup. But then (7 is a SIN group by Proposition 2.12. ]

3. The Choquet-Deny theorem

Let p be a repular Borel probability measure on a locally compact group 6.
Recall that 7, denotes the smallest closed subgroup containing the support of .
p is called adapted if G, = G. We will say that p is a Choquet-Deny measure if
every bounded continuous p-harmonic function is constant on the left cosets of G,

We note that in the literature the Choguet-Deny theorem & often understood
as the statement that every adapted p € M (7) & a Choquet-Deny measure (i.e.,
all bounded contimous p-harmonic functions are constant). We emphasize that
in this paper the Choquet-Deny theorem is understood as the (formally) stronper
statement that every p € M(G) is a Choquet-Deny measure. It is not known if
the two versions of the Choguet-Deny theorem are equivalent. However, we know
of examples of almost conmected Lie groups with the property that every adapted
spread out probability measure is Choquet-Deny but some non-adapted spread out
measures are not. It can be shown (see Lemma 4.1) that the strong version of
the theorem is true about (7 if and only if the weak version holds for every closed
subgroup of G.

Throughout the sequel by the weak topology on the set M(X') of probability
measures on a locally compact space A we mean the o (M (&), Cu{X) )-topology
where C(X) & the algebra of bounded contionous functions on X'

Lemma 3.1. (a) If p is a Choguet-Deny measure on G and N C G is a closed
normal subgroup, then the projection of p onto G/N is a Choguet-Deny measure
on (G /N,
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(b)) If every neighbourhood of e contains a compact normal subgroup N such that the
projection of p onto G/N is o Choguet-Deny measure, then p is a Choguet-Deny
TEASIUTE,

Proof. We omit a straiphtforward proof of (a). To prove (b) let us choose, for
every neighbourhood 2 of e, a compact normal subgroup Np C 12 such that the
projection of p onto G/ Np is a Chogquet-Deny measure. Denote by 7 G — G/Np
the canonical homomorphism and by wp the normalized Haar measure of Np.
Directing the neighbourhoods of £ by reversed inclusion we obtain a net (wp) in
M) which converges weakly to 4.

Let h be a bounded continuous p-harmonic function. We need to show that
h{zy) = hiz) for every x € G and y € G,. Now, when 2 is a neighbourhood of e,
the function wp + k is a bounded contimons p-harmonic function constant on the
cosets of Np. Hence, wp i = hp o 7o for a bounded continuous function fip on
5/ Np. It is clear that hp & 7pp-harmonic where 7o denotes the projection of p
onto /N, Moreover, mp(Gy) = (G/No)rgu. Therefore for z € G and y € G,

(s * h.:ll[;?"l:l = ho(rn{zira(y)) = holrn(z)) = (wr + k)(z). Since (wp + k() =
Jo e~ t) wrldg) and w-limp wg = 8., we conclude that h(zy) = h{z). O

Lemma 3.2, Let (p,) be a net in My (G If for every neighbourhood U of € there
erists = € My () such that =(I7) = 1 and the net (., *2) converges weakly, then
the net (p,) converges weakly.

Proaf. There exists a compactly supported v € M, () such that the net (g, * v)
is weakly convergent, and, hence, tight. This implies that the net (p,) itself &
tight. Then by Prohorov’s theorem, every subnet of () has a weak cluster point.
Therefore it suffices to show that the net (p,) has a unigque cluster point. But
if ' and p" are cluster points of the net, then, due to our assumption, for every
neiphbourhood U of £ there exists £ € M1 () such that (07) = 1 and p'+2 = p"+ 2
As in the proof of Lemma 3.1 we obtain a net (z;) in M {(7) which comverges weakly
to 8, and satisfies g’ + 5, = p” # £, for every i. Hence, p' = p". O

Lemma 3.3, Let G be a totally disconnected locally compact group, 7 € Aut({(7),
and F a finite subset of C{7). Ifv & MG and v(F)=1 then the sequence v i #

w7 Yy comwerges weakly to a probability measure p such that v+ 7p = p.

Proof. Tt is clear that if p = w-lim, o v # T % - - % 7" 1w then v+ 7p = p. To see
that the limit exists let [7 be a compact open subgroup. Then there is & € B such
that for every n = &, 7"(F) C /. Let wy; denote the normalized Haar measure of
[F. Then forn = &k, 7"+ wy = wyr. Hence, v 70 #--- #7771
k=ly swy. By Lemma 3.2, v # 7w # -- -+ 7" v converges weakly. [

V¥ Wy CONVErges to
VETY k- kT

Lemma 3.4. If (7 is a locally compact group and z € G then C(z) = {e}.

Proof. Suppose that z¥ € C(z) for some k > 0. Since C(z) C C{: 1, we ob-
tain z¥ € C(z%). But when U is a neighbourhood of e in C(z¥), then C(z%) =
|, z~* Uz, This means that C(z%) is either a strange group [19, Definition
1.1}, or is compact. Since no locally compact group i*s strange [19, Theorem 1.8,
C'(z%) is compact. As z* € C(z%), it follows that Oz = {e} O

Suppose that the locally compact group G acts on a ]{H.‘tl."}' compact space X' s0
that the mapping ¢ x X' 3 (g,2) — gz € X is continuons. Given p € M (X)) and
g € (7 we write gp for the measure (gp)(-) = plg~ ). Given p € M (G) we denote
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by p # p the measure (p + p)(-) = [;(gp)(-) pldg). Now, if_ﬂ =p#p thf-n f{:-r {-“-’{-"l'}'
h{:-lmdfbd contimons flm{"tl{m f X — C, the function h{g) = [, f( =
[y flz) (gp){dz) is a bounded continuous p-harmonic func tl{m Thm*f{:-t{* in m'dﬁ'
to ‘ih{}‘l.'-' that the Choguet-Deny theorem fails for p it suffices to find g € G, such
that gp # p. This observation is being used in the proof of the next lemma.

Lemma 3.5. Let 1‘f"r be a totally di.w‘mma"t?d locally compact group and z an ele-
mfﬂt n_f G with C(z) # {e}. Let g € Clz) — {e}, and v = pd, + (1 — p)d. where
)—{3}- T.i'mw. the Choguet-Deny ﬂmamm is fulse for the measure p = v+d, .

Proof. Let 7 denote the the immer automorphism z - 27! By Lemma 3.3 the limit

p o= welimy, o v % 71 % --- % Ty exists and satisfies v+ 7p = p. Moreover,

plC(z)) = L.

Note that {z}) is necessarily infinite and discrete, so it is a closed subgroup of
G (isomorphic to £). Let 7: ¢ — G/{z) denote the canonical mapping and let
p=mp. Then p+p=mlp+p)=mlrv*d. xp) =wlrv*+Tp*d.) = 7p = p. Since
g € (G, it suffices to show that g # g6

Now, there exists a compact subgroup U of C(z) such that g & U but 7/ (g) e U
for every 7 = 1. Let wy be the normalized Haar measure of 7.  Then
pkTEE T Lk = vewp = plgwy ) +H{1—plwr. Thus prwpr = pl gy )+ (1—plwr
and glp + wy) = plgwy) + (1 — plgwy). Since p(C(z)) = 1 and by Lemma 3.4
C(z) N {z} = {e}, we obtain p(w{l7)) = p(U/{z)) = p(l') = (p+wp () =1 — p and
(g8)(m(U)) = (gp)(U{z})) = (gp)U) = (glp+wu))U) = p(g*wp)(U) #1—p. O

Theorem 3.6. Let G be a totally disconnected generalized FC-group or a metriz-
able locally compact compactly generated totally disconnected metabelian group.
Then the following conditions are equivalent:

(a) The Choguet-Deny theorem holds for .

(b) The Choguet-Deny theorem holds for every p € MG with supp p of car-
dinality 2.

(¢) & is distal and has polynomial growth.

Proaf. (b)=={c): We first prove that & is distal. When (7 is metrizable, this is clear
by Lemma 3.5, Theorems 2.9 and 2.15, and Proposition 2.1, Suppose that G is a
not necessarily metrizable generalized FC-group. Note that it suffices to show that
every neighbourhood of e contains a compact normal subgroup N such that G/N &
distal. But as G is compactly generated, given a neighbourhood [T of e there exists
a compact normal subgroup N C U such that G/N is metrizable [8, Theorem 8.7].
Every probability measure on /N with support of cardinality 2 is the canonical
imapge of a similar measure on . Hence, by Lemma 3.1{a), Condition {(b) must
hold on G/ N and as G/N is a generalized FC-group, it is distal.

We now prove that G is of polynomial growth. Suppose that &7 is not of pobyno-
mial growth. By Proposition 2.8 and Theorem 2.15, ¢ has a compact open normal
subgroup N such that the quotient G/ N contains a finitely generated solvable sub-
group § of finite index (polycyelic when 7 is an FC-group and metabelian when
(¢ is metabelian). By [10, Théoréme L.4] S is not of polynomial growth. Hence,
by [18, Thi.‘ﬂl’f"n‘l 3.13 and its proof], § supports a probability measure with a 2-
element support for which the Choquet-Deny theorem fails. This implies that the
Choquet-Deny theorem fails for a similar probability measure on .

9



(¢)=-(a): When N is a compact open normal subgroup, G/N is a finitely gen-
erated proup of polynomial growth, hence, the Choquet-Deny theorem holds for
G/N. Since by Theorems 2.9 and 2.15, 7 has arbitrarily small compact open
normial subgronps, Lemma 3.1(b) vields the desired conclusion. O

4. On boundaries of random walks

It is well known that the bounded p-harmonic functions can be represented, by
means of a “Poisson formula”, as bounded Borel functions on a certain “boundary
space”. Let us consider the bounded p-harmonic functions {on a peneral locally
compact group G) as elements of L*(G), and let 'H,, denote the resulting subspace
of L™(G). Hy is invariant under the wsual keft action of G on L*(G) and for
every absolutely continuous » € My(G) and every b € H,, v+ h is a bounded (left
uniformly) contimmons p-harmonic function. When (7 is locally compact second
conntable (lese), there exists a standard Borel G-space &' with a g-finite quasiin-
wariant measure a and an equivariant isometry ® of L>(X, a) onto H, [15, §3]. &
is given by the Poisson formula

(®f)(g) = .[r flgz) pldz) {4.1)

where p is a probability measure on X satisfying psp = p. The Gespace X, called the
p=boundary. or Poisson boundary, is not unique. However, for any two g-hboundaries
(X', o) and (X7, a"), there exists an equivariant isomorphism between L>=(X", of)
and L*{X", a") (which implies that (', a') and (X", ") are isomorphic up to
sets of zero measure). The p-boundary can be always realized as a topological,
compact metric G-space [15, §i].

When the Chogquet-Deny theorem holds for g, the natural realization of the p-
boundary is the homogeneous space /G, where the “Poisson kernel” p (of. Eq.
4.1) is the point measure d5,. When 7 is a discrete (countable) group then the p-
boundary is a homopeneous space if and only if the Chogquet-Deny theorem & troe
for p (18, Lemma 1.1 and the remark preceding Proposition 2.6|. The situation i
different for contimions groups. When ¢ is an almost connected lese group then
for every spread out probability measure on 7 the p-boundary is a homogeneons
space (14, Corollary 4.7]. It & well known that the p-boundary of every spread
out measure on a connected semisimple Lie group with finite centre & a compact
homogeneous space [6,2]. However, if the p-boundary of a spread ont measure on
an amenable lese group is a compact homopeneons space, then the Choquet-Deny
theorem holds for p (and the p-boundary is finite), see [18, Proposition 2.6] and
[16, Lemma 2.3, or [2, Propositions IV .8 and IV.7].

Theorem 4.2 which we prove below applies, in particular, to every totally dis-
commected compactly penerated lese group of polynomial prowth. The result is that
for such groups the p-boundary can be always realized as a homogeneous space,
and, as a compact homogeneows space when p is adapted; when p is adapted and
spread out the g-boundary is a singleton.

Lemma 4.1. A probability measure g oon a locally compact group G is a Choguet-
Deny measure if and only if the restriction of p to G, is o Choguet-Deny measure
fon G, )

Proof. Let g denote the restriction of p to ,. The restriction of a p-harmonic
function to G, is p'-harmonic; moreover, if k is p-harmonic then for every g € G the

1)



left tramslate (gh)(-) = hig™!) & also p-harmonic. Hence, if p' is Choquet-Deny
then =0 is p. The converse is equally obvious when G, is open, becanse then every
bommded contimious @' -harmonic function trivially extends to a bounded continnous
p=harmonic fimction. However, in general, a technical arpument is called for.

Let us first consider the case that G is second countable. Let &' be a bounded
continuous p'-harmonic function. As G is second countable, the canonical pro-
jection m: G — G/G, admits a Borel cross-section . Since for every g € G,
k(m(g))"'g € Gu, we can define a function h: G — C by hig) = I (s(x(g)) ' g).
I is a bounded (in general, discontinnous) p-harmonic function.

Let (=) be a sequence of absolutely contimons probability measures on 7 con-
verging weakly to §.. Then the sequence (=, + k) converges in the weak* topology
of L™={Z) to h. Since =, # i i3 a bounded continnows p-harmonic function and p
is a Choquet-Deny measure, it follows that there exists a bounded Borel function
h: G/, — C such that h = hom Aae., where ) is the Haar measure of G.

Now, the mapping : (G/G,) < G, — G given by @z, g) = &(z)g is a Borel
somorphism. Moreover, if v & a o-finite quasiinvariant measure on G/G, and X
the Haar measure of G, then the measure (v x A') = (v x M) o 7! is equivalent
to the Haar measure A of . Consequently,

0= f |h'n<,9—|iani'rn<,9| div x A

(GG, )G,

- f [ f I(h 0 9)(z,9) — (hox 0 )(z,g)l }.'{dgj] w5

oG
=} [ [ w6~ i) r{dyzl] v(dz)

GG, G

Thus for v-ae. z € GG, IG,. |K' (g) — f:,{;r:l| N{dg) = 0. Hence, as i’ is contimous,
it & constant.

Consider now the peneral case that (7 is not necessarily second countable. Ob-
serve that due to the regularity of p and local compactness of G, G, is o-compact
and, hence, there is also an open g-compact subgroup ) with p(5;) = 1. Since
(71 is open it is clear that the restriction of g to &) is a Choquet-Deny measure.
Hence, we may assume that G itself is o-compact. By Lemma 3.1(b) it suffices to
show that every neighbourhood U of € in G, contains a compact normal subgroup
N such that the projection of p' onto G, /N & Choquet-Deny. But by [8, Theorem
8.7] there exists a compact normal subgroup K of G such that K NG, C U/ and
/K issecond conmtable. Let 7g - (7 — G/ K denote the canonical homomorphism.
Since (/K )z, = 7r(Gy), combining Lemma 3.1({a) with what we just proved for
second countable groups, we conchude that the restriction of Trp to 7 (GL) & a
Choquet-Deny measure. As 7y ((7,,) is canonically isomorphic to G, /(K NG), it
follows that the projection of p' onto G, /(K NG,,) is a Choquet-Deny measure. [

Theorem 4.2, Let p e M) where (7 is a lese growp, If G contains a compact
normal subgrowp K such that the projection of p onto G/K is a Choguet-Deny
measure, then the p-boundary can be realized as a homogeneous space; when p is
adapted, the p-boundary can be realized as a compact homogeneous space on which
K acts transitively.

11



Proof. Denote by 7: ¢ — G/ K the canonical homomor phism.

Suppose that p is adapted and let (A, o) be the p-boundary realized as a stan-
dard Borel G-space. Let f £ L™{X o) be invariant under the action of K. Then
the corresponding p-harmonic function b = ®f € H, (cf. Eq. 4.1) is also invariant
under the (left) action of K. Hence, h = ho 7 where h e Hepe Since mp is adapted
and the Chogquet-Deny theorem holds on G/ K| it follows that & is constant. Thus
so0 18 f. As A is a standard Borel G-space this implies that K acts ergodically on
X, and, hence, a is carried on an orbit of K [30, Corollary 2.1.21 and Proposition
2.1.10]. Consequently, the p-boundary can be realized as a compact homogeneous
space of (7 on which K acts transitively.

When p is not necessarily adapted, let p' denote the restriction of p to G,
and let (X", a') be a realization of the p'-boundary as a standard Borel G ,-space.
By Lemma 4.1 the restriction of mp to w(G,) = (G/K ), & a Choquet-Deny
measure. Since G, /(G, N K) = x(G,), it follows that the projection of p' onto
G /(G NK) is a Choquet-Deny measure. As p' is adapted, we may assume that
A" is a homogeneous space of G, (on which G, N K acts transitively). Now, by
[17, Proposition 3.5 and Remark 3.9 the p-boundary can be realized as the skew
product X' = G/G, %, X" (the G-space induced from the G -space X7 [30, p. 75]),
where v: G x GG, — G, is the cocycle associated with a Borel cross section of
the canonical projection of & on G/G,. It follows that 7 acts transitively on '
This means that the p-boundary can be realized as a homogeneons space of G O

Corollary 4.3. Let (¢ be a totally disconnected compactly generated lese group of
polynomial growth. Then for every p € MG the p-boundary can be realized as
a homogeneous space of (G when g is adapted, the p-boundary can be realized as a
compact homogeneous space.

The next corollary can be regarded as a generalization of the implication (¢)=+(a)
of Theorem 3.6. Contrary to the proof of Theorem 3.6, the proof of Corollary 4.4
does not rely on equicontinuity of Inn(7).

Corollary 4.4, Let ¢ be a locally compact group containing a compact normal
subgroup K such that the Choguet-Deny theorem holds for G/K and lun((5) acts
distally on K. Then the Choguet-Deny theorem holds for G,

Proaf. It is not difficult to see that if a locally compact group ¢ contains a com-
pact normal subgroup K such that the Choquet-Deny theorem holds for G/ K and
Iin((7) acts distally on K| then the same is true for every closed subgroup and
every quotient of . Let p € M (G). To show that g is a Choquet-Deny measure
it suffices to show that the restriction, ¢/, of p to G, is Choquet-Deny. By Lemma
3.1(b), to show the latter it is enough to show that every neighbourhood of ¢ in G,
contains a compact normal subgroup N such that the projection of p' onto G, /N &
Choquet-Deny. But as GG, is o-compact, every neighbourhood of € in 7, contains
a compact normal subproup with second countable quotient. Hence, it is enough to
prove that if a lese group G contains a compact normal subgroup K such that the
Choquet-Deny theorem holds for G/K and Inn((7) acts distally on K. then every
adapted probability measure on G is a Choquet-Deny measure.

For such (7 and g, by Theorem 4.2, the p-boundary has the form G/ H where
K acts transitively on G/ H | e, G = KH. Let p denote the Poisson kernel. Note
that due to the identity p = p + p and adaptedness of g, it suffices to show that p
is a point measure (this will imply that G/H & a singleton).
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Now, by [11, Proposition 1.8] there exists a sequence (h,) in G such that the
sequence (hap) converges weakly to a point measure dy,. Since ¢ = KH and K is
compact, we may assume that b, € H for all n. Next, by [19, Lemma 2.8] we may
assume that there is a Borel set B C G/ H such that p(B) = 1 and lim,, .. b2 = 7y
for every € B. Tt & enough to show that B is a singleton.

Consider the compact homogeneous space KJ/(K N H). The formulas bk =
hih=! and b k(K N H) = hkh YK N H), k € K, define actions of H on K and
K/(K n H), respectively. Clearly, the  -action is a factor of the --action. As - is
distal, so iz _ [5, Corollary 6.10, p.52].

Let .30 € B, Write 1y = B H and 30 = kol with by ks € K. Then
limy, e oz = limy,_ o0 hok;h 'H = zp for j = 1,2, Since the compact homo-
geneos spaces G/ H and K/(K M H) are isomorphic as K-spaces, we then obtain
lim, .k, & (KNH =lim, ,h, k(K0 H). Sinee _ is distal, Bi(KNH) =
kol K M H) and, hence, 77 = 1o, Therefore B is singleton. O

Example 4.5. Let 7 be the automorphism of the torus T, defined by 7(z,y,2) =
(z,zy, 7yz). Then T is distal but not equicontinnons. By Corollary 4.4 the Choguet-
Deny theorem is true for the 3-step nilpotent group T% x . E.

Example 4.6. Let T be the shift ({z);cz) = (241 )icz on the compact abelian
group Z%, andlet G = Z3x . Z. Since C(7) = {z € Z5 ; there exists k € Z with z; =
0 for every i = k}, Inn(G) does not act distally on Z5 x {0}. By Theorem 3.6 the
Choguet-Deny theorem is not troe for G.

Let p € My() be adapted. According to Theorem 4.2 the p-boundary has the
form G/ H where G = (Z% x {0}) H. It is not difficult to see that a closed subgroup
H C @ satisfies G = (ZZ x {0})H if and only if there is a closed T-invariant
subgroup T' C ZZ and g € G such that gHg ™! = T x Z. We may therefore assume
that i = T x & where T is a closed 7-invariant subgroup. Now, the formula
(z,9)(zT) = z7¥(2)T, z,z € ZE, y € Z, defines an action of & on ZZ/T under
which Z3 /T becomes a homogeneous space of (3, isomorphic to G/H. Thus for an
adapted p € M;(G), the p-houndary can be realized as one of the G-spaces Z5/T,
where T'is a closed minvariant subgroup of ZZ.

Letfork=1,2,..., S5y ={z ¢ ZE () = z}. Then 5 is a closed T-inwariant
subgroup of Z% and it can be shown that T is a closed T-invariant subgroup of Z3
if and only if T = Z% or T is a T-invariant subgroup of S, for some k. In particular,
proper T-imwariant subgroups are finite. Let T denote the class of closed m-invariant
subgroups of 2. The G-spaces Z5 /T, T € T are mutually nonisomorphic and each
of them is an equivariant image of 2% = ZZ/8,.

One can construct a family pp, T € T, of discrete probability measures on
such that Z2 /T is the pr-boundary for every T € T. We refrain from going into
the details here as this would require a longer digression into the theory of the
prboundaries. A more difficult question concerns determining, when p € M(G) is
given, which of the spaces Z2 /T is the p-boundary. In particular, one would like
to know for which p € M(Z) the p-boundary is a singleton. In addition to the
case of spread out measures, this is so for every adapted probability measure which
induces a recurrent random walk on Z = G/(Z§ x {0}). We do not know of any
relevant conditions that are both sufficient and necessary.
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