SOME VANISHING SUMS INVOLVING BINOMIAL
COEFFICIENTS IN THE DENOMINATOR
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AmETRACT. We obtain expressions for sums of the form E;.‘_’__“[—l]\f

deduce, for an even integer d = (0 and m = » > d/2, that this sum is 0 or

% according as to whether d > () or not. Further, we prove for even d > )

(-134(™)n .
that 5L eroy 4 = 0 where ¢, = L 37 _ (—1)*(T}(r — s + 1)*" 1.
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Similarly, we show when d > () is even that Ed._ﬁ ar ":' = {} where ar =
: E.—2+|E

L__ir;ﬂi E:_n(_l}’{:]‘(‘r —a+ l}d.

INTRODUCTION

Tdentities imvolving binomial coefficients nsnally arise in situations where count-
ing is carried out in two different ways. For instance, some identities obtained by
William Horrace [1] using probability theory turn out to be special cases of the
Chu-Vandermonde identities. Here, we obtain some peneralizations of the iden-
tities observed by Horrace and give different types of proofs; these, in turn, pive
rise to some other new identities. In particular, we evaluate sums of the form
Z;":ﬂ{—l:ljj”—{"'l;—}-— and deduce that they vanish when d is even and m =n > d/2.
Tt is well-known [2] that sums involving binomial coefficients can usually be ex-
pressed in terms of the hypergeometric functions but it & more interesting if such a
function can be evaluated explicitly at a given argument . Identities such as the ones
we prove could perhaps be of some interest due to the explicit evaluation possible.
The papers [3], [4] are among many which deal with identities for sums where the
binomial coefficients occur in the denominator and we use similar methods here.

1. HORRACE'S IDENTITIES - OTHER PROOFS AND GENERALIZATIONS

We start with the identities in Horrace's paper which he deduced using proba-
bility theory.

Key waras and phmses. Binomial coefficients, ditterence operators.
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Lemma 1.1. Form =1, n =0, we have

Z:;ﬂ{_lj}% = o i

™

Va0 ke = ey
The lemma can be easily deduced by induction or using the method of [3].

Remark 1.2. We give another expression for the left hand sides of these identities.
Recall the forward difference operator A defined on a function f by (Af)(z) =
flz+1) — flz). As usual, one defines A¥Lf = A(A*f) ete. It is easily seen by

induction on m that

e m
A™fl(z) = -1 : -7l
@A) =31 (7) e +m )
Now, the left hand side of the first identity of Lemma 1.1 is

= ()
Zi—ll' {r=+j:|

A= 3

which is (A™g)(0) where

glz) =

n!
fm+1—z)m+2—x)---(m+n—x)

Now, one can express g(z) as a partial fraction ¥, = Also, each a; can be
Jound by multiplying both sides by the product (m+1—z)(m+2—2)---(m+n—x)
and evaluating at = m + j; we have a; H‘.%j{'.i — il =n! for each j < n. Now, we
compute (A™g)(z) = Y. (A™g)(x) where gi(z) = —2—. Computing, we see

wete—a
that

=1 r=0 j<m; _ﬁét

which easily simplifies to

(am@) =330 EENE)

i=1 r=ll

It is worth noting that although the left hand sides of these identities can be thought
of as the action by the (m + n)-th difference operator, it does not give anything
new and merely reproduces the left hand sides again. Now, by Lemma 1.1, we get
(A™g)(0) = ;55 and we have the following corollary.

Corollary 1.3.

S a2 s SR
ZZ i =m+ﬂ.'

i=1 r=l)

Doing the same process with the second identity in Lemma 1.1, we have :

b (-l ) i
ZZ r+i ={m+nj{m+n—lj'

=1 r={

As a matter of fact, the identity of Corollary 1.3 can be proved in a much more
general form by another mammer as follows.
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Lemma 1.4.
f14- i e e
z (—1)" k{ﬂ'jj:l---{l':] _ 1
W tiatetiet] mtng+-o+ng+l
Proof. Writing (1 — )™ 54k = (1 —#)" .. (1 — #)" and inteprating both sides
from 0 to 1 after expanding the right side binomially, we have the identity asserted.
O

2. A VANISHING THEOREM
A patural peneralization of Lemma 1.1 would be to consider the sums of the
form Z;’;]{—ljj_lj”{éi% for variows d > 1. We have the following result which

1
first shows how the roles of m and n are interchanged and then implies a vanishing
result when m = n. In between, we also adopt a method used in (3] for evaluating
sums where binomial coefficients appear in the denominator.

Theorem 2.1. Let 8 be a polynomial and let o+ n > deg(#). Then, the sum

P nl®) = Z{_ljj H{Jj{_,«:]

=0 )
satisfies
(m: n) P () = Z{—l)r‘ﬂ{j) C;tj) = Z{_lje—rg{—a‘j (1: t ?) + 8{0).
§=0 =1

Further, if @ is an even function and if m =n, then B, .(#) = 8(0) /2.
2k fm
In particular, for n =2k =0, Z};ﬂ{_lj&‘ ‘:[—.:E;:Il =0ifk=0and=3 if k=10
Proof. Now P, (8 = Z}":ﬂ{—lj-? ﬂ(:‘-]*L‘:jj = (A™®){0) where
@lm — z)n!

Yo = T n)m+2-o) min—2)

Now, we divide #(z) by the polynomial []_,(z +1) and write

e

() = ulz) [[(z + ) + v(z)

i=1
and deglv) < n.
Note that if u & not the zero polynomial, we have deg{u) < m by hypothesis. In

particular, {A™u) is the zero polynomial.
Now, we expand in partial fractions as in Bemark 1.2 :

e

v{m — x)n! B &
(m4+1l—zlim+2—z)---(m+n—2z) _§m+r—m'

The coeflicients ¢, are obtained easily as before; we get
v|—i)n!
(—1)i = 1) m — )"

o =
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Note that v(—i) =8(—i) for alli = 1,--- ,n. Thus,
Fonn(8) = (A™@)(0) = (A"w){0)

T . e —a)re! - T e
where 'l]'.i'{Ej T (et l—x) w2 —x) - (rebre—x] E'l'l"=:|- metir—a "

Fori=1,--- ,n we evalumte (A™ —L—)(0) = '7;1{—1]"% as in [3] as follows.
e . {rr.l] e _(Tn) /-1 A
-1 == = -1 1 -8 dt
g( e ,.Z=;J{ . s (1—t)

= ft B-1(1 — tymdt = B(i,m+ 1) = S22

(m+id)!
Therefore,
(i — 1! - v—i]n! (i —1)tm!
RFI.TI & = L] : — : = . P
() = (m+4)! 2 (=1 Hi =1 m =40 (m+ )
1 N P wfn+m 1 = i wfn+m
= LT = ey oo ()

becanse v{—i) = #(—i) for all i = 1,--- ,n. which is Adding and subtracting the
term corresponding to i = ), we get the expression asserted in the theorem, viz.,

Ponnl8) = mrae Y (-1 100" T ™) + 6(0).
[frl;ll-ﬂ:l s n—i
Adding this expression and the expression ET?"F > i—a(—1)%0(3) {:’,:t:), it is evident
that when m = n and #(i) = 8{—i) for all i, the sum is 8{0)). Taking #(z) = =¥,
the last statement follows. The proof is complete.

O

Remark 2.2. It is important to note that although P, .(#) can be re-expressed as
a maultiple of Z;":ﬂ{—l:l-"ﬂ{_;:ll::t’::]. and hence, can be viewed as the effect of the
(m+n)-th order difference operator on a certain function, this does not give any new
information but merely reproduces the expression. Thus, it is indeed worthwhile to
view P, (0 mather as the effect of the m-th order difference operator on a certain

function.

We proved the vanishing of P, ,.(#) when m = n and #(7) = j2*, but did not
evalnate it for general m.n. As we will see, a natural method to evaluate it is to
evalnate and use the following sums:

Proposition 2.3. Form.n = 1,.d =0 we have

. a5,
Tai= (1P +1)(G+2) - (i +4) {jj = "{;jj,).
G=i1 ( 3 :I {4I+1:I
We also have
L ) (5} (—1)n(")d!
Gri="% (=150 =1} ifg=d S - ke

As wsual, the convention is that the empty product {when d = 0 here) is understood
to be egual to 1.
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Proof. As we did in the proof of Theorem 2.1, we express the denominator {"jj]
in terms of the beta function and evaluate the sums. We omit details.

O
Corollary 2.4.

e ; {T.F-I:I o {_ 1:|IT|‘- {Trl)ﬂ
{_l:ljjdl '|-|-ll no €1-1 rrlI T
Pl G b e
where ¢, = 4 3o (=1 (0 r—s+ 14 forallO<r <d—1.
In particular, if d = 0 is even and < 2n, then

o gy gy
Z.—.-;_l—{ Y (",if' =0
I=1 {I =x 1:| +l:I
with o 's as above.

Stmnilarly, we have

i{_ 1)1-'*1.};.’.;?1,, = . TF';;:& )
J re+3 z ay e+ e
4=l { 3 ] r=1 { r+1 :I

(17 or

where a, = ~—— 3} (-1 )(r—s+ 1)? for all0 <7 < d.
In particular, if d = 0 is even and < 2n, then

o )on
=)

r=1 {Tg-lr-il ]

with a, 's as above,

m

Proof. Now T7L (-1 j4 758 =

,,'+_1:| 1—1 Ci—151 where 5 is as above and where o
t

s are defined by 74 = H;:_:‘lj vl"'k_j{_j — 1) i =&
If we write

d—1
= Hr.‘km{m—lj---{m—kj
k=l
then it is easy to determine op’s recursively and we find that for 0 < r < d— 1, we
have .
rle. =% (-1)*° (T) (r—s+1)4-1,
Thus, Proposition 2.3 implies the first assertion.

Similarly, if we express z?! = Zf:ﬂ oz + 1)z + 2)---(z + r), then we have

Z;’;‘J{—ljjj‘l{—i-‘% = E::: i, Tp. We may compute the o,.s recursively and find
that for 0 < r :::J d, we pet

B e

&=l

a

Acknowledgements: We are indebted to William Horrace for communicating to
us his identities which use probability theory and for pointing out (thanks to George
Andrews) that they are special cases of the Chu-Vandermonde identities. We are
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also prateful to the referee who pointed out that some similar results due to A Sofo
appear in the paper titled ‘Sums of hinomial coefficients in integral form’ published
in the Proceedings of the 12th International Conference on Fibonacei numbers and
their application in July 2006 - San Francisco, wing different methods.
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