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Constraints
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Abstraet We consider a network of d companies (insurance companies, for ex-
ample) operating under a treaty o diversify rsk. Internal and extemal borrow-
g are allowed o avert ruim of any member of the network. The amount bor-
rowed 1o prevent ruin is viewed upon as control. Repayment of these loans en-
tails a control cost m addition o the vsual costs. Each company tries 1o mini-
mize ils repayment liability. This leads 1o a d-person differental game with state
space constraints, If the companies are also in possible competition a Nash equi-
librium 15 sought. Otherwise a utopian equilibnum s more appropriate. The cor-
responding systems of HIB equations and boundary conditions are derived. In the
case of Nash equilibrium, the Hamiltonian can be discontinuous; there are d in-
terlinked control problems with state constraints; each value function is a con-
strained viscosity solution o the appropriate discontinuous HIB equation. Unigue-
ness does not hold in general in this case. In the case of utopian equilibrinm,
each value function tums oul o be the unigque constramed viscosity solution 1o

the appropriate HIB equation. Connection with Skorokhod problem is briefly dis-
cussed.
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1 Introduction

Consider d insurance companies. Suppose the surplus (or reserve) of Company i, in
the absence of any control, is given by

Sty =z + f bi(r, 5i(r)dr, =10,
0

where z; = 0 is the initial reserve and b; is the “drift™ component. The term b; in-
corporates premium rate (=0) of Company i, interest rate (=0) of riskless bonds
in which the company may have invested pant of its surplus, mean rate (<0) at
which claim payments are made, ete. We say Company i is ruined if §(r) < 0 for
some ¢ = 0. Now suppose the o companies agree on a treaty, to diversify risk, along
the following lines. Accordingly, if Company i estimates at some instant of time
that it needs an amount u;{rjdr w avoid rin, then for j # i, Company j gives
| R ji|uiirdr, where ui(-) = 0, Ry =0, j #1i and ZFE‘ IRl = 1. Of course, the
shortfall (1 — Z_,.:ﬂ [ Rjilu; (Fhedr has to be procured by Company @ from “external”
sources. The amount ZF& [ R jilu;(r)dr that Company i gets from the other compa-
nies of the network 15 considersd a loan on soft interest lerms, whereas the amount
obtained from external sources carry interest at market rates. As thereis mutual oblig-
ation among the companies, this is a reasonable way of diversifying the risk

The function w{-) = (-, .... g -311% viewed vpon as control, with w; denoting
the control for Company i. With the treaty in force, we get the following system of
equations 10 constitule state equations

yi(f) = f wpiridr, (1.1}
i
zilf) =z; +£] bi(r, zi(r))dr 4+ vi(r) + E Rijviir), (1.2)
=

for r =0, with the stipulation that
zi{)=0, =0 (1.3

for each i = 1,2, .., d. Here z;(r) = current surplus with Company i at time
t, ¥i{t) = cumulative amount obtained by Company i from intemal and external
sources specifically for the purpose of preventing ruin over the period [0, ¢]. As the
objective of control is to keep the surplus nonnegative the state constraint (1.3) is
clear.

We consider a finite time horizon T = 0 1o indicate that the treaty may be reviewed
at time T Since repayment of y;(-) with interest is involved, a cost called control cost
of the form ft:— M;ir)u; (rydr is imposed on Company i. This cost is operative only
when the control w; is exercised. A typical control cost could be

T T
fue‘“‘T‘”(Z!RJ-‘-|)HJ-{:-}:::-+1 f"lz[T_”(l—Z':R_,-;I)u;{r}dr,

For 1 i
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where 0 = a; = a7 denote respectively interest rates for “internal™ and “external”
loans. In addiion there can also be the vsual munming cost and terminal cost. Each
company Loes 0 minimise iis cost, subject o the constramt (1.3). The companies
can possibly be in competition. Thus we are lead naturally 1o a d -person differential
gamde in the d-dimensional orthant with state space constraints, and we seek a Nash
equilibrium.

Inn [20}] the abowve set up has been miroduced in a greater generality which icluded
an r.ell imput function w{-) (that 15, w(-) being right continuous and having left limit
at every t). In that set up, vi-), which was treated as control, need not be absolutely
continuous or even continuous. Under certian natural monotonicity conditions, it was
shown that a Nash equilibnium 1s given by the soluton to the so called detenministic
Skorokhod problem. This means, in addition to (1.3) and the analogues of (1.1),(1.2),
we stipulate that yi(-) can increase only when z;(-) =0, | =i = 4. Of course the
game in [20] is a d-person dynamic game with state space constraints. Conditions
were also given for Nash equilibrium to be the solution of the Skorokhod problem. It
15 argued in [20] that the above set up constitutes a remsurance scheme. (See [22] for
surplus process and rum problems in the context of single msurance company.)

As another illustmbon, consider & imterdependent sectors of an economy; these
can even be different sections of the same company. If one sector faces severe finan-
cial strain, other sectors can pitch in previously-agreed-upon fractions of the money
needed. Once again we are lead to (1.1), (1.2) and the state constraint (1.3). In this
case, however, the different sectors may not be in competition, but each sector will ry
o minimise its cost. This leads again 1o a d-person differential game with state space
constraints, and we seek o simultaneously minimise cost of each sector. We call an
optimal control in this situation to be a wiopian equilibrinm; the name is derived from
acomment in [15]. In Sect. 5 of [19] a more general model has been considered with-
oul the game theoretic trappings; under fairly strong monotonicity conditions it has
been proved that the deterministic Skorokhod problem provides the uopian equilib-
rivm. See [11, 21] for cadier results, and [19] for additional comments.

The purpose of this paper is w study the d-person differential game (in the onthant
with state space constraints) using the framework of HIB equations and constrained
viscosily solutions. Soner [24] has been the first to consider control problems with
slale space constrnts. Siee then itis known that the appropriate way o study such
problems is through the so called constrained viscosity solutions to HIB equations.

In the case of uopian equilibrium, there are d control problems each with a
d-dimensional control set; should all the & problems attain their minima at the same
control we have a utopian equilibrium. Under some conditions the value function for
the i-th player is shown to be the unigue bounded uniformly continuous constrained
viscosily solution o the appropriate HIB equation.

In the case of Nash equilibrium, there are o interlinked control problems with one
dimensional control sets. The Hamiltonan can be discontinnous in the time vanable.
We show that the value function is a constrained viscosity solution (o the discontin-
uous HIB equation in an appropriate sense, involving the semicontinuous envelopes
of the Hamiltomian. It s also shown that unigqueness does not hold i general.

The paper is organized as follows. In Sect. 2 we describe the differential game,
and denve the HIB equations as well as the “boundary conditions™ dictated by the
slate space construnt. We also ke a preliminary glance at viscosily solutions under
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somewhat strong regularity assumptions. In Sect. 3 we take a closer look at viscosity
solutions as the Hamiltonian will be discontinuous in the context of Nash equilibrium;
an appropriate notion of constrained viscosity solution is defined. An Appendix in-
cludes a briel discussion on the connection with the deterministic Skomkhod problem
of probability theory. An example is given o show that Nash equilibrium need not be
unigue.

We now indicate some connections with previous works, Besides [24], HIB equa-
tions with state constraints have been considered by [9]; see [3, 13] for more infor-
mation. There have been quile a few papers where Skorokhod problem, deterministic
as well as stochastic, has played a major role in control and 2-person zero-sum dif-
ferential game problems. In many of these, the dynamics of the system is governed
by the z-part of the solution o Skorokhod problem; ofien the so called Skorokhod
map 15 assumed o be Lipschitz continuous on the function space. Moreover the re-
flection terms are essentially wken to be constants. Existence and unigueness of the
value function as viscosity solution to appropriate PDE are often studied. Costs comre-
sponding o singular controls (which are similar to control costs considered here) and
ergodic controls are also investigated. To get a flavour of these one may see [1, 2, 6]
and the references therein.

There seems o be quite a few papers on stochastic differential games with N
players {and on two player nonzero sum stochastic differential games), with a non-
degenerate diffusion term in the dynamics. While [4, 5, 16] vse regularity resulis
for systems of nonlinear elliptic/parabolic equations to obtain Nash equilibrium, [7]
adopts an approach involving occupation measures. References o eadier works are
ziven in these papers.

In contrast, there do not seem 1o be many papers dealing with the determministic
sel up, that is, on differential games with N players or on two-player nonzero sum
differential game; part of the reason could be the absence of a uniformly elliptic
term in the Hamiltonian and the consequent non availability of regulanty resuls for
the resulting system of PDE’s. Olsder [15] illustrates some of the difficulties and
curious aspects in the context of two instructive examples concerning Lwo-person
nonzero-sum differential games. Cardaliaguet and Plaskacz [ 10] deal with a class
of nonzero sum two person differential games on the line; even with an apparently
simple looking dynamics, there are unexpected features like having o discriminate
between interesting and uninteresting Nash equilibrium feedbacks; the approach here
mvolves explicitly computing the suitable solution i small intervals. Bressan and
Shen [ 8] consider n-person differential games in one dimension for which the system
of HIB equations is strictly hyperbolic, and derive Nash equilibria for such siations.
Besides giving references to earlier works, these three papers illustrate some of the
difficulties inherent in getting global solutions to d-person differential games.

To the best of our knowledze, there is no previous work dealing with d-person
differental games with state space constraints. Our paper gives an example of a sit-
uation where a system of first order nonlinear PDE’s, with constraints and involving
discontinuous Hamilonian, can be dealt with using the viscosity solution approach.
Moreover, the connection with Skorokhod problem also indicates a way of oblaining
the constrined viscosily solution.

We now fix some notations. For 1 =i =d, v e B¢ we denote Yoi = (Floeees
Vi ls ¥itle---. ¥a). Similady for an BY-valued function g(-), 1 =i < d, we wrile
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g-i)=1{g1{:)..... gi—10) s () o ga(-)) where g} = (g1(-). ..., gal-)). We
shall ofien identify gi-) = (g (-), g_i(-)).

- For a function (r, y,z) + f(r,¥,z) on [0,0c) x BRY x B¥ denote dy f(r,y.2) =
2 (r, v, 2),

oy

af af
vy firy.z)= (il[r, L4 ,il[f'. ¥.Z ) :

dv dvy
il af
Veflry,2)= (%{r, VoZliesi H'Tflrl[f'. ¥ Z ) i

Dy o f = (Vy £V f) = gradient of f in (y, z)-variables. We may also write x =
v, z). B () denotes the space of all & x 4 matrices with real entries. The super-
scipt NV (resp. U7 will be used to indicale that the discussion is in the context of Nash
(resp. utopian) equilibnum.

2 The Set Up and HJB Equations

In this section we describe the constrained d-person differential game in the orthant.
Two notions of optimality, viz., Nash and utopian equilibria are discussed. Come-
sponding systems of HIB equations and the conditions at the boundary are derived
for the finite horizon problem. If the Hamiltonian, the optimal control and the value
function are sufficiently regular, it is also shown that the value function is a con-
strained viscosity solution to the HIB equation.

The hypotheses are more general than alluded to in Sect. 1. The drift and the
reflection field can be time, space and control dependent. Rijp, § 5 f can also take
positive values.

G={reB:x =0,1<i=<d} denotes the d-dimensional positive orthant.
We have two functions b [O.oc) x BY x BY - B4 R - [0,00) = BY x BY —
Bl () called respectively the drift and the reflection field; denote bis, v, z) =
(s, vozho oo bgls, voz)) and Ris, v, z) = (R (s, v, 200 =i j=a. We make the
following assumplions:

(Al) For 1| =i = d.b are bounded measurable; also (v, z) — bi(f, ¥, 2) are
Lipschitz continuous, uniformly in r; let [bir, v.2)| = .1 =i =d. =

(A2) For 1 =i, j =d, Rj; are bounded measurable; also (y, z) — K;;(t, v, z) are
Lipschitz continuous, uniformly in r. Moreover Bj; = 1 for all i (this is a suit-
able nomalization).

(A3) For i # j there exist constants Wi such that [K(r, v, zi = Wi Set W =
({Wi; ) with Wi; = (0 we assume that a{W) < 1, where (W) denoles the
spectral radius of W,

Remark 2.1 Recall the situation considered in Sect. 1. For § # j let Rj; = —Wj;
=01 Z_,u‘;h‘ IRjil= Z_,u‘;ﬂ' Wi =1 for all i, then (0,0, ..., ) can be a trap for the
system, as all the compames need money at the same tme 0 avold moin, and there
is no scope for getting it from external sources. From the above it is clear that 1 is
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an eigenvalue of W in this case. Thus (A3) ensures that such a contingency does not
arise and hence we have an open system.

When (A3) holds, note that
(IT—W) ' =T+W+WI+Wip ... (2.1)
is o matrix of nonnegative lerms. We shall choose and fix f = 0,1 =i < d such that
O=((@-W)"'fuszh, i=12...4d, (22)

where f is as in (Al).
Fix the terminal time T = 0. For s e [0, T, v.z € G, ui-) = {u1(-), ..., wai-h)
suchthat 0 =n;(-) = f;, 1 =i =d, set

vity =y +f uiridr, (23)
(1) i=z(ti5, vz o ul))

=z+ f bir, yir), zir)dr + f Rir. vir), zir) uiridr (2.4)

equivalently, for 1 =i =d.t =«

¥ilf) =¥ +f i (ridr, (2.5)

zilt) = zi + f bilr, vir), z{r)dr + f wiir)dr

+3 f Rij(r, y(r).2(r)u j(r)dr. (2.6)
& J,

Clearly v;i-) = 0, well defined and nondecreasing. By the standard assumptions (A1),
{A2) the integral equation (2.4) has a unigue solution. We shall treat { vi-), z(-)) as
state of the system. The pair of (2.3}, (2.4), or equivalently (2.5), (2.6), forms state
egquations. We shall consider only controls wi-) that take values in the compact set
[T, [0, ). For s €0, T], v, z € G write
Uis,y.2:T)={u(-) = (u1(-),..., wa(-)) 02w () = Bizi(-) =0,

on [s,T]1<i=<d) (2.7)
to denote the set of feavible contiods; in (2.7) z;(-) is given by (2.4) or (2.6). The cost
Sfunction for the ith player is given by

Jils.v. i Toul-))
= gi (T, ¥(T),z(T))

T T
+f Li(r, v(r), z(r))dr +f Mi(r, vir), z{r)u (ridr, (2.8)
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where the three terms on the dght side denote respectively terminal cost, mnning
cost and control cost. A control u*(-) € (s, v, z; T) is called a uropian eguilibrium
inddis, v,z; T)if

Jiso v T (N = Fils, vz Toul-)) (2.9)
for all w e Wis,y,z:T), i = 1,2,....d. Similarly a conrol w*(:) =
(i) ..., wit-)) e Wis, v, z: T is called a Nash equiflibrium in U(s, y,z: T) if for

i=1,2,....d

Jils v,z Tout ()
=inf{Ji(s,y. o Tou()) sug =ulju €U(s, y. D) (210)

Remark 2.2 Under (Al1-A3), by the proof of Theorem 5.1 of [19], w;(-) = ({(f —
Wil f), 1 =i =d, is a feasible control. So Uis, v, z:T) # ¢ for any s
[0,T], v,z € G. This is a reason why we consider only those controls taking val-

ues in 7,10, £ 1.

Forfixedl =i =<d, letu_;{-) =(u1{-), ..., i), ey, -o., iy (-)) be such that
O=ujlry=f;, O0=r=T, j#1i (2.11)
Foranyse[0,T).yv.zeG.i=1,2,..., d () satisfying (2.11) we shall assume

His, y,z; T,u_;(-))
= () 0= () = B (o (N eUis, y .z T £ ¢ (212)

A sufficient condition for (2.12) to hold is given in an Appendix.

To derive the system of HIB equations with state constraints, we consider first the
case of Nash equilibrium.

For s, v, z,u_; as above, where i is fixed, define the value finction for ith player
by

VLN'”{J"~ ¥.z: Tou_i(-))
=inf{ i, v.o: T (wi (w0 g Wiz, v,z Toug)l. (2.13)

‘ollowing the approach given in Sect 14 of [13], we get the following dynamic pm-
gramming principle.

Theorem 2.3 (i) Assume (Al), (A2). Fix 1 =i =d; fet u_;(-) sarsfv(2.11). Assume
(212). Lets e|0, T),v.ze Gu; eldis, v.z: T, u_;). Then fors =t = =T,

v[.’ﬁ".l‘]{rh _1-‘{fl }1 Z{f‘l}: T, H—I{'}}

< V[NIJI]{-rI~ }1{!2}1 Z{f‘:::l: T,H—I{'}}

A f IEL;I[!Z yir), z{r))dr + f % Mi(r, y(r), 2(r) g (r)dr,  (2.14)
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where (v(-), z(-)) is the solution to state eguation corresponding to the control

(oej, 1),
(i) Under the above hvpotheses, u}‘{-}l is optimal in W(s, v, z: T,u_;), that is,

VWOis vy T (D= Jils, y,z: T, (uF, u_j)),
if and only if for anvt €[5, T

VWNOis vy Tou_ ) — VI 50, 200; Tou_y)
:f Lilr, ¥(r), E{r}l}dr+f M;(r, #(r), Z(r))u(r)dr, (2.15)

where (v(-), Z(-)) is the solution to state eguation corresponding to the control
(17, u_i). Moreover if (2.15) holds then for any t € [s, T, the restriction of u}(-)
to [t, T is optimal in Wi, (), Z0r); Tou_g).

(i) Assume (A1-A3). Then u* (-) e s, v,z T) iv a Nash equilibrinm if and only
iffors=h=fHh=Ti=12...d

VD (e, y* (), 250D Tow® ()

= VWD, y* (12), 2% (12): T, 0 5 (-))
o 2
+ f Liir, v*(r), 2"(rhdr + f M, v (), Z¥(r)ulirdr, (2.16)

where (v*(-), 28(-)) is the solution to state equation corresponding to w*(-). More-
over, when (2.16) holds, for any t € |5, T| the restriction of u*(-) to [t, T] iv a Nash
equilibrium in W4t v, 251 T).

Poaof (1) Let s =1 =t = T and 6;(-) € Witz ¥vitra), zit2); T, u_;(-)). Define
aiir)y=uir), n =r < 2, 4;(r) = 6;{r), t» = r = T. By unigueness of solution to
state equations (2.3}, (2.4) it follows that a; (-) € dir, vin ), 200 ) T, u_i{-)) (this is
a switching condition). By definition of the value function we have

v[N'”{fh F{HLE{IL}I: T,H—I{'}}
=Jdiln.yln), zln): T (), w_il-)))
s Flpiptn)s 2B TGOt 0)

+ f_ Litr, vir), zir))dr +f M, yird z{riu;(ridr

where we have used the fact that the solutions corresponding w the controls (w;, w_;)
and (6, u_;) agree up tofz. Taking infimumover ;) € iz, virz), z(t2): T ;i)
we et (2.14).

(it) From the proof of part (1) it is clear that optimality is achieved if and only if
equality holds in (2.14); this proves (i),

(ii1) This is a easy consequence of part (i) and the definition of Nash equilib-
rium. O
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Fix i,u_;(-) satisfying (2.11); assume (2.12). It is convenient to define, for
se[0,T], y.ze B e € [0, oc), B -valued vector by

0

(N, i) ( ¢ ) 0 0
FU0 s azdedi= | huate) o+ Biioyis c . (20T
bis, v,2) e H_j(5)

where (c, n_;(s)) := (uy(s),..., wj_1(8), ¢, Mig1(8), ..., g(5)), the square matix
onr.hs. is of order 24, and the scalar by

CWV (g, (v.2),¢) = Lils, v, 2) + M (s, v, 2)c. (2.18)

1t is to be kept in mind that w_;{-) acts as a parameter. In this notation stale equations
(2.3), (2.4) can be wnllen as

d (:E;) = V0 (30, 20, wi ()t £ =5 (2.19)

with initial value (v(s), z(s)) = (v, z), and the cost function for ith player as
Jilsov. Tl Do u_i(-)))

T
=g.-{T,_v{T},z{T}}+f CWr (v(r), z(r)), u; (r))dr. (2.20)

Next the Hamiltonian H'V-"' (for ith player in case of Nash equilibrium) is defined
by

HY s (v.2), p)

=sup{[—{p. fY s, (v.2).0)) — CH¥ (s, (v, 2). c)] : 0= ¢ < B}
(2.21)

fors =0, y,ze R4, p e R,

Assume that u_; is right continuous, and that V' is continuously differentiable.
Assume also that £, B are conlinuous in f.

Let s € [0, T), v,z € 7 (that is, interior point). Let 0 = ¢ = f;. Then there is
wil-) € His. v,z Ton_i(-)) which is right continuous and lim, ; 0;(r) = . This
can be seen as follows. As z € (G 1s an interior point, for the control (e u_;) one
can tun the state equation till 7. where 7 = inf{t = 5 : z(1) & G}. Choose 1y £
(s, 7 A T);cleary zin) € G. By (2.12) there is v;(-) € Uity vito). z(to); T, u_i (-)).
Take uj(r)=c,ifs =r=tpujri=virLtn=r=T.

Denote V(s, y,z) = V¥ (s, y, z: T, u_i(-)), f(s. (3. 2). ©) = fN(s, (3.2).¢),
Cis,(y.2),c)= CNyg, (v.z),c). By (2.14) in Theorem 2.3(1) we get

doVis, v.2) + (Do Vis, v z), fils, (v, 2).edy+ Cls, (y.z).c) =100, (2.22)

where iy = % and Dyy 5 = gradient inthe (y, z)-variables. Asc e [0, ;] is arbitrary,

we gel
inf{[daVis, v, 2) +{Dp o Vis, v.2) Fla (o el + Cls. (v, 2). ) : 0= = i}
> 0. (2.23)
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o) e Wis, v,z Tou_(-)) is optimal, and right continuous at s, then by Theo-
rem 2.3(ii), note that equality holds in (2.22) with ¢ replaced by w;(s). Therefore V
satisfies

inf{[daVis, v, 2) + (D o Vis, v.2). Fls (2 el + Cla, (v zh, ed ] e € [0, fil}
=1 (2.24)

With the Hamiltonian introduced in (2.21), we write (2.24) in the conventional (but
equivalent) form as

—dVis, v.2)+ HY (s, (v, 2), Dy Vis,y, 2 =0, (2.25)

for (s, v.2) [0, T)x G = G In (2.25) u_;{-) acts as a parameter. Equation (2.25)
is o Hamilton-Jacobi-Bellman eguation.

Recall that we admit only those controls such that zz(-) = 0 for all k. This re-
striction implies a condition at the boundary, and leads to what is referred o as a
“problem with state constraints™ in the literature. Soner [24] was the first to consider
such problems; one may consult [3] or [13] for detailed discussions. We describe
below the state constraint in our context.

Since y(r) € G automatically, note that u; (-) is feasible if and only if (y(r),z(1)) €
G x G for all r; hence G x G is taken as the state space. For v,z € BY denote
h={jiyj=0LL =k =0} Clearly (y.2) e G x G)& [, Ul £ ¢. For
(v.2) € MG x G) let Njy oy = setof all unitinward normals at (y, 2). It is not difficult
to see that n € Ny, ;) < n is a convex combination of e, e434 with j € I, ke [
where ep's denote unit vectors in B,

Let (v, z) € (G = ). Suppose there is a feasible control w; (-) with some initial
data and ¢ such that (y{t), z(t)) = (v.z) where (v(-), z(-)) 15 the solution 0 the state
equation (2.19) corresponding to the control w; (-). Since (v(r),z{r)) is a boundary
point note that (v{r),z(r)) € G = G forall r = 1 < {:{"’IU]_F[” ; njl =0foralne

zlri—zir)
N,z r = 1. Hence {:d{ ), n) =0 for all n € Ay zy. So by (2.19) we get

yin
Il

{f""‘f"']{r, (v.2)ui(t)),n} =0, ¥neNy . (2.26)

Note that s (-), 1 ;(-), j # i are always nonnegative (even for i, j & 1) So by (2.17),
the “boundary condition™ (2.26) is essentially

bi(t,y,2) +ui(t) + Y Rielt,y, Duelt) 20 (227)
£=Ei

if i € I., and
Bpdr, v,z + R, vz (i) o) + Z Eeelt, vo2hue{t) =0, ki, kel
Y

(228)

again remembering that i uj(-), j # f are fixed.
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Let (v, z) € G = G). Let wi(-) eldis, v,z T,u_;{-)) be optimal and right con-
tinuous. Denoting VM0, f N0 VD) meepectively by V, f,C,as V e CH([0, T x
G ox G), f is continuous, by the dynamic programming principle we get

dpVis, ¥.2) +{Dp o Vis. ¥, 2, fs (y.2) wi(s))} + Cls. (3, 2), w5 (s)) =1
(2.29)

Assurme that the Hamiltonian 1s unnLi_nunu_s. As 223 holds on [0, Ty = G = Gt s
now clear that it is true on [0, T] x G x G as well. Consequently by (2.29) we now
gel, denoting H™V-" by H |

His, {1 z), DL}'.:] Vis, ¥, zhl
=—{Dyy a Vis, 3. 2), fis, (v, 2),u;(8))} — Cls, (y,2), usi(s)). (230

MNow by the definition of H with p = Dy, ,V(s, y,2) —yn.forany y =0,n € Njy 1
by (2.26), (2.30) we get

His, (.20, Dy aVis, v, 2 —yn) = His. (v, 2), Dy Vis, v 2)). (231)

Thus the state constraint (2.26), which is essentially (2.27), (2.28), implies that the
implicit inequality (2.31) has 1 be satisfied by Dy, -y V'"") at a boundary point. The
heuristics above on stale constraints have been influenced by the discussion on pp.
102-103 of [13].

It is well known that “viscosily solutions™ is the appropriate framework 1o treat
Hamilton-Jacobi-Bellman equations; in particular “constrained viscosity solutions™
form the proper context to take care of problems with state constraints. Bardi and
Capuzzo-Doleetta [3] and Fleming and Soner [ 13] have very nice treatment of vis-
cosity solutions 1o HIB equations when the Hamiltonian is continuous.

We now rephrase some key definitions from [3, 13] in our context. Assume that
the Hamiltonian H'V-") given by (2.21) is continuous.

(1) A continuous function i is said 1o be a viscosity subsolution o the HIB equation
225 on [0, T)x GxGifforanys [0, T), v G,z € G, any C'-function w
such that {(w — w) has a local maximum at (s, v, ) one has

—tgwis, y.2) + H™ s, (v, 2). Dy cwis, v, z)) =0,

(i) A continuous function w is said o be viscosity supersolution o (2.25) on
0.T]x Gx Gif forany s €[0,T],y € G,z € G, any C 'function w such
that { — w) has a local minimum in [0, 7] = & = & at (s, ¥, 2) one has

—dnwris, v,z + H[N'”{.\', (v.z), Dy cwis, v, z)) =0

(i) If 1 satisfies both (i), (ii) above then it is called a constrained viscosity sodution
to the HIB equation (2.25)on [0, T = & = (7.

Note that in (1), (i) above we use the same Hamiltonian function H'"". This s
in contrast o the sitwation m Definition 3.2 later, where we deal with discontinu-
ous Hamiltonian; in Definition 3.2, we will need to consider lower and upper semi-
continuous envelopes of the Hamiltonian, respectively, for the subsolution and the
supersolution.
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We need an elementary lemma first, whose proof is given for the sake of com-
pleteness.

Lemma 24 Let D € B* be a convex set (not necessarily smooth or bounded).
For £ € 0D let Ni denote the set of unit inward normal vectors at £. Let g be a
C ! -function and x € dD such that g{x) = min{g(x'): x' € D}. Then Vg{x) = yn
for some ne N,y =0,

Proof We may assume that |Veix)] & 0. Suppose the result 1s not true. Then there

is v’ € D such that {Igittil A — _r}J'I < () {since D is convex, v € 40 we haven €

Ny e nl=1 and {£ — x,n} = 0 ¥E € D). Clearly x" < x; put £ = ItJ%tI Then
IVgix). £y <0
Now, by the mean value theorem, for any 0= r < 1 there is " € (0, r) such that

glxt+ré)=glx)+ri{Vglx +r'E), £,

Since g attains minimum at x {over D) it follows then that (Veg(x + r'£), £ = 0.
Leting r | 0, as g 18 ! Jwe gel (Vg(x), £} = 0 which is a contradiction. This proves
the lemmi., |

Theorem 2.5 Assume (Al), (A2); let b, R be continuous in t, v, z. Fix i u_;()
satisfving (2.11); also let u_;(-) be continnous. Suppose the Hamiltonian H'V )
given by (2.21) is continuous. Assume (2.12). Assume that the value function
VIO LT a0 e CHIO,T) % G x G), and that there is a right continuous
optimal control wi(-) in Wis, v, z: T,u_;(-)) for any s, v,z. Then VWD is a con-
strained viscosity solution to HIB equation (225)on [0, T] = G x G with terminal
valwe gi(T,-,-).

FPiroaf First observe that our hypotheses ensure that the arguments given in heuristic
discussion above are valid. By the definition of constrained viscosity solution, we
need to show that V = V' is a viscosity subsolution on [0, T) x G x G, and is a
viscosity supersolution on [0, T] x G x G.

Let(s, v.2) e[0,T)x Gx G.Letw bea ! “function such that (V¥ —w) has a lo-
cal maximum at (s, v, z). Then dywis, v, z) = dpVis, v, z) if s = 0, —dgwis, v, z) =
—igVis, v, z) if ¥ =0 Since (v, z) is an interior point, we have Dy nwis, y.z) =
Dy -1V (s, ¥, ). Therefore, as V satisfies (2.25)

—dpwis, v, z) + HWVD (g, (r.z). Dy nwis. ¥, 2))
< —8V(s 3.2+ H¥ (s, (3,2), Dy Vis, ¥, 2) =0.

Thus V is a viscosity subsolution on [0, T) x G x G In a similar way it can be shown
that it is a viscosity supersolution on [0, T) = G = G.

Remains o consider the case when s € [0, T, (v, z) € G = G). Let w be a
€ !function such that (V — w) has a local minimum (in [0, T] x G = G) at (s, v, 2).
It is then easily verified that —dgwis, v, z) = —dg Vs, v, 2). Also there is o ball B
around (v, ) such that

Vis, v.z) — wis, v.2) = min{ Vs, _1;', ) —wis, _1'I,zr}| ¥ {_1.‘1, iedn {f_F * l"_}}l}.
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As BN(G x ) is a convex set in B, by Lemma 2.4
Dy olVis,y.z) —wis, y,2)l=yn, forsomeneN 5.y =0

As (v, z) is an interior point of B, note that # is an inward normal 10 (G = &) al
(v. 2). Hence

Dy qwis. y.2) =Dy o Vis. y.2) — yn.
Consequently by (2.31) and (2.25) we now oblam

—dpwis, v,z) + HWD g, (¥, z), Dy s, v, 2))
= —ig Vi y. )+ HY s, (v,2), Dy Vs, v.2) =0.

Thus V is a viscosity supersolution to (2.25) on [0, T] x G = G, completing the
proof. O

Remark 2.6 Note that if w_;(-) continuous, and the vanouos coeflicients are also
continuous, then the Hamiltonian H'™" is continuous. So in case a Nash equilib-
rium can be achieved in the class of continuous controls we have the following.
Suppose w*(-) = (u7(-). ..., wii-)) is a Nash equilibrium. In addition assume that
w*(-) is continuous and (s, v, z) — VIV v 21 T PN =dils 3 n Tout() is
in CY{[0,7] x G x G) foreach i = 1,2, ....d. Then by Theorem 2.5 (s, v, 2)
VN v,z T, w;(-) is a constrained viscosity solution to the HIB equation (2.25)
with w_;(-) replaced by 1 (), for each 1 =7 =d. So we will have a system of in-
terrelated HIB equations imvolving continuous Hamiltonans with state constrnts.
However, in general the value function will not be smooth; nor can one hope 1o have
a continuous Nash equilibrivm. Moreover the Hamiltonian will not be continuous in
general as we will see later. An interesting question s when can one hope 1o have a
Nash equilibrium in the class of continuous, or at least piecewise continuous controls;
in such a case we may not need to go beyond the class of continuous Hamiltonians.
We do not have an answer. This may perhaps be related to similar gquestion concem-
ing the solution to the Skorokhod problem, in view of Section “The SP Connection™
in an Appendix.

We now briefly indicate the HIB equations in the case of utopian equilibrium; note

that I—[:-'r=| [0, ;] can be taken as the control set. As before G x G is the state space.
arse[0, T)Ly.zeR ue 1_1}’=| [0, 8; | define B2 -valued vector by

3 1L I T _ It 0 0 0
£ = (-’?L‘h .1‘~E}') T (U' Ris.v. z}') (ra) - ()

So the state equations (2.3}, (2.4) become

d (13;) = U, (wle), 2(0), ule ) (2.33)
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with inital value {(yi{s), z{s)) = (v, z) corresponding 1o the control u(-). Define a
scalar function fori =1,. .., d by

W5, (v, 2), ) = Lils, ¥, 2) + Mi(s, v, 2)ui. (2.34)

Note that €'Y given by (2.18) and C'Y'" above differ in their domain of definition;
so C'90 s (v, 2).u) = €W (s, (y,2), u;). Cost function J; for the ith player, cor-
responding to the control ui-), is the same as before. The value fimetion for the ith
player is

VU s, vz Ty =inf{Jifs, y, z Towl) tu() e Uls y. 22 T} (239)
The Hamiltonian is, for s € [0, T], v,z e BY, pe B, given by

HY s (v.2). p)
14
=sup{[—{p. fY)s, (3.2).0)) —CYU D (s, (y,2).u)) :u € I—[[ﬂ,ﬁ.-l .

i=l1

(2.36)

In a manner analogues w the carlier discussion, the HIB equation in this context is
seen Lo be

—dgu(s, y. 2) + H"Y (s, (v, 20, Dy i, v, 2))=0. (237)

The state constraint once again keads w a “boundary condition™ which s the ana-
logue of (2.26). Together with the HIB equation, this in tum implies the implicit
inequality (2.31) for the Hamiltonian H'" under suitable regularity.

Using Remark 2.2, and proceeding as in the proofs of Theorems 2.3 and 2.5 with
obvious modifications we get the following result.

Theorem 2.7 (i) Assume (A1-A3). A contmd w*(-) € Uix, v, z: T) is a wropian equi-
fibrium if and enfy if fors =n = =T, 1 =i = d,
VD (g, v (1), 25 (0); T)

= VvWilig, y* (1), 2%(12): T)

+ f_ Li(r, ¥*(r). 2*(r))dr +f EM"'[’? ¥ (r), 2 (r)uf (r)dr,
" " (2.38)

where v (), 2*() is the sofution to state equation corvesponding to the control w*(-).

(i) For fived i, suppose H'Y" is continuous, V¥ e CY[0,T| x G x G) and
that the optimal control is continuous. Then V'Y is a constrained viscosity solution
tor the HIB eguation (2.37).
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3 Viscosity Solutions

In this section we take a closer look at the value functions being viscosity solutions
to the appropriate HIB equations derived in Sect. 2, as well as the gquestion of unigue-
MEss.

We consider the case of Nash equilibrium first. As already mentioned in Re-
mark 2.6, the hypotheses of Theorem 2.5 are oo strong. In particular, by (2.17),
{2.21) note that the Hamiltonian H'Y" depends on u_;(-) and hence can be dis-
continuous in general. So even to define viscosity solutions we need to introduce
semicontinuous envelopes of the Hamiltonian. Moreover, as we shall see uniqueness
need not hold.

Fix 1 =i =d, u_;(-) satisfying (2.11). We continue 1o assume {A1-A3), (2.12).
Eecall that the HIB equation 1s

—dov(s, ¥, 2) + HY (s, (3, 2), Dy 5yvis, ¥, 2)) =0, (3.1)
where H'V/! ig given by (2.21).

For notational convenience write H = H'WY Forr e [0, T].y.ze G, p e B¥
sel

Hoir (v, z), p)
=lminf{H (", (. 2). p): (', (v'. ). p) = (t.(v. 2. p)
in[0,T] x G x G x B*}

= liminf{H @' 0" 2).p): (. 0. D). p) = (.02, ) <6,
0<t =T,y 7 €G) (3.2)
which 1s the lower semicontinnous envelope, and

H*(t,(y,z). p)
=limsup{H{t', (v, 2). p):(t'. (. 2). p)y = (1. (y. 2). p)
in[0.T] x G x G x B*}
- L:m sup{ H(t', 0, 20 p )1, (7 2D p— (v 2, pll =8,
0=t =T,y 7 €G) (3.3)
which 1s the upper semicontinuous enve lope.

Lemma 3.1 Ler b, R, L;, M; be hounded and continous; let 'V C'™V0 pe de-
fined by (2.17), (2.18) respectively. For 0 <t <T,v.ze G, pe B¥ 0= c < f; de-
note

Rt (v.2) pio)y=—{p. fY0 (v 2.0y — Ve (v, ). 0
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and

helt, (v, 2), pi o) = liminf{h(e", (v, 2D, plio) 1 (. (7. 20, py — (. (v, 20, PO
¥, (v, 2), pich = limsuplhit’, (¥, 2 phe) (. L 20 p = (v, 2. p) ).

Here ¢ £ [0, 8] acts ax a parameter. Then

Heir v, z), py=maxihir, (v, 2), p: O), A e, (v, 2), p; B},
H*(t, (y.2), p) = max{h™(t, (y. 2), p;O), h*(t, (v, 2). p: Bi)}

Pmwof For notational convenience write £ = (1. (v, 2), p) e [0.T]x G x G x ™.
Observe that /(E; o) = ¥ (E)e + PE), where

d
W)= —(.r?x + Z Pase Reilr, v, z)+ Milr, v, :})

=l

15 a4 bounded continuous function, and <2(-) 15 a bounded measurable function. As f
15 linear in o, for fixed £

Hig)y=suplhi(E:c):0=¢ = i} = ©(E) + max{0, W{E)H;}.

For £ fixed, let H (&) = iminf{H (") : £" — £} Then there is £" — £ such
that $(£") 4+ max{0, W{E") ;1 converges o H.(£). By continuity of W(-) we
have max{0, V(") 8} — max{0, (£ 8. Hence (") converges o H.(£) —
max {0, W (£) 8} I now follows that lim $(E") = liminf{P{E7) 1 £°— £} if not, us-
ing continuity of W{-) we can easily get a contradiction to the definition of H.(£).
Thus

Ho (&) = liminf{®(£") : £ — £} 4 max{0, ¥ (£) 5}
= max{[liminf®(£")], [(liminf & (E')) + ¥ (&) 5]}
= max{h (& 0), hdE; Bl

where the last equality follows once again using continuity of W, The second asser-
tion of the lemma is proved similady. O

Deefinition 3.2 (a) A locally bounded function v is said 1o be a viscosity subsolution
to the discontinuous HIB equation (3.1)on [0,7) = & = & if for any s € [0, T,
YU,z G, any ¢ ' function w such that (v —w) has a local maximuom at {5, v, 2)
one has

—ipwr(s, ¥, z) + Hels, (v, 20, Dy cwis, v, z)) =00 (3.4)

(b) A locally bounded function v is said to be a viscosity supersolution 10 (3.1)
on[0,T] x G =G ifforany s € [0,T], ¥ € G,z € G, any C'-function w such that
{v — w) has a local minimum in [0, T] » & = & at (s, v, z) one has

—dpwis, v, z) + H* s, (v, 2), Dy wis, y.z2)) =0 (3.5)
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ic) If v satisfies both (a), (b) above then it is called a constrained viscosity solution
Ww(3on [, T]|x G xG.

Note [3](see Remark V4.2 and Exercise V.4.1) very briefly discusses viscosity solu-
tion of a discontinuous HIB equation. However we do not know of any other instance
of a discontinuous HIB equation with state constraints.

If the Hamiltonian is continuous, then it is clear that H, = H = H* and hence the
above definition is basically the same as the one given in Sect. 2.

Theorem 3.3 Let i, u_;(-) be fived such that 0 = u;(-) = B;,j #1i. Assume that
bR, Li M, gi are bounded continwous. Assume that (2.12) holds. Suppose the
value function WN"'], defined by (2.13), isv a bounded continuous function on
[0,T] % Gx G. Then (s, v, z) — V(s v, z: T, u_;(-)) is a constrained viscosity
sofution to the discontinuwous HIB eguation (3.1) on [0,T] = G x G with terminal
value gi(T,-,-).

Proaf Our proof is influenced by the proofs of Proposition [1.2.8, pp. 104106, and
Theorem IV.5.7, p. 278 of [3]. For simplicity of notation we shall drop the super-
scripts V. 1.

Subsodution: Let (s, v, z) € [0, T) = ¢ = G, Let w be a C ' “function such that
(V' — w) has a local maximum at (s, v, z). Take w;(-) = ¢, where ¢ is an arbitrary
point in [0, f;], and denote by y(-), z{-) the solution 1o the state equation (2.19) cor-
responding to the control wi-) = {u; (), u_; (-)) with v{s) = v, z{s) = z. As (s, v.2)
is an interior point note that z(s") € & for all " sufficiently close o & with 5" = 5.
As (V — w) has a local maximum at (s, v, z), by (2.14) in Theorem 2.3 (dynamic
programming principle), continuity of v{-), z(-) and (2.18) we get

wis, y, ) —wis’, yi5), 28" = Vis, v 2) — Vis', p(s'), 2(57))
< f ey, 2())dr.
Aswis C l, by state equation (2.19) and (2.17)

wis, ¥,2) — wis’, _1.'{.1.'1}, (s N

o

= f < wr, y(0). 2 )dr

= . m_u,r,_tr,;r ¥

=—f [dpw(r, v{r), 2(r)) + {Dyy wir, yir), ziedh, flro(yvir). z(r)), ch}ldr.
Consequently we get

—f [dow(r, (). 2(r)) 4+ { Dy wle, wir), z(ed), Fir (r(e), z(e)), )}

+ Cir (vir).zir).c)ldr =0
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for all 5" sufficiently close 1o s with s = 5. Hence
Iiﬂifnﬂ—ihwl[r. vir), z(r)) + hlr (v (), 2ir)), Doy pwir yir), z(e)) e)l =0

where fif---) is an in Lemma 3.1 As vi-), z(-), dopw, Dyy yw are continuous it now
follows that

—dpwis, v, 2) +heds, (v z). Dy pwis, y.zh: o) = 0 (3.6)

forany 0 =<c = f, where i (---)is as in Lemma 3.1, Now use (3.6) and Lemma 3.1
Lo get the required conclusion (3.4).

Supersofution: Let (s, v, z) € [(), T| = G » G (it could be a boundary point). Let w
be a €' -function such that (V —w) has a local minimumin [0, 7] x G x G at (s, y. 7).
Lete = 0,5 € (s, T|. Take 5 = ¢(s" — 5). By definition (2.13) of the value function
there exists uw;(-), possibly depending on ¢, 5" such that (1 (-), w_; (-)) € Uiz, v.2)
and

Vis,v.z)=Jils, vz T (i, u_i)) —

_ f CEGE) AN m

5

+ Ji(s', 7(5), 26 T, (s, ) — €l — 5)

o

= f Clr (Fir), 20r)) ai(r)ddr + V(" 7(s7), 2(s)) —els" —3),
where (v(-), Z(-)) denotes the solution o state equation (2,19 comesponding o the
control (ze;(-), w_;(-)), and we have vsed (2.8), (2.18). Hence

-+

Vis, . 2) — V(s", 5(&'), 2(")) = f T Ol GO 2O, F O —es'—s)

for all 5" sufficiently close w0 5 with 5" = 5. Note that (¥(r), Z(r)) € G = G for all
re 5. T) as (i 0_;) 18 a feasible control. As (V' — w) has a local minmum in
[0,T] x G x G at (s, y,z). now an argument similar to the one in the first part of
the proof, using dynamic programming principle, state equation, and continuity of
-0 20D, gives

L

f. [—dpwir, ¥y, Z0r)) + hir (¥{r) Z0r)), Dy nwir, ¥(r), 200 apr ) ]dr
> —els —s).

Therefore by the definition of the Hamiltonian
f . [—dowr, ¥r), 20r)) + Hir (¥ir). Z(r)), Dy mwir, vir), 2ir)))dr

= —els — 3.
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So, with ¢ = 0 fixed, for any &° € (s, T'| sufficiently close to s, there is a feasible
control (-} such that
sup {—dowir, ¥{r), Zr)) + H{r (v (r), 20r)), Dy qwir, y(r), 2ir)))} = —e.

s<rs
(3.7)

Note that the solution to the state equation is Lipschitz continuous in r, with the

Lipschitz constant independent of the control. Hence given any small neighbourhood

N of (s, v, z), there exists s € (5, T| sufficiently close to s such that (r, y(r), z{r)) €

NN{[s,.T] %G x G) for any r € [5,5"] and any feasible control u; (). Consequently

(3.7) now imphies that

supd —dgw(r’, ¥, 2 )+ Hie' (7 2) Dy qwr, ¥, 2700

(' ¥y, ZVeNN(s.TIx G xG)} = —e
whence it follows that
—dow(s, v, 2) + H*(s, (y.2), Dy mywis, y.2)) = —¢. (3.8)
As ¢ = 0is arbitrary (3.8) implies (3.5), completing the proof. O

Unigueness cannot be expected to hold in general as the following counterexample
indicates.

Example 3.4 Take d =2, Let A, B C [(), T] be subsets such that (1) AU B =
[0,T], AN B =g; (ii) both A and B are dense in [0, T|; (iii) m{A) = 0, m{B) = 0
where m 15 the one dimensional Lebesgue measure. Let K = K2 be constants.
Define wa(s) = K\ Ja(s) + Kafgis), 0 =5 = T. Let b=({0,0),R2 = Ry =
O, R=Rn=1M =1L =0 50 f is independent of (y, z) and is given by
fis.c) = (e, uzis), ¢, uz(s)) € B* x B and the Hamiltonian, for s € [0, T]. p =
(P1. P2 P3. pa) € R by

His, p) =sup{—i{p. fis.c)}—c:0=c = fit}
=sup{—uz(sMpz+ pa)—cll +p1 +pa):0=c = fi1}.

If 1+ p; + p2 =0 then clearly

= +pa), fseA, peR,
H{.‘i, p} — |{PI .F'-t}' s P i

—Kxipr+ps), WseB, pelt.
Consequently, as A, B are dense in [0, T],

Ho(s,p) =—Kazlpz+pa). if p2+ ps=0, (3.9
H*(s,p)=—Ki(p2+p4), ifp2+ps=0 (3.10)
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For a smooth function (s, y,z) + v(s, y, 2) such that 1 + 2 + 2% > Oand J& +
& = 0on[0,T] x G x G, nole that

—dpuis, ¥, 2) + Hls, D[_‘..T]u{:.', v.zh

du du
=——{'- ¥.Z)— Kr—{w._v.z} (3.11)
I:Z'.l‘
and
—dovis, y.2) + H* (s, Dy pvls, y.2)
du du du
=——(sy ) —Ki—(s 53— l—{\, v,z (3.12)
iy dva dzz
For the linear first order p.d.e.
du du du
—  K— —K— |5, 7.2)=0, O<s<T, y,z€G, (3.13)
iy dya dzz :
with terminal value
T, y,z2)=1—eMe 22, yzeGxG (3.14)
the solution is given by
vis, y,0)=1—e TSR (=s=T, y.z€0G. (3.15)

(Note that the general solution to (3.13) can be written in the form
iy

@(K5— 3, v2 —22) where @ is an arbitrary €' -function. ) Observe that cidaah o '“' =0.
In view of this define two functions

(s, y.2) =1 —e 2K T=8)g=y2p—22, (3.16)
vals, ¥, 7) = 1 — e 2RI =8l gmp2p—02 (3.17)

for 0 <s < T,y,zeG. Note that v((T, y,2) = v2(T, y,2) = 1 — e 22, By
{3.11-3.17) 1t 15 clear that

—dgvi (s, ¥, )+ H* (5. Dy soils, .20 =0, {3.18)

—igvals, v, 2) + Hels, Dy pnds, v, z)) =100 (3.19)
Since K| = K2, (3.11), (3.12), (3.16), (3.17) imply

—igu s, v, 2) + Hels, Dy poids, vz <0, (3200

—dgvals. ¥, 2) + H (5. Dy myuals, y.20) = 0 (321)

on [0, T] x G = G. Now using (3.18), (3.20) arguing as in Theorem 2.5 it can be
shown that vy 15 a constramed viscosity solutton to (3. 1on [0, T] = GxG. Simularly
(3.19), (3.21) lead 1o showing that v; is also a constrained viscosity solution 1o (3.1)
on [0, T] % G x G. Clearly vy, v2 are both bounded and Lipschitz continuous.
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In the above, take A = A U A where Ay is a Cantor set of positive Lebesgue
measure and Ay a countable dense set in [0, T']. Then there does not exist any fune-
ton fi-) on [0, T such that w2(-) = u{-) as and m{D) = 0 where D is the set of
discontinuities of @(-). Because, if so, then for a - a - 5 € Ap there exist 5, £ 8 with
sy — 5 and K| = w2(s) = u(s) = him, f{s, ) = limy, wis,) = lim, K2 = K2 which is
a contradiction.

We next consider the case of utopian equilibrium. When i is fixed, the usual de-
finitions work, uniqueness holds, and problem is somewhat easier; but it should be
kept in mind that to get a utopian equilibrium & control problems should attain their
minima at the same control.

For each fixed 1 =i = d we have a control problem with controls taking values in

“_10, B: 1. The HIB equation in this case is

—dovis, v, 2) + HY s (v, 2), Dy ouis, y,2)) =0, (3.22)

where H'WY) ig given by (2.36). If the data b, R, L;, M; are continuous in all the
variables, the Hamiltonian H'Y" is also continuous. So the definition of viscosity
solution given in Definition 3.2 and the vsual definition given in [3, 13] and recalled
in Sect. 2 coincide.

Theorem 3.5 In addition to (A1-A3) assume that b, R are continwous in the time
variable as well. Let g;, L, M; be bounded continuous. Assume that (5, v,2) —
VIU-Al(s v z: T), defined by (2.35), is a bounded continuous function on [0, T| %
G % G. Then VU v g constrained viscosity sefution to (3.22) on [0, T'] = GxG.

Pmof Along lines similar to the proof of Theorem 3.3, Because of continuity of f'%
and K'Y the proof is much simpler; for example there is no need for Lemma 3.1,
In fact the approach given in the proofs of Proposition 111.2.8 and Theorem IV.5.7 of
[3] can be more direcdy adapted. O

We now address the question of unigqueness. It is well known that this involves
proving a comparison result. Our approach below is inspired by the proofs of Theo-
rem [11.3.7 and IV.5.8 of [3], of course, with some crucial deviations/modifications.

Wedenote x = (1, 2) € R x R and (x) = {(y. 2)) = [1+ Z7_, 37 + X 1Y%
also ezg = (1,1,..., 1,1) € B with all the coordinates equal to 1. The following
lemma is the analogue of Lemma 111211 of [3], and the proof is similar.

Lemma 3.6 Let b, R, L;, M; be bounded and Lipschitz continuous in all the vari-
ables (including the time variable). Then fors, 5" e [0, T, x. x £ e G x G, o =,
8 =08=0
|H Y s x {alx —x" 4 E]+ 8x])
— H[f:'.l']‘:a_!‘x" {l‘J’[_r — +£] —HI_TII'::IE
=Koy —x"4+E|{ls =+ —x"|}
+ Koix)? + K& 2V + K{ls — 5|+ |x = &)}, (323)

where K depends only on bounds and Lipschitz constants of b, R, Ly, M;.
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Theorem 3.7 Assume (A3) and that b, R, L;, M; are bounded Lipschitz continuous

Junctions in all the variables (including the time variable). Let vy, vz be functions on
[0,T] = G = G such that

(a) vy, v2 are bounded uniformly continuous functions on [0, T | = G xG:

(b) vy iv a viscosity subsofution to (322)on [0, T) = G = G

(C) vz iy a viscosity supersolution to (3.22) on [0, T] = GxG:

(d) v(T, . )=v2(T.-.)on G x G.

Then vy =v2 on [(0,T] x G x G. In particular, under the above hivpotheses, if the
value function V'Y given in Theorem 3.5 is bounded uniformly continuous on

[0, T] % G x G, then it is the unigue constrained viscosity solution to the HIB equa-
tion (3.22) in the class of bounded uniformly continwows functions with terminal value

gi(T, .-
Pmof Suppose M = sup{ui(s,y.2) —vals,¥7.2) 13 [0, T). y.z f_f} = . For
& (0, M) note that there exists (3, %) = (5, 7.2) € [0, T] = G = & such that

iF, I —wF, X)) =4 Clearly s = T by (d). Choose L= 0. =0, p = 0, v =0
such that

1
245+ 2T —5) +v+2dp = 4
ensuring that
1
DAY + (T -5 +v+2du = 54, forall 0 <m < 1. (3.24)

For (s, x:8, 2 € ([0, T] x G x G)* define
— 12
Wois, vs x ) =vs,x)— iz’ x') —p |f— — — £y
[

|5 —x
_U|

[2
+ 1| = x({xV" + 5V —ql(T —8) + (T —5)].
(3.25)

E

We will choose € = 0,0 <=m = | suitably later; m will be chosen appropriately and
fixed, whereas € will be treated as a parameter; so only dependence on e is highlighted
in W, Since W, — —o0 as x| + |x'| = o¢ and W, 18 continuous, it follows that there
CRISLE (5., Xl :.';,.r;}l such that, by (3.24),

W, a: 1.; _r;}l = sup{Weis, a0 8 XY a5 €[0,T]Lx,x € t.'_}}

=W (5 8 5) = -4,

P | =

Consequently

. | a
Mixe ™ 4+ (™ + (T —s) + (T =5+ % —r':w| +u|—=

=supu —infurs =Cy (3.26)
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foralle = 0,0=m < 1. (Note that Cy = 0, otherwise M = 0.) It follows from (3.26)
that x., x_ € B(0: (Cy/2)1/™) forall e = 0.
As W, has its maximum at (5., x5 5. 1)

Woils, xei8: + €, X —efy )+ "-I-I'F{:.'; —E, .r; + eey: :.';,.r;}l = 2 (s, X :.';,.r;}l.
{(3.27)

By mean value theorem {x, —eea ™ = {x}™ + OHe ) as x, vares over a bounded set.
Therefore

We (5, Xe; 8 + €, % —€829)
=v1{5e, X ) — vaise +€,x. —eezg) — 2hix )"
— 2T — 5. )+ e + e (3.28)
and similarly
"-I-'.;{a'.; — & ,.r; +Ee; 1.; .r;}l
=vils, —€,x, +€ezy)

—wvals,, x, ) — 20} — 2T —5) — e + O(e). (3.29)

Denote by @ the common modulus of continuity of v and vs; note that « can be
taken to be bounded as vy, vo are bounded uniformly continuous. Now (3.27-3.29)

imply

| 4 |2
Fe R

—m_d| + v
€

- )
5e— 8,
€

|Z
I + 1|

= wllse — s, + €|+ |xe — x; —eeg|) + Ofe). (330

If ¢ = 1, then rhs of (3.30) is bounded by a constant independent of e. So from
(3.30) we get

E.r;—.r;i+!:.;= —3';[1:.‘1'[15_ f331}
Plugging (3.31) back into (3.30)

P I |2
R SRR G L S o 1| < (K2€) + Of€) (332)
[

€

as € | 0, where K is constant independent of ¢.
Clearly the ball B(x +¢€ex :€) C G x G forany x € G x G. So by (3.32) it is now
casily seen that (s, x.) € [0, T) = G x G for any € = 0 such that ths, of (3.32) <1.
With() < ¢ <= 1 asabove, for (s, x) = (s, v.2) € [0, T] % G x G define

| x

1 o =
wiels, v)=uvals,, x )+ [ =
£

[ge wax
& — 5]
I3

|2 [2
m| +v +1|

F RN (Y ) gl ) (=)
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Note that (v] — w ) has a maximum at (s, ve, z.) and that wy, is C'. Similarly, for
(#,x)=0"¥.20€[0,T] x G x G define

X —x < 5 —x"

.,
wr s 2 V=5, v — —eag| —v + 1|
€ |

=A™ + ) = ql(T —s50) + (T —5")].

Clearly wa, is €' and (v2 — wa.) has a minimumin [0, 7] x G = G at (5l Yoz ),
Since vy is a viscosily subsolution in the interior and vs is a viscosity supersolution

Lo (3.22) in the closure, it can be seen that

2“ ¥ wm=2
2+ H 5. xe, f—zlre—r,;—meml{xe} “Xe

2
— H(:.';,.r;, I ;—g[.rf —x, —€ex| — m)-.{.r;}‘"‘l.r;]) =0, (3.33)

where H = H'Y'9 Now by Lemma 3.6, (3.26), (3.31), (3.32)
2u A .
H 5e, xe, _-,[.1’._: —Xe —fL"._rﬂr|+m_}l._{_rF}m_—_rF
| [ 3
2 r ¥ Sty I}
i H(.\';..r;, I—I:[.rf —x —€exg] —mhix, )" " x, ]) ‘
&2

X — X

&

2

=K —ezg|llse — 50| +lxe —x,]]

+ Kmh[{xe )" +{ )" 1+ K[|se — 5] +|xe —x,]]
< 2K K pwi(K€) + 2} + mKCy+ KK €. (3.34)

MNow choose m < (0, 1) such that m = I_ﬁ-rl]f'_u Then (3.33), (3.34) imply

3
50— KKie 2K Kiplo(Kz€) + 0] <0.

But this would contradict = 0 for ¢ | 0. Thus M = 0 and hence vy < vz on [0, T] =
GxG. O
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Appendix

The appendix has two parts. In the first part we give a sufficient condition for feasible
controls 1o exist in the context of Nash equilibrium. The connection with Skorokhod
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problem of probability theory is briefly reviewed in the second part. We also give an
example to show that Nash equilibrium need not be unigue.

A Sufficient Condition for (2.12)

We give a sufficient condition for L{s, v, z; T, u_;) 1o be nonempty for fixed i, u_;
satisfying (2.11). In fact we have something more.

Theorem 4.1 Assume (Al-A3); moreover assume that b, B are continwous in the
time variable as well. In addition fet the following hvpothesis hold:

(Ad)Fori=1,2,....d 5[0, T],yveG.z e dG, u; e [0, fil. j #1 there exists
wi € [0, fi] with

o
Iibxl[d-: v.o) + ZR.{E{N. A E}I!ﬁ} =0 (4.1}
f=1
foranv ke Iz). Here = (. ..., Ba)ivasin (211}, and 1(z) =k :zp =0}

Then U(s,v.z:T.u_;(-)) is a nonempty weakly compact subset of L*[s, T] for
any s €[0Ty, zeG.0=u;(-) = B, j #£1i.

Note Compare (4.1) with (2.27), (2.28). We know that (2.27), (2.28) give a necessary
boundary condition for u(-) to be feasible. See also Sect. 5, Chap. 4 of [3].

We first prove the following lemma

Lemma 4.2 Under the above hypotheses Wis, v, 2; Tou () #= ¢ if u_j(-) is right
continwous. Moreover wii-) can also chosen to be right continuous in this case.

Proaof Fix i, s, v, z,u_;(-). We first claim that there exists a right continuous wu;{-)
taking values in [0, f;] such that

m=inf{t =5 :z(1) G} > 5,

where vi(-).z(-) 15 the solution o the state equation corresponding o the control
ui-)={w(-),u_j(-)) with y(sh = y.z{s) = z.

Indeed, if z € & then w;(-) can be taken o be any right continuows function
on [5, 7| taking values in [0, 8;]. So let z € 3G note that 1{z) # ¢. Taking Mj=
sl § # i by assumpton (Ad) choose w; so that (4.1) holds for all £ € I(z).
Set wir) = (w;, u_j(t)), 1 = 5; note that the ith component of u(-) is constant; let
vi-), zi{-) denote the comesponding solution to the state equation. By continuity of
be. Rej, v(-), z(-) and dght continuity of w(-) at s, note that there existeg = 0, 5 = 0
such that for all 1 £ [s, 5 + g we have Ti{z(r)) € F{z) and

bilt, y(0), 2(0)) + ) Reelt, (1), (e (6) =
£

forall ke I{z). Sozp(t) =it —s5) = 0for ke I{z) and z¢(t) = O for £ & [(z), for
all 5 =t =< 5 4+ €g. The claim now follows.
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Now put T :=sup{r £ [s, T]: there exists a right continuous w;(-) taking values
in [0, ] and z{r) G for all 5 =r = t}; here vi-), z(-) denote the solution 1o the
state equation corresponding 1o (u; (), w_; (-)). If T <= T then apply the claim above
with ., vimp), zitg) respectively replacing s, v, z; we now gel a contradiction to the
definition of 7. 80 r =T and hence z(1) e G foralls =1 < 7. O

Prr.rqf'r.rf'Tfafamm 4.0 Fix .5, v,z ket uji-). j % i be as in the theorem. Forn = 1
choose u { 1 =1u ll"]{ i IR, I!,[-Ji]l{'LI!,l-Tl{'}' ..... n:;r]{ 1) such that n["]{ ) 1s nght
continuous, 0 51!;- ]{-} = f;. and ul-"]{-} — u_|.-{-}| in L'[f.' Tlasn — oo, for j #£1i.
By Lemma 4.2, for n = 1, there exists u { ). right continuous on [s, T'], taking
values in [0, #;]. and iI' R B A )} dLm}lu the solution o the state equation
corresponding to the control 1™ () = {u["]{ 1, um]{ 3 with "5y = v. 2" (5) =z
then ¥y =0, 2" () = Oforallt £ [5, T].

As {u:."]{-}l :n = 1} is bounded, by Banach-Alaoglu theorem there exists w;(-) €
L35, T’} such that n‘[.”] —+ 1) weakly, Put we-) = (re;(-), 0 (-0 let w(-), z(-) de-
note the solution o the state equaton corresponding to w2 starting at s, v, 2. It can
easily be proved that 0 < w;(-) = ;. Clearly vi(-) = 0 and nondecreasing. Using Lip-
schitz continuity of b, B, uniform boundedness of " (-), (-} and Gronwall inequal-
ity it can be shown that z"(¢) — z{r) for all ¢, and hence that z(-) is G-valued (cf.
proof of Theorem 4.3 of [20]). Thus 8(s, v,z T, u_;{-)) # ¢. The same argument
implies weak compactness as well. O

The 5P Connection

As mentioned in Sect. 1, it has been proved in [19, 20] that the “pushing pan™ of
the solution to the deterministic Skorokhod problem provides Nash/utopian equilib-
rium under suitable monotonicity conditions. For description of Skorokhod problem,
its importance in probability theory and existence and unigueness of solutions see
[12.14, 17, 19, 23] and the references therein. However o read off the results from
[19, 20] in the present context we need the following result, which may be known to
experts. As we have not seen an easily accessible proof we include it for the sake of
completeness. We shall also use the nolaton as m [19, 20].

Proposition 43 Let w e C([0, oc) : ) be absolutely continuous with devivative
w-); asswne w0y = 0. Let " (-),z"(-) be the solution to the one dimensional

Skorokhod problem for wi-). Then v (-), ") are alvo absofutely continuows and
0=3"0) = w12 0N = () as.

Pmoof Let s = 0. Put (1) = z%(s) + f: wirdre, ¥t = ¥ () — y"is), 20 =
(1), 1 = 5. Then ¥(-),2{-) 5 the unigue solution to the Skorokhod problem for
wi-) starting at ime 5. Also put (1) = " (5), ¥ir) =0,2(t) = " (s),r = 5. Then
Vi), Z{-) is the unique solution to the Skorokhod problem for i(-) staring al ime 5.
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Note that 1 — 1z is of bounded variation over [s, 1] for any ¢ = 5. S0 by the lemma
of varational distance between maximal functions in Sect. 2 of [23], for any ¢ = 5

Var(y"™ o [s.¢]) = Var(y — ¥ [5,¢]) = Var(w — b - [5, ¢]) = f | () el r
! (42)

where Var(g :[a, b]) denotes the otal variation of g over [s,1].
As (4.2) holds for every 0= 5 = 1, it follows that Var{y" : da) = dv" (-} is ab-
solutely continuous. The other assertions are now easy 1o oblam. O

Let b, R satisfy (A1-A3). Let w(-) be an BY-valued continuous function on [0, oc)
such that wil)) G. Let Yu(-), Zwi-) denote the solution 1o the Skorokhod problem
in G with initial input w(-), drift  and reflection field R as described in [19]. So
Zwit) e G for all toand (Ywdp(-) =0, nondecreasing, and can merease only when
{ Zw); () = 0. Inview of Proposition 4.3, by the methods/arguments in [ 19] it follows
that if w{-) is absolutely continuous then so are Yw(-), Zwi(-). A modification needed
here is that the analogue of the metric given in Sect. 3 of [19] be defined in terms of
L' norm of the derivatives instead of the varational norm/supremum norm of the
functions; as the variational norm of an absolutely continuous function is the L'
norm of the dervative, the arguments of [19] can be easily adapted. In particular
taking w{-) = z € G, Skorokhod problem for our purposes is the following.

Given s = 0, y € G,z € G consider the problem: Find functions P{-;s,v,z) =
P() = (Pi(-)..... Paf)). Q(8.3.2) = Q() =(Q1(). ... Qu(-)) on [s, o) satis-
fying the following:

LR =Dae = 1=0=d;
. O () mtegrable over every compact iterval;
CYa v 2 =Y =K, .., Fal-)) with

lad [ —

I
Y;'{r}=_1';+f Piirydr, r=s l<i=d; (4.3

50 ¥i(-) = 0 and nondecreasing; )
4. Zi{s,v.2)=Z() =(Z1(-), ..., Za(-0y with Z(-) & & and

I

Zilt)=z; +f Qi(rydr, t=s5, 1=i=d,; (4.4}

5. Z{-) satisfies the Skorokhod equation, vie. fori = 1,2, .. d.t =5
I
Zilth =z +f bilr, Y {(r), Z{r)dr + ¥;(t) — v

. T

-+ Zf Riir. ¥Yir), Z{r))P;iridr: (4.5)
_.I:E.l 5

6 ¥i{-) can increase only when Z;(-) = 0, thatis, Ziit )P {t)=0ae. 1, 1 =i =d.
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In such acase we say P, ( (or equivalently ¥, Z) solves the Skorokhod problem.

By the above discussion it follows that for any 5 = 0, v, 7 € G, the Skomokhod
problem has a unigue solution whenever b, B satisfy { A1-A3). Moreover, by resulls
of [19] it follows that

D<A <((I-W)"'fi<pi. aer l<i<d

where fF is as in (Al)and # asin (2.11). This is one reason W consider only controls
taking values in H:-Ll[ﬂ, fil. The functions ¥;(-) or equivalentdy Pi-), 1 =i =4 are
called the “pushing part™ of the solution to the Skorokhod problem.

The following result can now be obtained; while the first part is & consequence of
Theorems 4.7, 4.14 of [20], the second part follows from Theorem 5.3 of [19].

Theorem 4.4 (i) fn addition to (AL-A3), let b and R satisfv the following condi-
tions.

(Cly For 1 =i = d.b;, Rij are independent of ze, £ 3 05 that is, bi(t,y.2) =
bilt, ¥, zi), Rijt, v, 20 = Ryt v, zi).
(C2) Forfived 1 =i =d, v_j=(y,..., Vil Figls«sny ya)t =20, zeRd

biit, (&, ¥-1),2) = bi (., ¥-i), 2),
Rij(t, (£, y_i).2) = Rij(t, (E.y_i).2), 1<j=d,

whenever £ = E: that is by, Ri; are nonincreasing in ;.
(C3) The functions z; — bilt, v.zi) = bilt, v, 2). 25 = Ryjlt, v, zi) = Rijlt.v.2)
are differentiable and

i il
— by, 00 =0, —Rylt,y.2<0, 1<ij=<d
dzj ’ dzi ’
Also for 1 =1 = d, suppose that M; = positive constant, g; . L; are nonnegative
[functions independent of z, satisfving

gil(T, (€, y_) < g (T, (£, y-0),
Lilt (&, y_0)) < Li(t, (£, y-)),

whenever £ = },:‘ Y, y—i. Then (Pi{-),..., Pa(-) is a Nash equilibrium in
Uis, v,z; T).

(i) In addition to (A1-A3), assume the hvpotheses of Theorem 33 of [19]
Suppaose also M; = positive constant, g;, L; are nonnegative functions indepen-
dent of z satisfving gi(T, ¥) = gi(T,v), Li(t, ¥) = Lilt, ) whenever v = v for all
t=z01=i=d Theni{P(). ..., Pyi-)) is a wrtopian equilibrivm in Wis, v, z: T).
(Here ¥ = y means ¥; < v forall j.)

In the converse direction we have the following result. Note that the conditions on
b, R are less siringent than in Theorem 4.8 of [20].
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Theorem 4.5 Letgi =0, L; =0, M; =1 for | =i =d. In addition to the hypotheses
af Theowem 4.1, assume that Ry (--- )= 0for k£ 6 Fix s [0LT], v £ G.zel.
Let ()= (i), ..., () be such that for any t € 5, T, the restriction of 1(-)
to [5,1] is a Nash equilibrium in W4(s, v, z;1). Let ¥(-),Z(-) denote the solution to
state equation (2.3), (2.4) corresponding to the controd 5(-) with initial value v(s) =
v,Z(5) =z. Then v(-) — v, Z(-), sofves the Skorokhod problem on (s, T|, with drift
bi---) and reflection field R{---) cormesponding tow(-) =z.

Praf Let ¥(-),Z(-) denote the solution w the stale equation comesponding to the
control (-). As () is feasible it is clear that Z{-) s G-valued. So we just need to
prove that Z; (-)u;(-) = 0 as. for each i. Put hilt) = _,IZI zilr(ridr, t = 5. We need
Lo prove E,-{-}l =1 =i = d. Suppose nol. Then P:,-{r} =0forsomet=5,1=<i=<d.
Hence, by continuity of Z; (-}, there exist x = 0,5 = ty < f such that ;(t) = x =0 for
all gy <1 =1 and

mi{r:aiiry=0forr eltp.t]) =0, ¥pg=1=f. (4.6)

We now make a remark conceming (A4), Let i,nj, j 5 .5, v be as in (A4). Let
z € dG be suchthat z; = 0; so0 Ri(---) =0 for any k € 1(z). Therefore one can take
;= 0 sothat (4.1) holds.

Now define f(-) = (6 (-), i (-)) by 6;(-) =6 ;(-), for j#i,6;(r) = b;{r),
s =r < tgandi;(r) =0,r =ty Let ¥({-), Z{-) denote the solution to the state equation
corresponding to {-). Clearly Z(r) = Z{r), s = r = fp. In particular () = x = 0.
Put ; = inf{t = 1y : Z;{r) = 0}. Clearly t; = ty. Now Theorem 4.1 and the re-
mark above used repeatedly give that 8is, vzt 6-;0-)) #£ ¢ and in fact ;(-) €
Wis, v,z e () forany ¢ € [fg, 1 ]. In view of (4.6) it is now clear that

I I
f il rdr c:f wilridr, th=t={h AT (4.7)

As (4.7) contradicts our hypothesis that @{-) is a Nash equilibrium in EA'E.{:.', ¥,Z; 1)
fort s, T|. the result now follows. O

Remark 4.6 Theorem 4.4 gives conditions under which the solution to the Skorokhod
problem can provide a Nash equilibrivm. As there are approximation procedures to
solve the Skorokhod problem, this forms a method of getting a system of bounded
continuous constrained viscosity solutions to the intedinked family of HIB equa-
tons (3.1) with u_; = P_;, 1 =i = d. Under the condiions of Theorem 4.4 the
pushing part of the solution to Skorokhod problem itselfl provides a system of con-
strained viscosity solutions for all .

We conclude with an example 1o show that Nash equilibnum need not be unigue.

Example 4.7 Let d =2, 8(---) = (1, —-1), B12(---) = B2 = 0, Ry (---) = Rn = 0
are constants such that B2 Ry = 1. Let gy =0 L; =0 M =1,i =1, 2. Take s =0,
vy =0, z = 0. The state equation for the z-par, viz. analogue of (2.6), is given by

ity =14 yi{t) + Ryayait),
za(t) = —t + y2(t) + Rz 31 (1)
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Solution to the corresponding Skorokhod problem is given by ¥y (1) =0, ¥air) =1,
Zity= {14+ Ry2)t, Z2(t) =0. By Theorem 4.4 the solution to the Skorokhod prob-
lem gives a Nash equilibrivm; this also follows from the argument given below.

Let ) = 0,0 = 33 =1 be such that dz + Rydy = 1. Put 31{t) = &),
Vait) = datr. Fix 71 (-). Let ©) = ya (1) = Aot for some r. Comresponding o v (-), v2(-)
note that z(1) =0 but z2(t) = —t + y2(t) + B2y vty < 0.

So with vpi-) fixed, y2(-) cannot be feasible unless ya(r) = Aor, Wi, In an entirely
analogous manner with v20-) fixed, vy (-) cannot be feasible unless vy (r) = Ayt for
all . Therefore it follows that for any &, Ao as above (6 (-), f20-)) = (A, k2) gives
a Nash equilibrium for each ¢ = 0. S0 even Nash equilibrium serving for all ¢ need
not be unique. Next note that (A, ka) = (0, 1) as well as (4, }2) = {RLH,U}I give
feasible controls (in fact both are Nash equilibria). So the only possible candidate for
utopian equilibrivm is (0, 0). But (0, 0) cannot be a feasible control. Hence there is
no utopian equilibium even for a single r = 0.
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