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Abstract. A sufficient condition for the representation group for a nonabelian representation
(Definition 1.1) of a finite partial linear space to be a finite p-group is given (Theorem 2.9). We
characterize finite symplectic polar spaces of rank r at least two and of odd prime order p as the only
finite polar spaces of rank at least two and of prime order admitting nonabelian representations.
The representation group of such a polar space is an extraspecial p-group of order p'**" and of

exponent p (Theorems 1.5 and 1.6).



1. Introduction

A point-line geometry is a pair § = (P, L) consisting of a nonempty ‘point-set’ I and a nonempty
line-set’ L of subsets of P of size at least 2. S is a partial linear space it any two distinet points
x and y are contained in at most one line. Such a line, if it exists, is written as xy, x and y are
said to be collinear and written as x ~ y. If  and y are not collinear we write x = y. The graph
with vertex set PP, two distinct points being adjecent if they are collinear in S, is the collinearity
graph I' (P} of S. We write d(z, y) to denote the distance between two vertices x and y in I'(P).

Forr € Pand AC P, we define s- = {z}U{y € P:x ~y} and A~ = r"IAIJ‘. S is nondegenernte
zE

if PL is empty. A subset of P is a subspace of S if any line containing at least two of its points
is contained in it. The empty set, singletons, the lines and P are all subspaces of 8. For a subset
X of P the subspace {X) generated by X is the intersection of all subspaces of § containing X. A
subspace is singular if each pair of its distinct points is collinear. A geometric hyperplane of § is a
subspace of § different from P, that meets every line nontrivially.

1.1. Representations of partial linear spaces. Let p be a prime. Let § = (P, L) be a partial
linear space of order p, that is, each line has p+1 points. (Note that, usually, order of a generalized
polygon means something else, see [20], Section 1.3, p. 387).

Definition 1.1. {fvanov [12], p. 305) A representation of S is a pair (R,), where R is a group
and 1 is a mapping from the set of points of § into the set of subgroups of order p in K, such that
the following hold:

(i) R is generated by the subgroups +(x), x € P.
(ii) For each line | € L, the subgroups ' (x), = € [, are pairudise distinct and generate an
elementary abelian p-subgroup of order p°.

The group R is then called the representation group. The representation (R,v) is faithful if
1 is injective. For each x € P, we fix a generator r, of 1#(x) and denote by R, the union of
the subgroups (rp),x € P. A representation (R, ) of § is aebelian or nonabelian according as R
is abelian or not. Unlike here, ‘nonabelian representation’ in [12] means that ‘the representation
group is not necessarily abelian’. A representation (H;,44) of 5 is a cover of the representation
(Ha,1) of § if there exist an antomorphism 3 of § and a group homomorphism ¢ : By — Ry
such that (3 (x)) = ¢(yn (x)) for every & € P. Further, if ¢ is an isomorphism then the two
representations (Fy, v ) and (Ra, 1) are equivalent.

We now indicate various possibilities for the representation group. Embeddings of partial linear
spaces (like projective spaces, polar spaces, generalized polygons, ete.) of order p in projective
spaces over the field F, of order p are all examples of abelian representations. The representation
group is the corresponding vector space considered as an abelian group. Every representation
of a projective space is faithful (by Definition 1.1(¢#{}) and the representation group of a finite
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projective space of dimension m over Fj, is an elementary abelian group of order p™*'. However, a
representation of a generalized quadrangle need not be faithful. For example, let § = (P, L) be a
(2, 1)}-generalized quadrangle, let Py, P, Py be three triads partitioning P and let R = {1, r1,r2, r3}
be the Klein four group. Define 1 : P — R by t(x) = {r;) if £ € F,. Then (R,1) is an abelian
representation which is not faithful.

Root group geometries are some examples of nonabelian representations of partial linear spaces.
Let H be a finite simple group of Lie type defined over F,. Let G = (F, L) be the root group
geometry of H. That is, the ‘point set’ I is the collection of all (long) root subgroups of H. Two
distinct root subgroups z,y € F are collinear if they generate an elementary abelian subgroup of
order p° and each subgroup of order p in it is a member of P. The ‘line’ zy is the set of p + 1
subgroups of order p in {x,y). The identity map defines a representation of G in H and H is a
representation group of G. Note that it H is of type Eg, E7 or Eg, then G is a parapolar space (see
4], p. 75); if it is of type G2 or *Dy, then G is a generalized hexagon with parameters (p, p) and
(p, p”) respectively (see ([6], p. 322 and 328) for p odd and ([7], Lemma 2.2, p. 2) for p = 2); if it is
type Fy or ? Eg, then G is a metasymplectic space (see Section 4, [6]); and if it is of type 2§y, then
G is a (2,8)-generalized octagon (see [19]). For a discussion of root group geometries including the
classical ones, see [5] and [10], Chapter 4.

The following example shows that the representation group for a nonabelian representation of a
finite partial linear space could be infinite.

Example 1.2, Let § = (P, L) be a (2,2)-generalized heragon. Then 8 is isomorphic to H(2) (the
one admitting an embedding in O;(2)) or its dual H(2)" (see [20], Theorem 4, p. 402). For each
re P, Hix)={ye P:dix,y) < 3} is a geometric hyperplane of S. The subgraph of I'( P) induced
on the complement of H(x) in P is connected if § = H(2) and has two components if S = H(2)*
(see |9], section 3). By (|12|, Lemma 3.6, p. 310}, H(2)" admits a nonabelian representation whose

representation group is infinite. In fact, this representation is the cover of all other representations
of H(2)".
Our basic tool in this paper (Theorem 2.9) in fact is a sufficient condition on & and on the

nonabelian representation of § to ensure that the representation group is a finite p-group.

We refrain from listing several natural questions that suggest themselves regarding the represen-
tations and the possible representation groups of finite partial linear spaces. For more on nonabelian
representations, see [12].

1.2. Polar spaces. A polar space |2| here is a nondegenerate point-line geometry S = (P, L) with
at least three points per line satisfying the ‘one or oll’ axiom:
For each point-line pair (x,1), x & I, x is collinear with one or all points of L.

(see [2], Theorem 4, p. 161 and [22], 7.1, p. 102). Rank of S is the supremum of the lengths m of
chains Qy © (1 © - -+ © Q of singular subspaces in 5. Since L is nonempty, the rank of 5 is at
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least two, but could be infinite. A remarkable discovery of Buekenhout and Shult is that a polar
space is a partial linear space (2], Theorem 3, p. 161). A polar space of rank 2 is a generalized
quadrangle (GQ, for short). That is, it is a nondegenerate partial linear space such that:

Whenever x € P,l € L with = & [, x is collinear with exactly one point of [.

If a finite GO} has a line with at least three points and a point on at least three lines then there
exist integers s and ¢ such that each line contains s + 1 points and each point is on ¢ + 1 lines (3],
Theorem 7.1, p. 98). In that case we say that it is a (s,1)-GQ.

Building on the work of Veldkamp, Tits classified polar spaces whose rank is finite and at least
three [22]. (For polar spaces of possibly infinite rank, see [14].) This implies that a finite polar
space of rank » > 3 and of order p is isomorphic to either the symplectic polar space W.(p) or
one of the orthogonal polar spaces QF (p), Qa,y1(p) and Q3 +»(p). For notation see ([21], p. 329).
If » = 2 the above yield (p, p)-.(p, 1), (p, p)- and (p,p?)-GQs respectively. We note the number of
points of these polar spaces ([21], Theorem 1, p. 330):

War(p)] = (™" —1)/(p—1);

Q5.(p) = "'+ 1" -1)/(p-1);
(Qars1(p)] (™ —1)/(p—1);
Q2420)] = @ =1 +1)/(p-1).

The following inductive property of these spaces is important for us (see [3], section 6.4, p. 90).

Lemma 1.3. Let § be one of the above polar spaces of finite rank v = 3 and let x,y be two
noncollinear points. Then {x, y}l is o polar space of rank r — 1 and is of the same type as S.

Finite GQs are classified only for s = 2,3 (see [20], 5.1, p. 401). See [16] for several examples of
finite GQs. In [15], Kantor studied finite (p, £}-GQs S with £ > 2 admitting a rank 3 automorphism
group G on points and proved that one of the following holds: (i) t = p* —p — 1 and p* 1 |G]; (i)
(- = PSp(4,p) or PI'UV (4,p) and 5 is one of the natural GQs associated with these groups; (iid)
p =2 G = Alt(6) and S is the GQ associated with PSp(4,2) ([15], Theorem 1.1). This paper
started with a search for new finite (p,#)}-GQ)s embedded in groups and resulted in a characterization
of finite symplectic polar spaces Wa.(p) of rank r = 2 for odd primes p (Theorems 1.5 and 1.6).

1.3. Extraspecial p-groups and Hall-commutator formula. A finite p-group (7 is extrospecial
if its Frattini subgroup € (') , the commutator subgroup G and the center Z (&) coincide and have
order p. An extraspecial p-group is of order p' ™™ for some integer m > 1, has exponent at most p°

if p is odd and 4 if p = 2, and the maximum of the orders of its abelian subgroups is p™*! (see (8],

14+2m

section 20, p. 78,79). We denote by p},_"'im an extraspecial p-group of order p if its exponent is

p when p is odd and the abelian subgroups of order p™ ! are elementary abelian when p = 2. Note

142

that p}

is isomorphic to the group of 3 x 3 upper triangular matrices with entries from Fy and 1
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on the diagonal. For more on extraspecial p-groups, see (|11}, section 3, p. 127 and Appendix 1, p.
141).

For elements g1, go in a group, we write [g1,92) = g; lg.j_ ' 9192 and =g Y9192, We repeatedly
use the following Hall's commutator formula (8], 7.2, p. 22), mostly without mention.

Lemma 1.4. Let G be a group. Then for gy, g2,95 € G,

(1) [g192.93] = |91, 93}**[g2. g4];
(i) L‘Flu g293] = g1, gal[;, g2]®.

1.4, Statement of main results. In this paper we prove:

Theorem 1.5. Let S = (P, L) be a finite polar space of rank r = 2 and of prime ovder p. If S
admits a nonabelian representation (R, 1) then:
(i) p is odd;
(i) B =pi™;
(#ii) S is isomorphic to Wy, (p).
Theorem 1.6. Wa, (p), r = 2, admils a nonabelian representation. Any two such representations

are equivalent.

In Section 2 we prove a sufficient condition for a nonabelian representation group to be a p-group
(Theorem 2.9) which is crucial here and also in [18]. In Section 3 we prove Theorem 1.5(i) and
that R ~ p:_""jm for some m > 1. In Section 4 we prove Theorem 1.5 when the rank is two. Finally,
in Section 5 we prove Theorem 1.5 for the general rank and Theorem 1.6.

2. Initial Results

Let § = (P, L) be a partial linear space. We assume that I' (P) is connected and that with
each x € P is associated a geometric hyperplane H (x) in S containing x. Consider the following
conditions on S:

(C1) If y € H(x) then x € H (y).

(C'2) The subgraph I' (H"(z)) of I' (F) induced on the complement H' (z) of H (x) in P is con-
nected.

(C'3) If y € H'(x) then there exist lines [ and [5 containing & and y respectively such that for
each w € [y, H (w) intersects [o at exactly one point. Further, this correspondence is a
bijection from {; to ls.

(C4) The graph X(P) with vertex set I? in which two points z and y are adjacent if y € H'(z) is
connected.

Example 2.1. Let S = (P, L) be a polar space of rank r = 2. Then I'(P) is connected. For each
x € P, associate the geometric hyperplane - of . Then (C1),- --,(C4) hold.
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Example 2.2, Let § = (P, L) be a near 2n-gon, n = 2, admitting quads (see [1]). We assume that
each line of § contains af least three points. By definition, I(P) is connected. For each x € P,
associate the geometric hyperplane H(x) = {y € P: d{x,y) < n} of §. Clearly (C1) holds. The
second corollary to (|1), Theorem 3, p. 153) implies that (C2) helds. Now, ([1], Theorem 2, p.
151) implies that if d(z,y) = n, z,y € P and Iy is any line containing x, then there exists a line
la containing y such that (C3) holds. This also implies that if u ~ v, u,v € P, then there erists
w € P such that d{u, w) = d{v,w) =n. So u,w,v is a path in E(P). Then connectedness of £(P)
follows from that of T{P). Thus C(4) holds.

We study nonabelian representations of finite polar spaces of order p here (Theorems 1.5 and
1.6) and that of near hexagons of order two and admitting quads in [18].

Remark 2.3. If § = (P, L) is a genemlized 2n-gon and H(zx),x € P, is as in Example 2.2, then
(C2) need not hold, see Example 1.2.

Let (R, ) be a representation of S. For x,y € P, define ugy = [rz, ry]. Throughout this section
we assume that

tzy = 1 whenever x € P and y € H (z).

Proposition 2.4. Assume that (C1) and (C2) hold in §. Then the following hold:

(i) If tipw = 1 for v,w € P with v € H'(w), then ry € Z(H).
(i) Ifac P and ro € Z(R), then r. € Z(R) for everyc ~ a.

Proof. (i) Let y € H'(w), y ~ v and vy N H({w) = {x}. Then uyy = 1 because r ¢ {v,y} and
Uz = Uy = 1. Now, connectedness of I' (H' (w)) implies that u,,. =1 for every z € H' (w) . Since
Uy = 1 for z € H (w) also, ry € Z (R).

(i) By definition, H (a) C P. Let b € H'(a). By (C1), a € H'(b). By (i), rs € Z(R) because
tigp = 1. Now, acn H (b) is a singleton. Since each line contains at least 3 points, there exists a
point z in ac M H'(b) different from a. Now, b€ H'(z) by (C1) and up. = 1. So, r. € Z(R) by (i)
again. So the subgroup pgenerated by v (ac) is contained in Z (R) and r. € Z(R). O

Corollary 2.5. Assume that (C1) and (C2) hold in S. If B is nonabelian then the following hold:

(1) 1y # 1 whenever z,y € P and y € H'(x).
(i1) Ry Z(R) = {1}.
(iti) If x ~y then y € H (x).
(iv) If H (x) # H (y) for each pair of noncollinear points x and y, then 1 is faithful.

Proof. (i) follows from Proposition 2.4 and the connectedness of ['(FP). (i) and (#i#) follow from
(). We now prove (iv). Suppose that {r;) = {ry) for distinct z,y in . Then x »= y by Definition
1.1{(di) . By (i), u € H(x) if and only if u € H(y). So H (x) = H (y}, a contradiction. O
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Proposition 2.6. Assume that (C3) holds in S. Then for x,y € P, [uay, 2] = [ty ry] = 1. If

tizy # 1 then ug, is of order p and {1y, 1ry) = p},_“".

Proof. Let x € P, y € H'(z) and l1, I be lines as in (C3). Let x,a,u be three pairwise distinct
points in {y and y, b, v be points in [ such that y € H(a), b€ H(x) andv € H (u). By (C3), y, b, v
are pairwise distinct. Write rp = rird, T -ri‘:-rz" for some 4, j, k,m, (1 <4, 7, k,m < p—1). Now,

tny = [rards vyl = Il ryl = Irdy vt D] = [k ) = rar s ) = 2 000,

Since [r;*, v[*] = [-rf‘,-rj]"'ﬂ' ”

ty = [ r = bryrd bl = gt = gt
= B = g el =y el = Il
R TI aral A [ r-lr ] = 1 gy, Thus [uy,,r,] = 1. Similarly, u,, = ["";11"";;] .
This, together with [-rw,-r;‘] = [-rI L ry] i —Il = Uyy implies that [u.,, r.] = 1. Now, [—ri, ry] =
[ra, ] =ul, for alli > 0. So ufy, = 1and (r,,r,) =p}*2 O

Proposition 2.7. Assume that (C1),---,(C4) hold in S. Then R' < Z(R) and |R'| < p.

Proof. For z,y € P, let Uy = (uzy). Let a, b be adjacent in I' (H' (x)) and abn H (x) = {c}. Now
1y = rflr:'l for some 4, j, 1 <4,7 <p— 1. Since [rz, re] = 1, we have
Ut = [re,78] = [Py vird] = [ran 1] = [rasral’ = k.

So Upp = Uza. This, together with (€2), implies that U/, is independent of the choice of y in H' (z).
Since gy = -u.;,_.l, we have Ury = Uyz. So, if 2,y € P with y € H'(z), then Uy = Uy. Now, by
(C4), Uy is independent of the edge {z, y} in ¥(F). We denote this common subgroup by U.

We now show that U < Z (R). Let x € P and y € H' (z). We show that [ug,r.] = 1 for each
z € P. We may assume that = € H' (z)UH' (y). In this case it is clear from Proposition 2.6 because
Upy = Uz if z € H' (z). Similarly, if = € H' (y).

Now, since B = (ry : ¢ € P), ugy € Z(R) and ugy = 1 if y € H(x), it follows that B’ = (uzy :
x € P,ye H(x)) =U and is of order at most p (Proposition 2.6). O

Proposition 2.8. Assume that (C1),-- -, ((C4) hold in S. If R is nonabelian then exponent of R is
p or 4 according as p is odd or p= 2. In particular, if P is finite then R is finite and &(R) = H'.

Proof. Let v = rira---ry € B, 1 € Ry. We use induction on n. Let r = hry, where h = riro- - rp_1.
Since R' C Z(R), rih = hr} [rﬁi, .h] = hr} [ra, h]'i. SR s N gl |10 .h]l"'?""”“ for all ¢ = 0.
Now, the result follows because by induction h” = 1 if p is odd and h' = 1 if p = 2. Note that if
p =2, exponent of F can not be 2 as R is nonabelian.

Now, if P is finite then R/R' and so R are finite and ®(R) = R'(r’ : r € R) = R'. For p= 2,
the last equality holds because r* € R’ for every r € R. O



We now suwmmarize the above results.

Theorem 2.9. Let S = (P, L) be a connected partial linear space of prime order p. Suppose that for
each x € P there is associated a geometric hyperplane H{x) containing x such that (C'1),-- -, (C4)
hold. Let (R, 1) be a nonabelian representation of S such that [{+(x), w(y)] =1 for all x,y € P with
y € H (x). Then the following hold:

(i) If 2,y € P withy € H'(x), then [(x), ¥(y)] # 1 and (i5(x), v(y)) = pi2;
(ii) |R'|=p, B" C Z(R), R is a p-group, and exponent of R is p or 4 according as p is odd or
p=2
Further, Ry N Z(R) = {1}; v is faithful if H(x) # H(y) whenever x = y; and R is finite with
R'=®(R) if P is finite.

Remark 2.10. For p = 2, Theorem 2.Mii) is a consequence of ([12], Lemma 3.5, p. 310) where
Tvanov did not assume (C3). Our proof of Proposition 2.7 is similar to that of (|13], Lemma 2.2,
p. 526).

Corollary 2.11. Let S5 and (R, 1) be as in Theorem 2.9. If P is finite then (R, 1) is the cover of
a representation (R, ) of S where Ry is extraspecial orp = 2 and Z( ) is cydic of order 4.

Proof. 1f Z(R) is elementary abelian (this is the case if p is odd), write Z(R) = R'T, ' 'nT = {1}
for some subgroup T of Z(R). Let By = B/T. Then R is extra special. Define ¢ from P to H,
by ¥ (x) = {rzT), x € P. Since r; & Z(R), (r:T) is a subgroup of H; of order p for each x € P.
Then (Rj, 1) is a nonabelian representation of S and (R, v) is a cover of (Ry, y).

It Z(R) is not elementary abelian, then p = 2. Write Z(H) = {(a)K, (a) N K = {1} where
K < Z(R) and a is of order 4. Since r? € R’ for every » € R, it follows that B’ = (a?). Now taking
Ry = R/K, the above argument completes the proof. O

3. NONABELIAN REPRESENTATION GROUP OF A POLAR SPACE

If a polar space of rank r > 2 and of order p admits a faithful abelian representation then the
polar space is necessarily classical (for rank 2 case, see [17], 4.4.8, p. T6) and the representation is,
up to a projective linear transformation, a standard one. The following proposition shows that a
polar space of finite rank and of order p admits a nonabelian representation only if p is odd. For
any representation (R, ) of S, Definition 1.1(4#i) implies that [ry,r,] =1 if y € 2. By Example
2.1, all the results of the previous section hold.

Proposition 3.1. Let § = (P, L) be a polar space of finite rank r > 2 and of order three. Then
every representation of § is abelian.

Proof. Let (R,1) be a representation of §. By Lemma 1.3, there exists a chain of subspaces
Qu=P 201 2Q22 -+ 2 Qr_2such that @; is a polar space of rank r —i. Thus )2 is a
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(2,t)GQ. Let 2,y € Qr_2, ¥ = y, and T be a (2,1}-GQ in Q,_2 containing = and y. Such a T
exists because each line has 3 points. Let {I,y}l = {a,b} in T. For u ~ v, we define usv € P
by uv = {u,v,u*v}. In T, since [rp,ry] = [rp,72z) =1 and T(asz)s(bey) = Tlasyhs(bez)s it follows that
raty = ryrz. Now, Corollary 2.5(i) completes the proof. O

For the rest of this paper we assume that p is an odd prime.

Let § = (P, L) be a polar space of finite rank r > 2 and of order p and (R,1) be a nonabelian
representation of 5. Note that if » = 3, then finiteness of /7 and that of r are equivalent. However,
it § is a GO} with s + 1 points per line, then finiteness of P is not known except when s = 2, 3,4
(see [3], p.100). The rest of this section is devoted to prove that R is extraspecial if P is finite.

Lemma 3.2. ¢ is faithful and [rz,ry| # 1 if = y.
Proof. This follows from Corollary 2.5(i) and (iv). O

Given a line [ and two distinet points ¢ and b on it, we write
D) = {lra) s (ra) s rars)  (rrs) -, (127 rn)}

Let z,4y € P,z =y and u,v € {z, ?;}J‘, u o v. Then [rz,ry] # 1 and [ry, 7] # 1. Let y = zu,
Iy = vy, my = zv and my = wy. Consider the lines [y and {;. By ‘one or all’ axiom, each point
of ly is collinear with exactly one point of Iy and vice-versa. Let ly = {x,u, x1, o9, -, 2p_1} and
iy = {-ri-ru} for1<i<p—1. Let z; ~ v in ;. Then I} = {v, y,v1, 2, - ,vp_1}. Replacing the
generator ry by nﬂ for some j (2 < j < p— 1), if necessary, we may assume that (ry, ) = {rory) .
So [rzru,rery] = 1. Then [-rj.-ru,-ri-ry] = 1 for all § = 0 becanse R C Z(R). By Lemma 3.2,
[-ri-ru._ -rf;-rw] £ Y5 E 5. Balr, )= {-ri-ry}. Let m 1 be the line such that v (miq1) = {-ri-ru, -ri,-rw},
1<i<p-—1

Let z € my\(lpUl1) and w e m;\(lgUl) fori #j,0 <4, j <p. Iti =10, then {r;) = {-rﬁl-ri,} and
if i > 0 then {r;) = <{-ri_1-ru}k1 {-ri_l-rw)> for some k1, 1 < &y < p — 1. Similarly, {ry) = {-rif*r‘y}

. ka .
ar <(-ri_l-ru) (rﬂ_lrﬂ.)> for some ks, 1 < ks < p— 1, according as § = 0 or j > 0. Now, from

R' C Z(R), the identity [rz,ry] = [rv, ra] (a2 consequence of [ryry, rory] = 1) and the fact that each
point of m; is collinear with exactly one point of m; for i # j (a consequence of “one or all’ axiom),
the following lemma is straight forward.

Lemma 3.3. =z ~ w if and only if ky + ks = p.
Proposition 3.4. If a,d € Ry then ad [a,d]'"""""* € Ry.

Proof. Let a,d € By—{1}. Let xy, 22 € P be such that (r;,) = {a) and (rz,) = {d). We may assume
that x; » x3. Then [a,d] # 1 by Lemma 3.2. We show that (ad [a,djcp_l}’f?} is the image of some
element of P. Let y1,y2 € {a1, 22} be such that y; = ya, (ry,) = () and (r,,) = (¢). Consider
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the lines Iy = z1y1 and I} = zays. Let 2z € Iy be such that {r.,) = (ab) and let z; ~ 22 € 5.
Replacing the generator ¢ by ¢! for some j, if necessary, we may assume that {r.,) = {ed). Let
mg = x1ys and my = z120. Let u € mg be such that (r,) = {.—1[«?_”’&{:}. Then x1 # u # . Let
u ~ v in my. By Lemma 3.3, (r,) = <{ah}@+l” : {-:?d}}. If y3 ~ w in the line uw, then (r,) =

{(@®17%)" (ab)P+112 {m’}> for some k (1 < k < p—1). Now [h._ (alP=142¢)" (ab)P+1)/2 (cd}] =

1. So, [b f:]k"'l = 1and k+ 1 = p. The subgroup <h'§F—‘H2 {aw_‘]‘fgc}ji_l{af;}@"'lw {c:d}) is
the image of some point of yw. But HP—1/2 [aﬂp_l]‘ﬂc}j}_l (ab) P2 (od) = ad[b,e] P2 =
ad |a, d]up_l”z. In the last equality we have used [a,d] = [b, -:?]_1, a consequence of |ab, ed] = 1.
Thus, ad [a,d)'P~1/? ¢ Ry. O

Proposition 3.5. R, is a complete set of coset representatives of B in R.

Proof. Let rR' = ro R for some ry,ro € Ry Since ' C Z(R), ry and ry are both trivial or are
both nontrivial (Corollary 2.5(ii)). Assume that the later holds and that ry = ryw for some w € R
Let z;,25 € P be such that (rp ) = {ry) and {ry,) = {rs). Since [ry,rs] = 1, either ; = x5 or
) ~ oy (Lemma 3.2). If &y ~ x5 then w # 1 by Definition 1.1(##) and {u) would be the image of
some point in the line x,7,, a contradiction to Corollary 2.5(ii). So x; = x4 and ry = rj for some
i(l <i<p-—1). Then ri' =w € B C Z(R). Now, Corollary 2.5(if) implies that i = 1 and so
w=1 and r; = re.

Now, let sR' € R/R'. Write s = ryra -« - ri, 7y € Ry. Let B = {z). Since R’ C Z(R), there
is some integer j such that ryrg- -« 2’ is an element, say r, of By by Proposition 3.4. Then
sR' =r R, completing the proof of the proposition. O

Proposition 3.6. Assume that P is finite. Then |R| = p(1+ (p —1)|P|) and B = p™*™ for some
m = 1.

Proof. Since |R'| = p (Proposition 2.7), the first assertion follows from Proposition 3.5. Also,
R' = Z(R) because R, N Z(R) = {1} and ' C Z(R). Now, Proposition 2.8 completes the

proot. O

Corollary 3.7. If 5§ is a finile classical polor space of rank r» = 2 admilting o nonabelian represen-
tation, then § is isomorphic to Wan(p) or Qamy1(p).

Proof. By Proposition 3.6, |P| = (pP™ — 1)/(p — 1) for some m = (. So the corollary follows from
the number of points of classical polar spaces (see 1.2). O

By proposition 3.5, S admits a faithful abelian representation with representation group R/R".
Considering B/R' as a vector space over Fjp, it has dimension 2m. Since Qu,1(p) does not
possess faithful abelian 2m-dimensional representation, the only possibility is that § is isomorphic
to Wam(p). We thank the referee for this remark. In the next sections, we prove this fact giving a
geometrical argument involving triads of points of a generalized quadrangle.
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4. Rank 2 Case

Let S = (P, L) be a finite (s,1)}-GQ. A triad of points in S is a triple T" of pairwise noncollinear
points. An element of T~ is a cenfer of T. A pair of distinct points {z,y} in § is regular if z ~ y
or if x = y and |{I,gr;}J‘J‘| =t+ 1. A point x is regular if {z,y} is regular for each y € P\ {z}.
The pair {z,y}, = = v, is anfiregular if |2+ N {:r,*y}l | < 2 foreach z € P\ {z,y}. A point x is
antiregular if {x,y} is antiregular for each y € P\ . Dually, we define a triad of lines, center of
a triad of lines, regularity and antiregularity of a line.

Proposition 4.1. Let § = (P, L) be a (p,t)-GQ. If § admifs a triad of lines with af least 3 centers
then every representation of 5 is abelion.

Proof. Let {l1,12,13} be & triad of lines in § with centers my,ma, my. Let {xj;} = Linm;,1 <4,j <
3. Consider the lines [y and [5. Replacing v, by rﬁn for some k, if necessary, we may assume
that the point a of I} with (r,) = (rz,,rz,,) i8 collinear with the point b with (ry) = (ray, 2. )-
S0 [rzy Tz 0s Tae Txas] = 1. Then ["‘in"rm ri?lrri,:,] =1for0<i<p-—1. Let {ry,) = {-rin-rru}
and {rg,,) = <-r{;n-r,.n> for some i,j, 1 < i,j <= p— 1. Ifi # j then R is abelian (Corollary
2.5(7)). So assume that i = j. Let {r,,,) = {rj_:'n-rxn} and {r .} = {{-ri.n-rm:,}w [-rj.n-r”:,}} for
some kon, 1< kn<p—1. Ifn # p—k then R is abelian by Lemma 3.3. So, we assume that
{rs ) = <{-riu-r1.1,_,]j}_k (rl, T2) ). By a similar argument, we assume that {r,,,) = <-r§;1k-rrn>.

Now, Lemma 3.3 implies that R is abelian becanse x32 ~ xg3 and p— k # p— (p— k). O

Corollary 4.2. If 5 admifs o nonabelion representation then every line of 8 is antiregulor and no
line of § is reqular.

Proposition 4.3. Let § = (P, L) be a finite (p,1)-GQ. If S admits a nonabelion representation
(H,, -t,l')}: then t = n and B = pi+,1‘

Proof. We have |P| = (p+1){(pt +1) ([17], 1.21, p. 2). So |R| = p* (t (p® — 1) + p) (Proposition
3.6). By Corollary 4.2, t > 2. So, p? (t(p? — 1) +p) = p'. Now, |R| = p*™+! for some integer
m = 1. Thus,

pelm=

t=p(p 2}_|_p'zgm—:i}_|_‘_‘+p'z+1)‘

Since t < p° (17],1.23,p. 3) m=2,t=pand R= pi_"'". O

In (5 (p) all lines are regular ([17], 3.3.1(¢), p 51). So every representation of ()5 (p) is abelian.
On the other hand, since p is odd, Wy (p) is not self-dual and is isomorphic to the dual of Qs(p)
([17], 3.2.1, p. 43). No point of Q5 (p) is regular ([17], 1.5.2(7), p. 13), so no line of Wj(p) is
regular. Again, all points of Q5(p) are antivegular ([17], 3.3.1(i}, p. 51), so all lines of Wy (p) are
antiregular. We prove
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Proposition 4.4. Let S = (P, L) be a (p,p)-GQ. If § admits a nonabelian representation then S
is isomorphic to Wy (p).

Proof. Since Wy(p) is characterized by the regularity of each of its point ([17], 5.2.1, p. 77), it is
enough to show that if z, y € P and & = y then {z, y}~ contains {a, b}~ for distinct a,b e {r,y} "
Let (R,1) be a nonabelian representation of 5. Let = € {a,b}" and w € {x,y}" . We claim that
z~u. Write H = Cg(rs) N Cr(ry). Then

- ICr (ra)| |Cr (rs)] e 'Pdpd o p,'d

ICr(ra) Crrs)l  p°
Let K = {rgz, ry). By Proposition 2.6, |K| = p'. So K = H because K < H. Then [rw,Tz] =1
because [ry, K] = 1. So z ~ w by Theorem 2.9(i). O

|H]

5. Proof of Theorems 1.5 and 1.6

Proof of Theorem 1.5. By Proposition 3.1, p is an odd prime. By Lemma 1.3 and Proposition
4.4, § is isomorphic to Wa, (p). Proposition 3.6 implies that R = pi_"‘dj‘". This completes the proof

of Theorem 1.5.

We prove Theorem 1.6 in Propositions 5.2 and 5.3. In view of Proposition 3.4, we first prove

Proposition 5.1. Let G = p™

that if t;,1; € T then t1ts [ty, tg]';fj'_l}’f 2 e T. Further, T is unique up to conjugacy in G.

. There exists a set T of coset representatives of Z(G) in G such

Proof. Let £ = Z(G) = {z) and V = G/Z. We consider V' as a vector space over Fy. The map
f:VxV — F, taking (zZ,yZ) to i, where [z,y] = 2* (0 < i < p— 1), is a nondegenerate
symplectic bilinear form on V. Write V' as an orthogonal direct sum of r hyperbolic planes K
(1<i<r)inV and let H; be the inverse image of &'; in (G. Then H; is generated by 2 elements
zi, and xy, such that [r;, 74,] = 2. Let 4; = (13,1 <i<r), j =1,2 Then A; is an elementary
abelian p-subgroup of G of order p", 4; NZ = {1} and 4,1 2N A2 = Z. Set

T = {rry [:r,-g,u]pi’_1 rredye Ag}.

We show that T has the required property. Let a = zy|x, y]Lrl . 3 = uv ['M,?J]E:’_l be elements
of T where z,u € Ay and y,v € Ao, If aZ = 3Z, then u'zZ = y~'wZ and is equal to Z because
Al ZNAZ = Z. Sox = u and y = v because 4; N £ = {1}, Thus aZ = 3Z if and only if
T =1u,y =uv S0, |T| = p* and T is a complete set of coset representatives. Since &' = Z, a
routine calenlation shows that o lﬂ,fﬁ']w_”r : = (zu) (yv) [.-rn.,-y-u]w_ U2 ¢ 7. Thus, T has the
stated property.
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Now we prove the uniqueness part. In fact, we show that the group of inner antomorphisms of
{7 acts regularly on the set X' of all sets of coset representatives of 2 in 7, each of which is closed
under the binary operation (fy,f2) — tifalty, t-_:](ﬁ'_l” =

Fix an ordered basis {mZ, - -, w2, 2} for V. Each T € A" is determined by the sequence (zq,--
&)y where T NwZ = {z;}. In fact, if aZ = ;rf: .- If:[ e V, where §; < - - < i, and
l<fr=p—1thm aZ NT = {If: . -If:zm}, where

ST 113:12{:][13—1},"! [Ifilmi:_i;ﬂ_.gujﬂp—l}f? e l:_,-:ji 5 .3--7-” 1 IJ'-H]EP—I}.-"?‘

3 “in=-11"n
Thus, |X| < p*". Further, for T € X and g € G, g~'Tg = T implies g € Z. To see this, let t £ T
and g~'tg=1t' € T. Then, tZ = g~ 'tgZ = t'Z. Since T contains exactly one element from each
coset, it follows that t = ¢ and g € Cg(t). Thus, g € Cq(T) = Z. Since |G : Z| = p™, | X| = p*
and ¢ acts transitively on A. O

Proposition 5.2. Wa(p), r = 2, admits a nonabelion representation and the representation group
1+2r

ispl
Proof. Let G = p{™" and T be as in Propoesition 5.1. Consider the partial linear space § = (P, L),
where P = {(z) : 1 # # € T} and a line is of the form {(z),(y), (zy), -~ {(zP~1y}} for distinct
(z), {y) in P with [z,y] = 1. Note that 2y € T for each i and |P| = (p*" — 1)/(p — 1). We show
that § is a polar space of rank r.

Since T N Z(G) = {1}, 5 is nondegenerate. Let (x) € P, ! € L and {x) ¢ [. Then, {z) is
collinear with one or all points of [ because Cg (x) intersects nontrivially with the subgroup H of
(i generated by the points of [. Note that H is a subgroup of order p* and disjoint from Z(G).
Rank of § is » becanse singular subspaces in 8 correspond to elementary abelian subgroups of G
which intersect Z(G) trivially and p" is the maximum of the orders of such subgroups of G. Thus
S is a polar space of rank r.

Clearly (+ is a representation group of §. So, § is isomorphic to Wy, (p) (Theorem 1.5(d#)). O

Proposition 5.3. Any two representations of War (p), r = 2, are equivalent.

Proof. Let (Hy,1n) and {H2,1%) be two representations of Wy, (p). By Theorem 1.5(ii}, we may
assume that iy = Rs = K. By Proposition 3.5, each Hy, is a set of coset representatives of Z(R)
in B. Let ¢ € Aut(R) be such that w(Ry, )} = Hy, (Proposition 5.1). Define 3 : P — P by
B =1y ]:pr.l';l. Now, Lemma 3.2 implies that 4 is an automorphism of Wa, (p). Now, (K, 1) and
(R, 1) are equivalent with respect to ¢ and /3. O
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