Of grandaunts and Fibonacci

The beautiful identity

for odd n, appears in article 88.62 and is termed grandma’s identity by Steven
Humble ([1]). However, it has been well-known in some quarters as the author
says. Indeed, for several years, I have known this identity as well as two identities
- a twin sister and an Italian cousin perhaps ! The Italian cousin alluded to is :

(n—1)/2
H (3+2Cos(27r/n)) = F,

r=1

for odd n, where F), is the n-th among the Fibonacci numbers 1, 1,2, 3,5,8,13,21,34, - -

The twin sister to the grandma identity is :
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We call this the twin sister because it is seen to be equivalent to the grandma
identity on using the substitution formula Cos(m — 0) = —Cos(0).

The starting point of my discussion is the following identity which I have ob-
served and used in a number of ways (see [2], [3]); it can be proved by induction
onn:
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Using this, we have the identities
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Now, let us evaluate both sides of
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at a value t of x for which W = —1; that is, t> + 3t + 1 = 0. The point is
that the left hand side becomes (1 + )1 3" 1)/2 ("717"). It is well-known
and easy to prove by induction on n that Z(n D72 ("71.171') is nothing but the
n-th Fibonacci number. This is true for every mn; one just uses the recursion
Fni1 = F, + F,,_1. On the other hand, the right hand side is
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As —t = (1 +t)?, this proves the remarkable identity

(n—1)/2
H (3+2Cos(2mr/n)) = Fy,
r=1

for any odd n.

Just as Humble obtained grandma’s identity by substituting z = —1 for odd n,
one could substitute z = i(= /—1) for odd n in both expressions, to get the
identities
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these are both equal to 1 or ¢ according as to whether n = +1 mod 4. Thus, we
have a twin sister to grandma’s identity :
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and the grandaunt identity
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Note that Humble’s grandma identity is equivalent to its twin as seen by using
the observation Cos(m — 6) = —Cos(0).
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