Bivariate Versus Univariate Ordinal
Categorical Data with Reference to an
Ophthalmologic Study

Jean-Francois Angers” Atanu Biswas'

July 2002



Abstract

The Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR ) is a population-based epidemio-
logic study carried out in Southern Wisconsin during the eighties of the last century. The resulting data
were analyzed by different statisticians and ophthalmologists during the last two decades. Most of the
analyses were carried out on the baseline data, although there were two follow-up studies on the same
population. A Bayesian analysis of the first follow-up data, taken four years after the baseline study, was
carried out by Angers and Biswas (2001) where the choice of the best model in terms of the covariate
inclusion & done and estimates of the associated covariate effects were obtained using the baseline data
to set the prior for the parameters. In the present article we consider an univariate transformation of
the bivariate ordinal data, and a parallel analysis with the much simpler univariate data is carried out.
The results are then compared with the results of Anpers and Biswas (2001). It is concluded that the
transformation to univariate data is suitable in the present context as the analysis of the transformed
data catches most of the features of the bivariate data.

Key words: Univariate ordinal data, bivariate ordinal data, sensitivity apalysis, Bayesian selection
model.



1 Introduction and Data Description

Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) is a population-based study in Southern Wiscon-
sin between 1980 and 1982, in which a total of 996 insulin-taking, younper onset diabetic persons were examined using
standard protocols to determine the prevalence and severity of diabetic retinopathy and associated risk variables (see
Klein, Klein, Moss, Davis and DeMets, 1984a, b). The basic goal of the study (of Klein et al, 1984a, b) was to
find the associated risk factors which are important in planning a wellcoordinated approach to the public health
problem posed by the complications of diabetes. There were d-year and 10-year follow-up examinations {of Klein,
Klein, Moss, Davis and DebMets, 1989, and Klein, Klein, Moss and Croickshanks, 1994).

The ohservations corresponding to any individual (at any time point) was a bivariate ordinal categorical in nature
{in the presence of several covariates). Both the right and left eve retinopathy severity levels are recorded as two
components of the bivariate response. Possible values are 10, 21, 31, 37, 43, 47, 53, 60, 61, 65, 71, 75, 85 corresponding
to increasing levels of severity of retinopathy within an eye.

Three eye-specific covariates are recorded. These are right and left eve macular edema (ME) | present/absent ),
right and left eye refractive error (RE) in diopters, right and left eye intraocular pressure (I0P) in mmHg. In addition
8 person-specific covariates are recorded, namely the duration of diabetes (DuD) in years, glycosylated hemoglobin
(GH) in percent, systolic and diastolic blood pressures (SBP & DBP) are measured in mmHg., body mass index
(BMI) in kilograms per meter squared, pulse rate (PR) in beats per 30 seconds, urine protein {UP) (present /absent )
and doses of insulin (D) per day.

Analysis of ordinal categorical data becomes much more complicated when the ordinal cateporical data is of
multivariate in nature. Dale’s {1986) paper opened the floodgate followed by a deluge of papers in this direction.
Many of the early analyses were in the frequentist’s set up (see eg. Williamson, Kim and Lipsitz, 1995; Molenberghs
and Lessafre, 1994: Kim, 1995; Williamson and Kim, 1996; Kim, Lipsitz and Williamson, 1996; Williamson, Lipsitz
and Kim, 1999). Note that, most of the frequentist’s approaches are computationally quite expensive.

In a Bayesian paradigm, Biswas and Das (2002) considered a model using normally distributed latent variables
similar to that of Kim (1995), where one may easily arrive at a consistent solution of the inderlying regression pa-
rameter and may draw inference through the well known Gibbs sampler approach. Note that all the above mentioned
works were done using the baseline data only. Das and Biswas (2001) carried out a Bayesian semiparametric analysis
using both the baseline and d-year follow-up data.

Anpers and Biwas (2001) carried out a Bayesian analysis of the d-year follow-up data wsing the baseline data to
fix the priors for different parameters. In the present paper, we first provide a brief description of the methodology
and the results of Anpers and Biswas (2001), in Section 2. In Section 3, we discuss a transformation of the bivariate
data to an univariate one, and provide the methodology of analyzing such wnivariate data. Quite naturally, the
technigque of analysis will be simpler and the computational task will be easier. The results with the conclusions are
presented in Section 4.

2 Analysis of Bivariate Data

Let yp; and g denote the bivariate ordered categorical responses for the ith individual corresponding to left and
right eye respectively. Note that, yr.ym € {10,21,31,37,43,47,53,60,61,65,71,75,85}. Let ¥z and yg be the
vectors combining yr;'s and yg s for all the individualk. In order to assume normality of the error terms, we add
zp; and zp; to yp, and yg;, where (z7;, 25,7 ~ Na(0, UEZIP:I with [, is the 2 x 2 correlation matrix with unknown
correlation p, and o2 is such that yg; + 3. and yg; £+ 30. will not change categories. Let zz (zg) be the vector
combining all the zp;'s (zg;’s).

Let uy, = yi +zr and ug = yi + 2z and these uy, and ug are the true values and we observe v and yg in place
of them. We model n; and ug as follows:

u= X + e,

where

e (“L) K= (ﬁ Jl{{}l }{;}g) 0=(8.80.8)" e=(er.ex)",

g

By are the covariate common to both eves, 3, those specific for the left eye only and 3., those for the right eye only
and € ~ Nay(0, 6°12,,).
For the p-component parameter vector 8, we consider
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where the hyperparameters 8; and & (x < 1) are assumed to be known and o2 is unknown. An inverted gamma
prior with parameters o and 3 is considered for o2, The prior of p is chosen to be an uniform density on the interval
(—1,1). We use the baseline data to estimate 8. To denote the baseline data we just put “*” to vi, vr and X. Thus
8, is estimated using v, vi and X* as follows:

aﬂ _ {erxx:l—lxxr}rx‘

where v* = {}'ET'-F*RT
Using standard technique, after some routine steps, it can be shown that the conditional posteriors of 8, a2 and

[ are

1T, Sensitivity analysis on  is also needed to be done.
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hip) = (Brs(p) — 80)" (x'V +(1 = p*)(D — pE) )" (Brs(p) — B0).
Hence, given a fived value of p. we can estimate 8 by
8(p) = (kV L + XTUX) " (kV 200 + XTU X 813(p)).

Note that 8(p) does not depend on o2, Thus, even if o is unknown, we will obtain the same estimator. However,

amj depends on p. Under the squared error loss, the estimator of 8 is given by g = Emsleu) [ﬁ{p]] This expectation
can be computed wsing Monte Carlo integration technique. Since u depend on z, which is random, we use EM
algorithm (see Dempster, Laird and Rubin, 1977) to find 8 as

ﬁ i gﬂ I E:rrﬁi.rﬂu][{ﬁ‘libr—l + Xru—lxj—IXru—I]{]j 25 X’gu:h

where it = =~ Y" u(z)=y+ 23" n=y+E

e
In model selection (in terms of inchision of the covariates), we are interested to test

Hy:85 =0 against Hy: 8 #10,

where 8 = {Eﬂ], H'g.;]:lT~ to decide whether we would include the covariates corresponding to 82 in the model or not.
Henee, if the above Hy is true, then
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Writing (XTU'X)"! = (};} ?), we have

Brs01)(p)|OLs2) (). poo® ~ Ny, (81 + BC ' 0L5(5(p).a”F),

where F = A — BCT'BT. One need to take expectation with respect to o2 and p, and that can be tackled by Monte

Carlo integration technique. Using standard technique, if 8, ~ Ny, (ﬂ'ﬂ,:l] ; ”—:‘u’m) , the distribution of 85, given
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where G =F~! — F_l{ﬁ‘u’m +F 1) IF Let
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be the marginal density of n under the null hypothesis. Then
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Write the marpinal of u under the alternative hypothesis as

Tri—1v1/2
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Then we accept Hy if mgiu) /oy (n) = 1 and aceept H, otherwise.

In Angers and Biswas (2001), several models are tried starting from one component equal to zero to all but one
equal to zero. To implement, the standardized Bayesian estimates are ordered in the following way. Writing Q) as
the ith diaponal element of the square matrix Q, we write

18]
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and suppose i < gy = -0 = gy, be the ordered arrangement. The different possible models are then M; @ py, =
=g =0for 1l =1,2,---,p— 1. If 7; denotes the marginal probability of M, and if By = my frg, with myg
being the marginal probability of the full model, then we accept M- as the correct model for our purpose if

Bi. = max B
0<i<p—1
Note that here By = 1.

It is to be noted that with the chosen a priori model, only numerical integration with respect to p is needed. In
order to evaluate 8, the Monte Carlo method with importance sampling is nsed. The importance sampling function
used to generate the p values i

glp) o (1 — p)latmiz,
and 5000 iterations were made. For each walue of p, the 7 & computed using 1000 iterations. In practice, it is
generated from Z ~ Na (0, o31,/1000).

=From the computation (cf. Table 4 and 5), we observe that except the constant term RSRBL (the effect of the
retinopathy scale of the right eye of the baseline data as cowriate for the left eye of the current study), RSLBL (the
effect of the retinopathy scale of the left eve of the baseline data as covariate for the left eye of the current study)
and GH came ont as important covariates. In fact, Klein et at. (1988) also observed GH as an important covariate
for retinopathy. Apain the same scenario was observed in the analyses of Kim (1995) and Biswas and Das (2001).
The analysis was carried out with these covariates only, for different x.

3 Analysis of Concatenated Univariate Data

One can easily understand that an analysis with bivariate ordinal categorical data set is quite complicated and
computationally expensive too. Moreover, one has to take care of the polychorie correlation (correlation between
two categorical random wariables). In the present study our objective is to see whether we can suitably transform
the bivariate ordinal categorical data to an univariate ordinal cateporical data in the sense that we can clearly catch
the major features of the data in such transformed univariate data, whose analysis is quite simpler.



Table 1: Correlation coefficient between RS and Y, Y and 2
[ Variables | Correlation |
RS and Yy 0.9517
RS and Yy 0.9506
RS and 2 (1.9833

The first thing to do is, of course, to make a suitable transformation maintaining the ordinal nature and flavor.
In order to do so, let

Zi=aYr, + Y5,

We want to choose a and b such that the Z,°s are as similar as possible to the Y3,'s and Y5,’s. This can be achieved
by maximizing the sum of the correlation coefficient between Z and Yy, and that of 2 and Yg. It can be shown that

14+ Vi + bV,
— (1+ pr.r)(avVe + by'Vig) (3)

\/aﬂL’L + B2 Vg + 2abp, rvVL Vi

where

Vi = Var(Yi),
'r = War(Yg, ),
pr.r = Corr(Yr:, Yra).

Equation (3) is maximum when
Va
W
If we impose the constraint that War(Z;) = (War(Y5,) + ¥ar(¥Y7, 1) /2, then we obtain

wo X | Ve +Ve
2V Vil + pr.gr)’
i 1 T+ Vg
2\ Va(l+ prg)’

and pzy, +pzy, = /2(1 +prr). Consequently, the “best” univariate transformation is given by

1 Vi + Ve [vVeYu + vViYe )
s . (4)
2V 1+ prLr VViVi

For the data set under consideration, the different quantities of equation (4) have been estimated from the data and
the coefficient of ¥5; is a = 0.5163, and the one for ¥g; is b = 0.5174. Comsequently, Z; is almost equal to the
average between ¥y, and ¥g;. The correlation coefficients of Z with Y, and Y i are respectively pz v, = 0.9675 and
Pz, = 00672

An alternative wnivariate transformation of the bivariate data is done by the experimenters themselves. This s a
retinopathy scale (RS) in which the retinopathy levels of both eyes are concatenated into a person-level scale. The
RS used in the present work is a more current one than the one wed in some earlier works by different anthors. In
finding RS, the worse eve is given preater weight. The fellow eye has either the same level or a lower level. All levels
of proliferative retinopathy (60-85) are pronped together. This results in a 15-level seale: 10/10, 21/ < 21, 21/21,
31/ < 31, 31/31, 37/ < 37, 37/37, 43/ < 43, 43/43, 47/ < AT, AT/AT, 53/ < 53, 53/53, 60 + / < 60+, 60 + /60+,
which are numbered ) through 14, The ordinal nature is maintained by simply putting arbitrarily larger weight to
the worse eye (see Klein, Davis, Segal, Long, Harris, Haug, Mapli and Syrjala, 1984). The correlation coefficients
between the retinopathy scale and the other wariables (Y, Y g and Z) are piven in Table 1. Hence 2 is very similar
{up to a linear transformation) to RS since & has a strong correlation with BS. However, the correlation of Z with
Y and Y g is slightly higher than the one of RS with Yy and Y. The descriptive statistics of Z (along with the
ones of Yy, and Yg) are given in Table 2. >From this table, it can be seen that 7 is very similar to Y, and Y 5.

a="h

Let = be the vector of responses from all the individualk. We model z as

z= X"y +e*,



Table 2: Descriptive statistics of 2, Y and Y,

Z ¥y Y
THEATL S05TL | 209549 | 20599
st dev. 16193 | 16.200 | 16177
NI 10337 10 10
1 gquartile | 16.552 21 21
median 20,882 31 a1
3™ quartile | 38.254 | 37 37
AT TA395 Tl T

where X* = (X X; X)) and v = {,B‘Thﬂrhﬂgjr A normal prior, as in (1), for v & considered as
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with o2, & and V may be different from the bivariate case. But in the univariate set up, no correlation parameter
= %

comes into consideration. Thus - is estimated wsing 2%, X (baseline data) as
;ﬁ’j ey {erxx:l—lxxrz_

Using standard technique, after some routine steps, it can be shown that the conditional posteriors of v and o2
are:

1

¥l za® ~ Np([ﬁ‘u’_l +5{T}_{]_ [ﬁ‘u’_l"m +RT5{-TL5-] i
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where ;5 = (XTX) X7z, and r = z — X+, 5. Hence, under the squared-error loss, the Bayes estimator of @ is

independent of o and it is given hy:

P, | R
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and its posterior expected loss is 7 [rﬂu’_l + XTX] , where
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The model selection process is similar to Section 2. However, since there is no correlation coefficient p to account
for, the formulae are somehow easier. The marginal density of z under the hypothesis Hy : 8,5 = 0 is given by:

F{[rx +p,:1]]l.-’2]
(a/2)mP 2| Ay |12

mplz) = v
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Py =  the number of components in v,
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and X 4, ¥y 9, Ea 2 are such that

s Fog
r—1 T o 1,1 1.2
KV +(x x) . ( = )

The marpinal density under the full model is
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To choose the best model, we follow the technique discussed at the end of Section 2.

4 Numerical Calculations and Conclusions

The 4-vear follow-up WESDR data, on 629 individuals, are analyzed. The details of the computations in the bivariate
case, can be obtained in Angers and Biswas {2001).

Table 3 presents the estimated walues for the parameters of the full model, with all the cowriates, for several
values of &, both for the bivariate and the univariate data as the two entries in each cell. Quite naturally, the
parameters corresponding to RSRBR and RSLBR are not in the univariate model (represented by NA in Table 3).
These covariates were nsed in both X and X5 in order to measure their influence separately on the retinophaty scale
of each eye.

=From Thable 3, it can be seen that the coefficient of RSRBR (RSRBL) is similar to the one of RSLBL (RSLER)
while using the bivariate ordinal data. Hence it can be concluded that the retinophaty scale of the right eye in
baseline study has a similar effect of the retinopathy scale of the right eve in the current study. It can ako be seen
from this table that the estimated values for the covariates for both approach are not influenced by the choice of «,
mainly because the data set is quite large. For the full model, the correlation coefficient between the observations
on both eyes and the predicted wvalues is 0.786 for all values of x in case of the bivariate data. Using the univariate
transformation, the correlation coefficient between the observations and the predicted values increases to (1.819 for all
values of k. Furthermore, it can be seen that the regression coefficient of the variables which are person specific do
not chanpe much under the uni- and bivariate models. The wriables RSEBR and RSLRL have a similar behavior.
However, the three eyes specific variables, except left ME, change dramatically from one model to the other.

In Table 4, the estimated values of the coefficients of the covariates, along with the correlation between the
observations and the predicted values for the “best” model are given. The “best” model is defined as the model
maximizing the marginal probability of the observations. The "best” model for the univariate transformation involves
only the baseline retinopathy scale (variable RSLBL). The estimated values does not depend on & and it & equal to
1.130. In this set up, the correlation coefficient is 0.736. The second best model, with a correlation of 01.745, involves
the baseline retinopathy scale (01.777) and the GH {1.208) for all values of x.

Since it is quite difficult to compare all possible models, the models tested are obtained in the following way: (1)
Compute the posterior mean and variance for all covariate in the model; (2) Compute the ratio of the posterior mean
over the posterior standard deviation; () Delete the covariate with the smallest ratio from the model and repeat
steps 1 to k.

=From Table 4, it can be seen that the choice of the best bivariate model depends heavily on the choice of &
while it is always the same for the univariate set up. However, the covariates RSRBL, RSLBL and GH are included
in almost all model, and hence we decided to fit our model with the covariates BSRBL, RSLBL, GH aml a constant
term. This model is adjusted in Table 5 for several values of k. >From this table, it can be seen that the constant
term is a decreasing function of k., while the coefficient of GH is an mcreasing one. The estimated walues of the
coefficients of RSRBL and RSLBL do not depend on the choice of . The correlation between the olservations and
the predicted values & constant as a function of & and is equal to 0.721.

The present paper is an attempt to analyze bivariate ordinal data using a peneral linear model in & Bayesian
framework. Two very peneral and flexible models are proposed, one keeping the bivariate ordinal set up while the
second one using a transformed wnivariate set up. The prior can be made as noninformative (or informative) by
choosing suitable values for the hyperparameters &, o and ~. The observations from the baseline study was nsed to
elicit the prior mean 8, of the covariates.

]



Table 3: Results for the full model.

Parameter k=1 k=075 | k=05 | k=025 | k=01 |
Constant =16 .280 -19.604 =200.100 =2, 450 -HLTO0 |
180T =18 610 -19.417 -2.251 - N B2T
Right ME 11777 11.786 115000 11.791 11.800
4.851 4.776 4671 4,505 4. 483
Right RE 0.172 0.173 =0.172 -0.174 .174
0. 152 (.1%4 0.197 0.200 0.203
Higi‘ﬂ: oP -(0.006 000053 0.001 0.003 0,004
0740 (1,289 (). 285 (0287 -(.256
ESHRER 1. 300 10.366 .366 1.3006 1. 366
0.324 0.325 0.325 0.325 0.352
RSLER 0.2758 0.2758 (.278 0277 0277
MNA MNA NA NA NA
Left ME 13.3090 14300 13,300 13403 13.500
13,122 12,155 12,188 12,223 12,245
Left RE (1. 126 0.125 0.127 (1.124 0.123
H.2406 -0.244 -00.253 {1258 0.260)
Left IOP 0013 -0.011 -0.007 0004 00003
0.240 (.244 (0.24% (0.254 0.257
RSREL 0,203 0.2 0293 (0.292 .22
MNA NA NA NA NA
RSLEL 0.361 0.361 (1360 10.360 (1360
0.322 0.321 0.321 0.321 0.321
Dl 0. 156 0.157 (. 158 0.1549 0.159
0,161 (0.162 0. 163 0.164 (. 165
:H 0.0942 0,947 0.9 56 .56 1.1
(.0258 (1040 04952 (15606 0977
SBP 0,006 (1006 0006 (0.007 0.007
0,000 0.010 (011 0013 (0.014
DEFP 0.123 0.124 (0.125 (0.125 0,126
0.119 0.1240 (0.121 0.123 0.124
BMI 10.340 0.342 (344 0.347 (340
(1.356 0.360 (1365 (0.370 0.373
PR 0.061 0,062 (.06 (1.064 (.06
(10550 0061 (.06 (0.065 IRV
TP ). 208 .20 =030 0327 {1345
0,307 (). 425 -(.402 -0.484 -0.503
D1 -(.004 0.017 0.041 0063 (L07Ts
0.140 (0.0t =(.055 -0.004 0.030

Table 4: Hesults for the best model chosen using the maximum marpinal

observations.

probability and the bivariate ordinal

Parameter k=1 | k=07 | k=05 | =025 | k=101
Constant - - — - 2165
RSEER (0.732 (0.744 — — —
RSLER 0377 (.745 — — —
RESREL — — 1040 L.k 0.741
RSLEL 0.372 — 1.100 1.100) (.746

GH — 1.173 — — 04977
DEP (. 156 — — — —
Correlation | (0.734 0.721 0712 0.712 0721

=]




Table 5: Results for the chosen bivariate model.

Parameter | k=1 | k=075 | k=05 | k=025 [ s =01
Constant 1.573 1.5903 2023 2115 2. 166
RESREL (.742 (1.742 0.742 0.742 0.741
RSLEL 0.747 (0.747 0.747 0.747 0.746
:H 1003 0.004 (). st .951 0977

Noninformative prior for o is used (e = 1 and v = (), and a sensitivity analysis for the choice of & is conducted.
It can be seen that k does not have a significant influence the resulting estimates. The model selection approach
provides an opportunity to deal with the sipnificant covariates only. It is observed that although a lot of covariates
were recorded, only a few of them have significant contribution to the severity of retinopathy. Note that any other
suitable standard eriterion like the Bayes information criteria (BIC) could be wsed for model selection. It can ako be
seen that the results obtained using the univariate transformation are slightly better than those using the bivariate
ordinal data because it has a sliphtly better correlation with the observation.

In the perspective of the WESDR study it could be of interest to analyze the 10 year follow-up data also, by a
similar technique. But we could not access the data in the form of raw data.
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