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Testing for the absence of random effects
in a two-way nested design with mixed effects
model: a nonparametric approach

Abstraet Two-way nested design with mixed effects model arises in many practical
situations. In the classical analysis of variance set-up, a test for the absence of the
random effects is obtained under the assumption that the random effects and the
errors are normally distnbuted. The present paper avoids this assumption and pro-
vides an asymptotically distribution-free test procedure for the above problem. The
asymptotic null distribution of the test statistic is obtained. Actual impleme ntation
of the test is straight forward given the prior information on quantiles of the intra-
block differences of observations. Inthe absence of such information, working test
procedures are proposed. The performances of these tests are compared with the
classical analysis of vadance test through simulations. The tests are thenillustrated
by some real data sets.
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1 Introduction

Consider a two-factor experiment with factors, say, A and B. The factor B is said
to be nested within A if each of its levels is observed in conjunction with just one
level of the secod factor. If we denote the levels of A by A;, i =1,..., r. then
within each A; there are s levels of B and these are denoted by B, j=1.... .5
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This is a two-factor nested design. Each of the factors is either fixed or random.
In this paper, we consider a mixed model set-up with the fixed factor A and the
random factor B. For a comprehensive analysis of such design under usual para-
metnc set-up, see Scheftfe (1939). For interesting applications of such design, we
refer to Montgomery (1984) and Dean and Voss (1999). Morgan (1996) has given
an excellent account of nested designs in his review paper.

In the classical analysis of variance, it is assumed that the underlying dis-
tributions of the random components in the model are normal. This assumption
is essential for carrying out tests of hypotheses. Prevalence of nonnomality, in
practice, however, restricts us to make such sweeping assumption unless supported
by strong evidence. Nonparametric tests are proposed to circumvent this problem.
Nonparmetric methods in design and analysis of experiments are being developed
quite extensively during seventies and eighties. Good reviews of such methods are
available in Brunner and Puri (1996) and Dean and Wolfe (1996).

In this paper, we propose an asymplotically distribution-free test for tesing
the absence of random effects assuming a classical mixed effects model with two
factors one is nested within the other. Specifically, we assume the nested factor is
random. Under the same model, an asymptotically nonparametric test for testing
the equality of the fixed effects is proposed by Brunner and Neumann (1982). This
is discussed in Brunner and Puri (1996). However, 1o the best of our knowledge,
testing for the absence of random effects has not been addressed in the literature so
far . This problem is important from the practical point of view by its own merit.

In Sect. 2, the test procedure is described after introducing the testing prob-
lem in nonparametric set-up. Asymptotic distribution is studied in Sect. 3, and the
problem of a judicious choice of the test statistic supported by simulation studies
are considered and recomme ndation is made in Sect. 4. In Sect. 5, the proposed test
procedure is applied to some real data sets. Sect. 6 ends with concluding discussion.

2 The test procedure
2.1 The problem

Suppose there are r levels of treatment A which are denoted by A;, i =1,... ,r,
and within each A; there are s levels of B which are denoted by B, j=1.... .5
Analysis of unbalanced models is complicated even in the parametric set-up. So
we confine ourselves to the balanced case only. In the following, we consider a
mixed effect model assuming that s levels of B are randomly chosen from a large
number of possible levels at each level of A. The model is thus given by

Yu=p+to;+bynten i=L...n j=1....8 k=1....n
(1)
where
¥ij kth observation corresponding to the level By,
o main effect,
a; effect due to A;, assumed to be fixed with 3 | a; =0,

by effect due to By, assumed to be mndom,
e random emor, independent of b,
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We assume
b_.lla] ~ Fil.) and Eiyk ™ Fal).

independently of each other. Both the distributions are symmetrdc about ‘0. In
the parametnc set-up, it is assumed that b;;,'s and e;;"s are independently and
nommally distributed with means 0 and vanances an and o, respectively, and the
test for absence of random components b;;, in model (1) is equivalent o testing

H:of=0 againgt K :af=0.

In the nonparametric set-up the above null hypothesis is that Fii ) 1s degenerate at
0, ie., Fp(—e) =10, Fiie) = 1 forevery € = 0. A nonparametric test procedure
for testing H is proposed in the following sub-section.

2.2 Test procedure
We observe that
Yip—Yw =eap—epw, k#k,
-.rla_.'.';: = rﬂ_."]:' — {b_.lla] _b_."'laj} g {'E'J_.i.(: = 'E'J_.I'I:'} b _.I' ?é jr-
Mote that each Y — Vi, § 55 7', 15 more dispersed than each of ¥ — Y,

[FRIEN] 1|l]

k = &' Now we define the indicator variables Ju: 0" v . 1 as follows:
kk INLSINN

ey E—— ) .
iy = lor () according as |¥ijx — ¥yl = c or not, and
i) _ _ .
UI_.II:]I_.I".(') — ].Urﬂﬂﬂ_ﬂl'dlﬂgﬂﬁ :lra_.ll: - r;_,-"j:'] = ¢ 0r not,

where *¢’ i1s a preassigned positive constant. The choice of “¢’ is in the experi-
menter’s hand. The problem of a judicious choice of ¢ and hence the test statistic
has been discussed in Sect. 4. We now define the following statistics:

L (i) 7 0

Ui=322 ui”s Vi=2 ) gy
4 kk F=i kR

and

U:ib’.. V:iv‘.

It is easy to find that

E{U,}:s(’;)m. (2)

irrespective of whether # is true or not and

Ex(V;) =n’ (;) p, and Ex(V) = ;;1(;);;..
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the expectations under K and £, respectively, where

PH {}EIJE_EIJEI1}LI}1 j-?ék‘r,
Py {H-‘r{.-ra:. —bpn) +lep — )l = f-'} P I i

7
P

Note that p| = p, under any alternative hypothesis. Then, we set

v L
Sre sl

MNote that 7 is expected to be larger under any alternative than under &, and hence
T can be used as a test statistic. Right-tailed test is suggested which rejects f if

T

T =n,

where 1) is so chosen to have a level ‘p” test. Note that the test proposed above
is not strictly distribution free as the distdbution of T depends on the parent dis-
tribution. However, one can get asy mpiotically distribution-free test based on the
null distdbution of 7. Asymptotic distribution of T has been denved in the next
section.

3 Asymptotic distribution

Brunner and Neumann { 1982), while tesing for equality of o« 's assuming the model
(1), found the asymptotic approximation to the distribution of the rank test statistic
with s tending w infinity. Brunner and Denker ( 1994), on the other hand, consid-
ered asymptotic approximation when both n and » (in a certain rate depending on
1) tend to infinity for two sample location problem. In the following, we state a
theorem for finding asympiotic approximation to the distibution of 77 when both
n and s (in a certain rate depending on n) tend to infinity. Let us denote

pa = Py 1Y — Yipwl > e, Yo — Yyl > ¢},
Pa = Pﬁ'{]h_ﬁk = -.rla_.i"i"] = ih_,-]: == }’J_.".E"l - ('}.

Now we have the following two theorems whose proofs are given in the Appendix.

Theorem 3.1 Under H,
E(T)) =1,

and

Var{Vi=r [Jal(i)m{l —pi)+ntn—1)s(s — 1}{_;;3 = pl-"}

+rlsis — Dis —2) {Pz = Pﬂ]
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and

1 1
Var(T)) = 1 — —e— e —
ar(l) = pi(l — po) I:r{';}n? - ”{g}:|

3} [2{:1 — 1) +2s =2 2in-—=12) 8 :|

r{;:]nl ry {';:J  rsn

Theorem 3.2 Under H, as s — oo,n = 0 {3'|+3:], § =10,

+(p2 — p;

T

£ N, 1).

-,‘,I'IVH-FH ({J"{';}IM2 }_I 'Ir-")

Remark | As p| — p s equal to or greater than O under H or K, a right-tailed test
is appropriate.

Remark 2 From Remark 1, the proposed test is consistent against any fixed alter-
native.
Remark 3 Note that
EiV:— l;_'r 2
{—,} # 0 asn — oo.
Var(V)

On the other hand, for ensuring

[f'{';}ﬂz (p| 2 {r:r{;}l}_l U):|
Varg (V)

as s tends to infinity does not work. We need to make n tending to infinity main-
taining appropriate order relation with n.

— 0,

But, it is again an interesting question: “how large s and n should be for the as-
ymplotics to work?" We carded out a detailed simulation study forr = 2, 5 = 10,
n = 6. We report our findings in Sect. 5.

4 Choice of c: some suggestions

To carry out the above test in Neyman—Pearson sense, one needs 1o specify the
value of ¢ before observing the data. In essence, the problem is similar to the basic
problem of choosing a score in a given nonparametric lesting context as mentioned
in Sect 1 of the classic book by Hajek and Sidak (1967). Note, in our context,
choosing a value of ¢ amounts  choosing a score that leads to a specific non-
parametric test. For rank tests, the general problem of choosing a score was first
adressed and tackled by Hajek and Sidak {1967) and later by Hajek (1969, 1970,
Hoge et al. (1975). A good review is given in Sidak et al. (1999). Chatterjee and
Banerjee (1986, 1991) gave a solution to this general problem in nonparmetric
linear regression set-up.
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Although our problem here is in essence similar to the problem noted above,
the experimental set-up is, however, more complicated. In fact none of the above
solutions would be directly applicable here. We offer a workable solution in the
following.

A natural choice of ¢ 5 a higher-order quantile of the distribution of intrablock
differences. In experimental design, pror knowledge of such quantiles may usu-
ally be available from historical data from past studies. To motivate, we suppose
a company produces an ilem in several factories located in several places of a
country (several countries). The product of each factory may go o a number of
locations for sales. A given location may have products from several factodes oo,
Suppose the response is a quality characteristic (quantitative, may be lifetime of
a sports shoe/tele vision/laptopand ¥y denotes the response of the kth unit in the
Jth location (where the products are being used) from the ith factory. Here w; is the
ith factory effect and b, is the jth location effect nested within the ith factory.
In such cases life testing experiments in each factory would generate enough data
for having precise estimates of the quantiles of intrablock differences and hence
can be effectively utilized for determining c.

Given the higher-order quantiles, the question is, which of these is to be chosen
as the value of ¢ or more specifically is there any optimum choice of ¢7 Intuitively
it is clear that larger the r(3)n *, the power of the test against a nonlocal alternative
would, in general, increase with the increase in the chosen value of ¢. However, for
a fixed set of values of r, 5 and n, the value of ¢ should be so chosen as to ensure
reasonable estimates of tail probabilities both under the null and the alternatives.
Thus an optimum choice of ¢ irrespective of different configurations of r, s and
1 does not exist. On the other hand, for a given choice of r, ¥ and n and a given
altemative, the performance of the test would depend on the shape of the parent
distribution (see Sidak et al. 1999; Hajek 1969, 1970; Hogg et al. 1975; Chattegee
and Banedgee 1986, 1991). Hajek (1969, 1970, in particular, showed that change
in tail weights of the unknown parent distribution significantly affects the optimum
choice of the score. Thus, in order 1o prescribe a workable choice of ¢, we conduct
simulation studies to investigate the sensitivity of the optimum value of ¢ to the tail
weight, to different configurations of r, ¥ and n and to different alternatives. The
main idea is, of course, 1o prescribe a guideline for the choice of ¢ given the prior
information about the tail weight of the null distribution of intra-block difference.

Although we have considered different configurations of r, s and n, for brevity,
we report only the computations for r = 2, ¥ = 3, n = 6. Also we have chosen
four distributions according to their tail weights, viz., light tailed (Double Expo-
nential), moderate tailed {Normal distribution), heavy tailed {Cauchy) and abrupt
tailed {rectangular). The pattern we observe for other configurations of v, s and n
is similar. We carry out 10,000 simulations. Generating data from a distribution,
we eslimate ¢ as a predetermined quantile of the null distribution of the mtrablock
differences (70, 73, 80, 90, 95 and 97 quantiles are considered). Consequently we
obtainr, the cut-off point, and the powers at different alternatives keeping the level
at 3%. A part of the results is presented in Table 1.

The results show that both tail weights and the design in terms of r, s and »
have significant effect on the choice of ¢. 1t also depends on the chosen altemative.
For abrupt tailed (rectangular) higher quantile seems o be a better choice while
for heavy tailed (Cauchy) not so high quantile will be a good choice. We keep the
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Table 1 Power at different alternatives for different parent distributions where ¢ is considerad as
different quantiles (here nf =1}

ap e as different quantiles o
0% T5% B MG Q5% 9T %

Normal parent

1.0 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
L6 0.1884 02864 03842 0.7134 0.8061 0.7977 (.6440
22 03968 0.6317 0.828D 0.94942 094978 0.9952 0.8440
28 05949 0.8624 09757 0.9999 0.9999 0.9999 0.8860

Dhotel e exponential parent

1.0 00500 00500 00500 00500 00500 00500 00500
1.6 0.2058 (0.2860 (4074 (0.6868 0.7596 0.7502 0.7423
22 (42490 (L6294 (0.8477 (09840 (09837 09741 09232
2.8 06312 (L.B5RS 09793 LR (9952 09961 09750

Cauclty parent

1.0 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
1.6 0.2234 0.3102 04187 0.5625 (0.5889 0.6579 0.7424
22 04540 0.6682 0.8310 0.8670 0.54497 08519 0.8322
28 0.6682 08818 0.9634 0.9379 0.9306 0.9010 0.8783

Rectangular parent

1.0 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
1.6 0.1811 02512 0.3204 0.6601 0.8557 0.5962 0.3700
232 0.3648 0.5406 0.7189 0.9925 0.499491 0.949494 04560
28 Ot 07 092 2 DRV L0000 10000 0.8534

choice at the discretion of the experimenter subject o the availability of the prior
information about the quantiles. See Banerjee ( 1984) for adiscussion on utilization
of additional information in nonparametric lests.

In case such information is not at all available, one could as well perform the
test procedure by choosing several possible values of ¢ (which will correspond to
different quantiles). If ¢ is sufficiently small or sufficiently large, then the detection
power of the test on the basis of a finite sample will be almost nil (as 7} will be
zero in both the cases). Thus, one can think of 7'(¢) for ¢ € |, defining a class of
tests and it is rational 1o choose ¢ 1o maximize the power of the test. But, in this
case, since the parent distribution is unknown, choosing ‘o by maximizing power
is not feasible. Instead, we can maximize a sort of empirical power, that is we can
minimize the £ value. Thus, one can take a decision on the basis of the observed
F value.

As one referee has suggested, one sensible approach might be to consider

T e Ty
as a lest statistic. We carried out a detailed simulation study o investigate the null
and nonnull distibutions of 7. The power of the test is compared with that of the
tests based on T (c) for different ¢, in Table 1. The P-values are compared with
the proposed test and that of F-test or permutation test for some real data sets in
Table 3. We observe that the performance of the test with 7)" as the test statistic
is reasonably zood in terms of power and P-values. So this can be recommended



204 T. Banerjee and A. Biswas

for application. But, certainly the power is much more if one can identify the
appropriate percentile point. Since that is not possible, 77" is a very good working
solution.

5 Example and simulation studies

In the following example, we illustrate our procedure with a real life data set in the
absence of any prior information. First, we choose ‘¢’minimizing the £ value and
then apply the asymptotic test based on 77.

5.1 Example

We use an unpublished data set (8. Sarkar, unpublished data) obtained from an
experimental smdy of the effects of different hormones on the ovarian weight of
the soft-shelled turtles Lissem vy punctata punctata, which is an endangered spe-
cies. The data are collected at two different time points, i.e., r = 2. At each time
pointthere are three blocks (ie., s = 3)comesponding to control and two different
hormmones. Two blocks at each time point record responses of six turtles (n = 6)
treated with control and Leutinizing hommone (LH). The other two blocks one each
at a given time point record responses of the turtles treated with Estradiol-178
(E-17 ) anf Follicle stimulating hormone (FSH). Dose applied was 15-ug per
100-g body weight for 15 days. The data are provided in Table 2

We take different percentile points as determined from the intra-block differ-
ences of the data as the choices of ¢ and the P values of permutation test based
on Ty are reported in Table 3. We take ¢ = 5.7 as it minimizes the P value of the
permutation test based on 7. It is 10 be noted that the P value corresponding to
the asymptotic test based on 7| broadly agrees with the P values corresponding
to the permutation tests based on 7} and T'*. On the otherhand, it should be noted
that the P value of the paprametric £ test differs from others by a factor 1,000,

MNext we present a limited simlulation study to investigate (i) how the asymp-
totic approximation to the diswribution of 7' works even for moderate values of
s and n? (i) when would we expect our test to outperfomm the parametric £ test
completely? We investigate both these questions by comparing the attained level
of significance with the supulated level of significance.

Table 2 Ovarian weight of soft-shelled wrtle at two different times using different treatments
and control

Ay (Time point 1) Az (Time point 2}

By:Control B»: LH-treated Bs: E-178 treated By Control B:: LH-treated Bq: FSH-treated
228 38.0 30.0 240 284 302

274 373 26.7 27.8 350 29.6

324 403 7.2 28.0 5.7 312

254 354 28.0 253 389 254

27.5 363 322 310 364 303

300 413 3.1 53 310 310
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Table 3 7 values of the turtle data using the permutation test and the asymptotic test for different
percentile points taken as the choice of ¢

Percentile Exact permutation test

proints taken [y L V T P value

70 a2 32 163 0.39491 1.67 = 1074
73 iB 29 160 04185 100« 1074
11 42 24 154 04463 100 x 1074
90 57 12 116 0.4037 0.67 x 1074
a5 7.0 6 96 0.3778 0.67 = 1074
a7 8.0 3 TS 0.3139 1.67 = 10~*

P value of the asymptotic test (T} -statistic) = 1.44 = 107
P ovalue of the parametric test (F-statistic) =4.29 = 1079
P value of the test based on T} =0.75 x 107

5.2 Simulation studies

We design our simulation study with samples from normal distribution assuming
po= Doy =0, b = 0and e ~ Nomal((), 1). The configuration chosen
is r =2 5 = 10and n = 6. For applying our test, we take ¢ as 80% quantile
of the null distribution of intrablock difference. We observe that the level attained
by the asymptotic test based on T is almost same for ¢ = (.05 and above. For
o = (.01 there is a small discrepancy. The asymptotic procedure, thus, seems
to work well even for a value of s as small as 10 and » equal to 6. In addition,
we have camied out a simulation study o understand the obustness of our pro-
posed nonparametric test. For this we contaminate 15% of e;;i's by observations
from N (0., 5%). Assuming absence of contamination we carry out usual paprametric
F test and the asymptotic test based on 7 at 3% level of significance repetetive-
ly for 10,000 samples. The attained levels of significance of the asymptotic test
based on T and the the parametric test based on F are found to be 0,038 and 0.56,
respectively. Thus the test based on 7' outperforms the usual £ test. [t shows that
the test based on 77 is highly robust especially in the presence of outliers.

6 Concluding remarks

In this paper, we have proposed a nonparametric test for testing the presence of
a variance component in the nested two-way mixed model. We now discuss two
possible generalizations of the proposed test. Suppose, instead of ¢, we have a
sequence of constants {o, ca, ..., o b suchthat 0 = ¢ = ¢ = --- = ¢,. Setting
the intervals

=i, e, j=1Ur+1,

with oy = 0 and ¢, = oo, we can consider the following general scores:
ui‘i]“j =d if|l¥— Yl el
and

”EJ&:UJ.&J; =d ifl¥i — Yijel € 1a,
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to propose a generalization of our proposed procedure. For each such interval, we
can find a statistic of type T defining an indicator. First one needs to take a convex
combination of these two types of quantities separately. The weights are so chosen
thatitincreases (or decreases ) withd , i.e., the subscript of ¢ sothat the observations
away from central part get increasing weights with the increase of the distance.
Then the difference of f and V afier adjusting for number of such differences will
serve as a test statistic. Choice of ¢;"s are also 1o be made using some quantiles
as before. The study will be taken up in future, and we intend to communicate it
in a separate issue. A random effect model like (1) is also tue in different bio-
medical problems. For example, in teratological experiments some dose levels are
considered, and there may be many other such possible dose levels. The same is
true in dose response studied in toxicity (phase [ trial). The asymptotic results in
terms of ¥ — oo is conceptually alright and has some physical interpretation. For
example, if we are interested in the production rate by a machine we can take a
block consisting the production in one hour. Instead of increasing the time, we
can take many such one hour slots for our purpose. Such types of works where
asymptotics are done in terms of s are available in lilerature. [see, for example,
the asympiotics of Friedman statistic as the number of blocks tends to infinity in
Hajek's ( 1967) book.| But, instead of s, if we want the asymptotic results in terms
of i, there is some problem with the test statistic. Here n = Varg (7)) converges 1o
zero as n goes Lo infinity. To interpret the results in terms of n we do the following.

Define
7 S0
L Z ZLUEJU’E'J‘
d=i k&

(W Eo e

and consequently setting V* = 3} 7_, V", we note that
p—— al fn
Eg(V)=n - -1 p-

i v+ v
O sl

a right-tailed test based on T3 can be suggested. As in (4) and (5), we can obtain

Then setting

Varg(V* ) =r IM2 S [(;) — 1] pill — o) +2n*n—-1)

% [(;) - 1] (p2— pi) +n'lsts — 1) —4)(s —2) (p2 — P'”}

covy(U, V¥) = ro(n — D)(s + (s — 2) (p2 — pi).-

Then, as in Theorem 3.2, we have as n — oo, under

JaTy 5 N, aD),
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where

4{*. — 452 — 5 + 1"5}

ris?—s —

.,EL

{P’-'—P|J > 0.

The test is also consistent. There is one problem with the test provided by 75, The
behavior and pedormance of the test depends on the pair excluded from the possi-
ble (3) possible pairs for each level of A considered in defining 7}. Here we have
excluded the (s — 1, s )th pair, but if we could exclude any other pair, 75> would have
any other realization with a possibility of other decision. It is 10 be noted that, as
we are considering n tending w infinity and s being kept fixed, probably dropping
(3) observations do not have serious effect on inference.

Appendix

Proof of Theorem 3.1 The expectation part is immediate from (2) and (3). In var-
iance of U, there are () components of Vary (u}‘if"") [= pi(l — py)] and nin —

1yi{n — 2) components of covy (Hﬂf'” u]u])[ o Pl] T Ty L

level. Hence
Vary (U) = rs [(’;) pi(l = p)+n(n =1 —2) (pr — p-?}]- (3)

In the variance of V within each level of A, there are (}) between block compar-
isons, yielding »* () variance components, We call these (3) as reduced blocks.
Within each block there are n®(n — 1)s(s — 1) covariance paris. [There are n sub-
blocks within each reduced block, (3) covariances for each subblock and there

ane {;} reduced blocks.] Between the reduced blocks, there are some covariance
factors. There are n subblocks within each reduced block and one subblock has
n* covariance components with one other block. There is a term s{s — 1){s — 2)
which comes in the same way as ni{n — 1){n — 2) comes in Varg (L7). Thus

Varg(V)=r [ ( )Pll[l — p1) +n*n — Ds(s — D(p2— p)
+n's(s — Dis = 2) (p2 —p-?}]. (4)

Similarly, to find the covy (U, V) we note that, for U there are s blocks, in V' there
are n subblocks within each reduced block, there are nin — 1) covanance tenms
between one block of [ and one subblock of a reduced block V, and components
(Y1) of one block of I are spread into (s — 1) reduced blocks of V. Thus

covy(lf, V) = .rmE{n — lis(x — 1) {pg - pf] : (3)

Using (3)—3), the theorem is immediate. (|
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Proof of Theorem 3.2 Note that

i _ Y —En(V) i ["{Elﬂl (P| = {r.\'{;”_' U)]
-.'.'llrll""?ﬂTH ({J"{E}nl}_l V) W vary (V) VAt (V)

(6)
Let V be the projection of V* (the standardized version of V', ie., V — E{V)). For
any fixed i, j = j', consider
A Z “E-]k]u*k'] —n’p)
[y
=V (Y1, .- ¥ijuo Ygr, .-, Y] (R2Y).
Define
'I:"{_v,_”} = EV {_}'._,:l. f F TRNCE 4 TP f | PR 1”._.:’;.}
=nkP “.}'a_.‘l —¥| = c'} +nin—1F {I]f’,_” — ¥yl = c'} —nlp"
=N [P {]_}',_” —¥| = c'} — p”

where ¥ has same distribution as any Y. Clearly,

nVar (V(v;;1))

= E[P(I¥y1 = Y| > el¥n} ] = [EP {I¥51 — Y| > el¥i}]

= E[P{I¥51 — ¥Yipwl = cl¥in } P {1¥ij1 — ¥yl = cl¥in )] — P

= E[P{I¥y1— Yipwl > €. ¥ — Yipuel > el¥ip}] - o7
= P{I¥y1 — ¥ywl > c. I¥y1 — ¥yrl > ¢} — pf
=p—pi.

Now, define

V) = W) + -+ V(¥ip) + V() + -+ 7 Ty,

and
V= Z .:,‘u.f! =s—1 Z Iﬁhil} sk Vi) |
l=j=i'=s =1
Hence
V=Y ¥
1=l
Consequently,

Var(V) = (s — 1) rsn ‘\-’ﬂr(ﬁ{]”,_ﬂ}l) = (s — 1)rsn’ {pg — prﬁ} :
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Since V is the projection of V*, it can be easily shown that

E(V" - vy _ Var(V*)
V.in‘(ir’}  Var(V)
r[nz{;}p’jﬂ - pid At = Usis = 1 {ph = pfHads(s = 1)is = 2) (ph = p’f}]

=
(s — DPsrn® (g, — pif)

= 0 455 = 20,

Hence ( v/ y Var( ':’}) and (V*//Var(V)) have the same asymptotic distribution.
Since V is the sum of bounded independent random variables

'II

,jv::r{ V)

o M1 assy — oo

Hence
V — Eyg(lV) V*

o
= — N0, 1 L § — 00,
o Varg (V) Wy V) { L =

So it is enough to prove that the second term in (6) converges in probability 1o zero.

N ow,
[r@) (P = frs()} ' U)]
Varg (V)
r(Qn2es)™ Xi, oy Va1 — Uiy Ver (U)
0 {nj‘” 1“-"}

O .warwuuu
9] {n-‘s-"i-‘ﬂ}

where Uj; = {"}_I Y i s and Zij = (py — Ui/ /Nar(Uy) are iid random
variables with mean 0 and variance 1. Noting that *’;? ar{lf;;) = 4 O,
¥ > 1, the leading term of the above becomes

G2 [s7 25, 24

(}{n 23y

Now, 57! i1 Zyy % 0 (by WLLN), and n = O (s'*%), § = 0, entail the proof
of the Theorem. (|
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