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The vast majority of tool condition monitoring systems use the cutting foree as
the predictor signal. However, due to prohibitive cost to performance ratios and
maintenance and operational problems, such methods are not favoured by
industries. In this paper, a method for continuous on-line estimation of tool wear,
based on the inexpensive spindle motor current and voltage measurements, is
proposed For the complex and intermittent cutting Face milling operation. Sensors
for these signals are free from problems associated with the cutting forces and the
vibration signals. MNowvel signal processing strategies have been proposed for
on-line computation of useful features from the measured signals. Feature space
filtering is introduced to obtain robust and improved predictors from the
extracted features. A multiple linear regression model. built on the fltered
Features, is then used to estimate tool wear in real-time. Very accurate predictions
are achieved for both laboratory and industrial experiments, surpassing earlier
results using cutting forces and estimation methods based on complex
methodologies such as artificial neural networks.

Keywords: Tool wear: Real-time tool condition monitordng: Signal processing:
Multiple linear regression

1. Introduction

Ensuring product quality and reducing machine downtime is paramount for survival
of any manufacturing industry. Moreover, the state-of-the-art machine tools are very
expensive and so, the manufacturers try to reduce unplanned breakages of the
production process to obtain faster return on investment. Tool wear, especially flank
wear, adversely impacts accuracy and surface finish of the machined products (Ulsoy
and Koren 1993). Also, time required for changing and resetting of the worn tools
constitutes nearly 20% of a machine’s downtime (Karuda and Bradley 1997).
Additionally, tool life is short and has considerable variations (Bukkapatnam et al.
20000, For these reasons, quality and productivity of a machining process is
enhanced effectively by optimising the tool changing schedule. This requires accurate
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on-line estimation of tool wear based on measurement of process signals such as,
cutting forces, vibrations, spindle motor current and voltage, acoustic emission (AE)
efc. Industrial acceptability of a method of on-line tool condition monitoring
{OLTCM) crucially depends on the cost and the maintainability of the sensors as
with the associated operational issues, such as mounting, environmental protection,
noise immunity, etc.

Dimla 2000 reviewed the effecis of different process signals on tool wear.
Balazinski et al. (2002) showed the cutting forces to be more effective indicator of
tool condition than acoustic emission and vibration signals for the turning process.
Szecst (1998) estimated flank wear using offline measurement of the axial cutting
force and a linear regression model. Dutta ef af. (2000a, b) proposed a
TCM scheme for face milling operation based on cutting forces, speed, feed and
depth of cut, using artificial neural network (ANN). Saglam and Unuvar (2003)
proposed an ANN-based TCM in face milling using the cutting forces. However,
Bukkapatnam et af. (2000) reported that the existing architectures of neural
networks are extremely complicated, entail significant computational overheads and
are not guaranteed to converge. Inasaki and Fuduoka (1987) developed a method for
the detection of tool chipping using the power spectrum of the AE signals. Sun et al.
(2004) identified effective feature set from the AE signal using Bayesian framework
and support vector machine. Prickent and Johns (1999) suggested use of the classical
multi-sensor fusion and integration of control signals by the machine numerical
controller. Chen and Jen (2000) developed TCM for CNC milling using the forces
and the vibration signals. Dimla and Lister (2000a, b) also considered the cutting
forces and the vibration signals in both time and frequency domains. Recently, the
wavelet transform (WT) and the fuzzy decision paradigms were used for TCM,
especially for tool breakage detection and wear estimation. Pittner ef af. (1998)
investigated assessment of wear in turning through force and vibration signals using
a wavelet network. Kamarthi et of. (2000) used wavelet representation of the AE
signals for estimation of wear in turning using recurrent neural networks. Li er al.
(2000) attempted distinction of sharp tools from the worn ones using wavelet
transform of the vibration signals and a hidden Markov model (HMM). Wang ¢t af.
(2002) also used HMMs for tool state classification using the vector quantisation of
the features from vibration signals. In Bukkapatnam (2000), tri-axes cutting forces,
vibration and AE signals were used for estimation of tool wear using wavelet based
signal separation and fractal properties of the machine dynamics.

Recent reviews (Scheffer and Heyns 2001, Sick 2002) indicate that most of the
TCM systems employed force, AE and vibration or a combination of these signals.
However, the sensors for the force signals, ie. the dynamometers, are expensive and
have to be placed either on the workpiece holder or the tool holder. As a result, these
sensors pose mounting and operational problems and may severely restrict the
maximum size of the job that can be handled by the machine. Consequently,
the cutting force based estimation methods are not favoured by the industry. On the
other hand, sensors for vibration and AE signals have to be placed close to the
machining area for effective signal pick up and are prone to accidental damage.
Also, these sensors are sensitive to environmental noise. Current and power signals
from the spindle motor are free from such limitations and hence could be effective
alternatives for OLTCM. The literature using the electrical signals for TCM are
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sparse and mostly attempted either tool breakape detection or tool state
classification, which are inherently simpler.

Tool breakage detection was attempted in Altintas (1992) and Lee et of. (1993).
Ertunc ef af. (2001) and Jeong and Cho (2002) proposed on-line classification of tool
states based on the cutting force using HMMs. In Jeong and Cho (2002), predicting
condition of the cutting tools using the feed motor current alone proved
unsuccessful. Romerio-Troncoso ef al. (2003) proposed a method for detection of
broken or worn tools using the feed motor current. The related analysis was
relatively simple as the drive was a DC one and the assumed signal model was
additive. Further it did not attempt continuous wear estimation. In another recent
work also, Ghosh et al. (in press) developed a TCM for face milling using the cutting
forces and failed to extract useful information from the current signal. The reported
correlation of the force and the current was 0.08 and 0.076 in that work, which is
useless for the purpose of building tool wear model.

The present work stemmed from these considerations. It aims at

e replacing the cutting force signal as predictor of tool wear by the non-
invasive and inexpensive spindle motor current and voliage measurements
for the complex and intermittent face milling operation;

» development of an accurate and reliable estimator for continuous assessment
of tool wear based on these alternate measurements;

o use of novel signal processing methods such as estimation of line frequency,
demodulation and segmentation for extraction of useful information from
the acquired electrical signals;

o use of time domain features for efficient real time computation;

o use of a new feature space filtering technique to enhance robusiness and
accuracy of the predictors;

e use of inear prediction through multiple linear regression (MLR) modelling;

e providing probabilistic upper bounds (prediction limits) for the estimates,
thereby indicating the worst case predictions of tool wear;

o using data from industrial setups to show applicability of the method for real
working environment.

It is found from the resulis that the proposed method compares favourably with
those reporied in the literature and those utilising force measurements.

Organisation of the paper is as follows. Section 2 of the paper presents the
experimental setup. Section 3 details the signal processing steps for the electrical
sipnals. Section 4 deals with extraction and filtering of features and prediction model.
Results and prediction limits are detailed in section 5. Finally, some concluding
remarks are made in section 6.

2. Experimental setup

Two datasets, from tool life experiments conducted on a conventional face-milling
machine in the laboratory of the Indian Institute of Technology, Kharagpur, and an
industrial CNC Plano-miller at the Flenders Limited, Kharagpur, are used in this
work. These are called datasets 1 and 11 respectively in the paper. The details of
machining parameters are given in table 1.
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Table 1. Machining parameters.

Dataset | Dataset 11

Cutting speed (m,/min) 140 212
Feed (mm/rev) 022 0.16
Depth of cut (mm}) 1.5 24
Max wear value (micron) 63l 370
Waorkpiece material C-00 mild steel

Cutter diameter (mm) 125

Cutting condition Diry

Mumber of inserts One

Machining operations were stopped at intervals and wear values were measured
with an optical microscope with a least count of 1 micron. Forces were sensed using a
Kistler 3-axes dynamometer. Current and voltage were measured using Kistler Hall
effect current and voltage sensors. A sampling frequency of 35 kHz was used for both
the experiments. In a dataframe, ie. the measuremenis for a single observed wear
value, there are 32 768 data points corresponding to a time span of (.94 seconds. The
wear limit for finish machining is taken as 300400 microns, while the same for rough
machining is 600-800 microns (Elbestawi e ol 1998). For this reason, 98 and
18 observations of wear values were recorded in the ranges of 0-631 and 0-370
microns for the two datasets respectively, so that the developed model need not be
used beyond the observed range of wears during actual operation.

3. Signal processing
31 Process signals

31.1 Cutting forces in feed and transverse directions. The cutting forces in the
direction of feed (F,. figurela) and in the transverse direction (F,., figure 1b) in the
cutting plane are periodic with a fundamental frequency corresponding to the spindle
rotational speed. Due to intermittent cutting operation, the measurements have
distinct cutting durations, called lobes, in every cycle. Noise is introduced in the
signal due to factors such as vibration, non-uniformity of the workpiece and the tool
materials, sensor noise, etc. The force signals yield accurate estimates of tool wear
due to their high signal-to-noise ratios (SNR). Though the cutting durations of the
signal are mainly relevant for estimation, signals are considered beyond the cutting
durations to include transients during tool disengapement time also (Altinas ef al.
1988). The force signals are segmented in the same way as in Ghosh et ol (in press).
Then the extracted features are filtered by exponential smoothing (section 4) to
improve performance and fed to multiple linear regression models for estimation.
These models are used to compare performance of the models developed based on
the electrical signals.

3.1.2 Spindle motor line current and input power. The instantaneous current
signal (figure 2a) appears to consist mainly of the ac line frequency component.
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Figure 2. Time plotsof (a) the current, (b) the voltage and () the power respectively vs. time
points for a typical dataframe.

It is amplitude modulated by the periodic rise in torque demand during the cutting
periods, which occurs at a frequency of 2-10 Hz depending on the rotational speed of
the cutter. There are non-cutting durations in between the consecutive cutting
durations due to intermittent cutting.

The current is therefore modelled as

L= A1+ mit)cos(2aft+8)), i=1,..., N (1)

where, the constant 4 represents the no-load current, m(t;) represents the time-
varying modulation index, f) the line frequency and 8, the phase.

The instantaneous power is defined as the product of instantaneous current and
voltage signals. The latter appears as a line frequency sinusoid given by

Vi = Beos(2afi,+ &), i=1,..., N (2)
relatively unaffected by the cutting process as in figure 2{b). The instantaneous
power shown in figure 2(c) is, therefore, modelled as a product of (1) and (2) as

Pi=C(l+mi+ I +midcos(daf;, +4), i=1,..., N i3

C, D, fand ¢ being constants. [t contains components corresponding to the low
frequency of the cutting force given by the first term of (3) and components centred
on twice the line frequency given by the other term.
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Figure 3. Time plots of (a) the original current signal, (b) the demodulated profile. (c) the
demodulated profile after removal of transient effects and drift and (d) the original current
signal (thinner line) superimposed with preprocessed demodulated profile for a typical
dataframe.

3.2 Pre-processing of signals

Tool wear takes place during the cutting operation only. So, the non-cutting portions
of the electrical signals are noise from the point of estimation of tool wear. It is, thus,
necessary to segment the measured signals to retain only cutting lobes. The line
frequency component of the current makes it difficult to identify the start or the end
of the cutting lobes. Thus, it is necessary to exiract the modulating profile m(s;) by
demodulating the acquired current and the power measurements.

3.2.1 Demodulation of the current signal.  De-modulation of the current involves (i)
point to point multiplication of the measured signal by the estimated ‘carrier” as the
first step and (i) linear filtering in the second step (Lathi 1968). As the dominant
component of this signal is a sinusoid at the line frequency, frequency and phase of
the carrier are estimated by minimising the error sum of squares, given by

e = Z (v — ansin( 2 ft;) — aacos( 27/t (4)

over f, o, and a.. For given f, values of o, and - can be optimised by linear least
squares estimation {LSE). The value of fcan then be optimised by minimising this
partially optimised sum of squares within a frequency range of 48 to 52 Hz, first over
a coarse grid over the whole range and then, over successively finer grids. The use of
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LSE reduces the three-dimensional optimisation (over a, a» and f) to a one-
dimensional search over f only. The phase is then calculated as #, = tan™'(—a2/a)).

For the industrial dataset, a lot of high frequency noise is introduced in the
current measurement due to the power electronic switching. The original
measurement is therefore filtered with a 4th order low-pass Butterworth filter with
a cut off frequency of 61.25Hz, prior to estimation of the line frequency.

Afier estimation of the frequency and the phase of the carrier sinusoid,
demodulation of the current is achieved by multiplication of the instantaneous
measured signal with the instantaneous carrier sinusoid of the estimated frequency
and phase and then, by low-pass filtering the resultant product signal. In this work, a
4ith order Butterworth filter of cut off frequency 17.5 Hz is used for low pass filtering,
as the highest cutting frequency in the current is hmited to 10 Hz. Transient effects
(figure 3b), introduced due to the filtering, are removed by dropping a few initial
sample points from the demodulated profile. Drift, present in the demodulated
signal, is eliminated by subtracting a least squares fitted line from it (figure 3c).
Similarity between the resultant demodulated signal and the amplitude envelope of
the measured signal is shown in figure 3(d). As the calculated frequency is a single
value for the entire dataframe and it varies from the true frequency in different parts
in the frame, the demodulated profile suffers from distortion wherever there is either
frequency or phase mismatch. For this reason, the demodulated profile has been
used only to segment the original current signal.

3.2.2 Filtering of the power signal. Instantaneous power signal, being product
of the instantaneous current signal given by (1) and the instantaneous voltage
signal given by (2), is ‘demodulated’ simply by low-pass filtering with a 4th order
low-pass Butterworth filter of cut off frequency of 17.5 Hz. The filtered power signal
in figure 4 is seen to be very similar to the profiles of cutting forces in figures 1{a)
and (b).

3.3 Segmentation

Segmentation involves (i) elimination of the incomplete lobes from the demodulated
profile of each measured dataframe, (i) identifying time points that indicate the
beginning and the end of each complete lobe in it and (iii) temporal registration of
the complete lobes of the measured dataframes with those of the corresponding
demodulated profile. In face milling, the electrical signals achieve peak values near
the middle of a complete lobe. Accordingly, in the demodulated profile (figure 5),
a complete lobe is taken to be the signal segment between two successive minima
(points *by" and by’ respectively) on the two sides of a maximum (points marked *a’),
above a chosen threshold. The threshold is dynamically calculated for each
dataframe as (1.7 tmes (i.e. nearly 3dB below) the maximum signal value in the
sipnal span corresponding to one revolution of the cutter, from the beginning of the
dataframe. If either of the two minima is missing, that cutting lobe is rejected as an
incomplete one. The process is depicted in figure 5. Finally, we pick up the lobes in
the measured signal by temporal regisiration with the segmented demodulated
profile, as the latter has a fixed offset with respect to the former in all the dataframes
{see fgure 3d).



i 24 Juna 2011

=
b
E

[ISI-LIBRARY Paricdicals

Dewnloadad By

1194 F. Bhattacharyya et al.

3.5q

1.734

Filtered power

i} 1 1
1 144001 28001

Time points

Figure 4. Filtered power signal.

(114 4

L4

Demodulated profile

=LK

| 150611 0001
Time points

Figure 5. Segmentation process—points ‘by" and ‘b’ indicate the start and the end of a
complete cutting lobe and points *a’ mark the middle of cutting lobes.

4. Filtered features and prediction model

A worn tool requires more energy for cutting compared to a fresh one. Accordingly,
features representative of the cutting energy, e.g. the average signal energy over
the complete lobes in a dataframe, are considered as the candidate features.
Several features, such as, average mean squared value (5., and average variance
(#ay7) for current and force signals and the average root mean squared value (£
and the mean standard deviation (f,,) for power signal, have been considered.
The mathematical representations of the features are given below.

Let @ be the signal value at the kth sample point and n; be the
number of data points in the i-th cutting lobe of the jith dataframe, where
P=1,0ses N; N; being the number of complete lobes in the frame. Then, for the
current signal,

TTRRN, Ni .

AT D B/

-lfJ,l = damj= T
N,
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Similarly for the power signal,

anj =
HJ’, ! J"UI

Z}\ |‘1x ZN Hif
Hy=J Ly gl o =1 a4

N
I by = O (s — aw)’ 2 by

i = v =
n {n;—1) N;

These features are chosen on the basis of their correlation with the observed wear
values. For the sake of brevity, the results corresponding to the feature s, are given
in {(a) above, for the current and the force and the feature ¢, for the power, are
presented here. The trend of the extracted or ‘raw’ features against the observation
points for dataset | is depicted in figure 6(a). The drop from observation point 44 to
57 is due to power fluctuation that took place during the data acquisition phase
{Ghosh et al. in press).

Tool wear is essentially a continuous and monotonic phenomenon. The high
frequency variations in the raw features (see figure 6a) are therefore smoothed to
obtain a better predictor. The smoothed feature is computed as

o= ZEO XS ®)

Z‘}ﬂ“ wd

where, w (0<-w= 1) is a predefined weighting factor (.99 in the present case) and x;
is the raw feature value corresponding to i-th observation of wear. The final features
are obtained from the smoothed features by normalisation with respect to the largest
value for the dataset. The trends of raw and final features from the current for
dataset | are presented in figures 6(a) and (b) to bring out the improvement due to
smoothing. The improvement in correlation coefficients of the final features based on
the current and the power are 22% and 23% for dataset | respectively and 17.5%
and 16% for dataset 11 respectively.

For initial observations, filtering is inadequate due to lack of past data. But this
does not affect performance of the estimator as the tool is fresh in this area of
operation and estimated wear values need not be accurate. For dataset 1, there was a
sudden voltage drop in the middle part of data acquisition (Ghosh et al. in press) that
affected all features based on the electrical signals. Such supply variations, being
realistic, have not been omitted from the estimation. Force signals, however, are
unaffected by such disturbances.

The filtered features are used as explanatory variables in a multiple linear
regression model (Sengupta and Jammalamadaka 2003, Montgomery ef al. 2003)
of the form

vi=ht+Bixxat+o 4B xx)te ()

where y; is the i-th observed wear value, x; is the ;—[h smoothed and normalised
feature value for the same i-th observation, fy, fi are the unspecified model
parameters, and e,. .., e, are model errors representing measurement error, effects
of omitted variables, etc. The methodology for analysis under this simple prediction
model using the least squares technique is well developed. Assuming that the
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Figure 6. Trends of (a) the raw and (b) the final features from the current signal for dataset L.

residuals follow a given probability distribution, probabilistic bounds of wear values
for a given feature profile can also be provided on the basis of this model.

5. Resulis and prediction limits

5.1 Line plots of the estimated and observed wears

The estimation is quite accurate as is seen from the line plots of the estimated and the
observed wears shown in figure 7(a) to (d) for dataset [ and in figure 8(a) to (d) for
the dataset 11. In spite of power supply fluctuations during middle part of dataset 1,
the errors are small over the entire range of application. Large errors are few in
number and are largely limited to initial values of wear. As the tool is fresh in this
part of machining, it is not important and also impact of these errors on subsequent
prediction is seen to be nepligible. The performance of the models using the electrical
signals is comparable, in terms of magnitude of errors and their distribution across
the range of observed wears, to that based on the force signal. Since fewer sample
points were available for dataset I1 {due to constraint of allowed time for the
experiment), deviations from the observed values are larger compared to dataset 1.
However, even for this small number of sample points, which are adequate for the
regression analysis, the performance of the method is reasonably good.

5.2 Regression results

The results of regression analysis are given in table 2 in the form of multple
correlation (R) and the factor of determination, ie. & . The multiple correlation
designates the degree of lincar dependence between the response variable
ie. observed wear values and the explanatory variables ie. extracted feature
values. The R values indicate the fractions of the total variances that are explained
by the models. From the resulis, it is seen that all the predictors perform very well.
The R values for the features extracted from the electrical signals are comparable to
that from the force signal. Combination of features from current and power signals
provides improvement over models from any of the individual signals.
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for dataset [L



24 Juna 2011

OE:n3

Unit] RAt!

[ISI-LIBRARY Paricdicals

Dewnloadad By:

1198 F. Bhattacharyya et al.

Table 2.  Regression results (figures rounded up to two decimal places).

Laboratory dataset Industry dataset

A B L o A B L (B]

Multiple correlation (&) 098 0.98 097 098 098 0% 098 098
# 0.96 0.96 093 09 094 088 09 0497

A, Force (F,); B, Current; C, Power; D, Combination of current and power.,

Table 3.  Error statistics (in microns).

Laboratory dataset Industrial dataset
A B L (8] A B C [B]
LAE 104 153 108 136 52 124 63 54
AAE 26 3 36 24 23 32 19 16
AAE] 2 16 i3 18 ) 22 15 15
SE 32 36 44 35 29 44 27 24

A, Force (F.): B, Current; C, Power; I, Combination of current and power.

5.3 Error statistics

In table 3, the largest absolute errors (LAE), the average absolute errors (AAE) and
the standard errors (SE) are presented. The average absolute errors are indicative of
the average degree of deviation of the predicted values from the observed wears,
while the standard errors are representative of the root mean squared prediction
error. These values are significant improvements over those reported in the literature
{(Ghosh et of. in press). The average absolute errors improve further if some initial
observations (10 for dataset I and 3 for dataset I1), pertaining to a fresh tool, are
ignored. This is reported as AAEL in Table 3.

5.4 Prediction fimits

Using the available features, the linear regression model and assuming that the
residuals are independent and identically distributed from the normal distribution
(N(0,g”)), one can provide a probabilistic upper bound (prediction limit) for the
amount of actual wear. The upper prediction limit is useful in this case as it stands
for a typical ‘lower the better’ degradation situation. The prediction limits and the
observed wear values for the current and the power signals for the laboratory and the
industrial datasets are presented in figures 9(a) to (d). The upper prediction limit
with coverage probability {1 —o) and corresponding to feature value g=(z,..., za
is given by:

ﬁ;,+{ﬁ'|x2|+---+ﬁl,.le,.]+rrxv1+hx:,_,.”,_g {7
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Figure 9. The observed wear values and the prediction limits in microns vs. observation
points for {a) the current and (b) the combination of current and power for dataset [; (c)-(d)
depict the observed wear values and the prediction limits for the same signals for dataset [1.

where
1 :zT
h=(1:z"%2Z"2)™ (f) =| : (8)
) el
and zy,..., zp, are the feature values. The results in figure 9(a) to (d) pertain to value

of o equal to 0.05 and values of z corresponding to the extracted feature values only.
This implies that the probability that the observed wear values would lie below the
limit given by (7)is(1 — e), i.e. (.95 in the present case. It is seen from the figures that
the loci of the prediction limits lie generally above the actual wear values, but stay
close enough to be practically useful.

6. Conclusion

In this work, an attempt is made to replace TCM methods based on cutting forces
for the face milling by a new method using the inexpensive and non-invasive current
and power measurements. [t is seen from case studies that estimations based on
current and/or power can accurately and reliably estimate tool wear for face milling
operation. It is also seen that, by choice of suitable signal processing techniques,
linear regression based methods using the electrical measurements are capable of
providing accuracies favourable to earlier methods based on the cutting forces and
ANNs. The average absolute errors for the model are significant improvements over
those reported in the literature (Saglam and Unuvar 2003, Ghosh et al. in press).
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The fit hased on the electrical signals may be improved by using weighted least
squares technique with weights decreasing monotonically with local varance of the
estimates. However, this modification was not attempted as the ordinary least
squares produced satisfactory results.

The resulis show that it is possible to replace the cutting force signals altogether,
as indicators of tool wear, by the current and the power signals. The cutting force
based models are not favoured by the industry. The proposed model, based on non-
invasive and inexpensive electrical measurements and having accuracies to the tune
of 95%, has potential for industrial acceptance. In this work, the same model is
assumed to hold for a new tool/workpiece combination under similar cutting
conditions. However, new training may be necessary for a new installation and also
for significantly different cutting conditions. [t may be noted that such new training
is a standard feature for machining experiments.

A single cutting tool insert is used in these experiments. However, the case of
multiple cutting tool inserts is a simplification over the proposed method as, in that
case, the cutting lobes corresponding to the different inserts would overlap. So the
segmentation step may not be needed and features could be extracted from the entire
dataframe. Also two combinations of speed, feed and depth-of-cut, have been used
in the work. Development of OLTCM using cutters with multiple cutting tool inserts
and a range of cutting parameters would be a future extension of the work.
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