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SUMMARY. This article deals with exact finite sample properties of a summary statistic that 

is used to measure the effects of multicollinearity on the contributions of regressors to the square of 

the multiple correlation coefficient of a regressand with the regressors. This statistic measures the 

"distance"of a cross-product matrix from the diagonal matrix obtained by zeroing its off-diagonal 

elements and hence is useful in detecting near multicollinearities in regression problems. It can also 

distinguish between apparent and real multicollinearities with positive probability. 

1. Introduction 

It is often desired to analyze the effects of multicollinearities on regression 
results. In an important paper, Stewart (1987) has carefully compared sev 

eral measures of multicollinearity and showed that the square roots of variance 

inflation factors, unlike the other measures he considered, are invariant under 

column scaling and can measure the distance between a cross-product matrix 

and a matrix that is exactly singular. One would like to measure not only this 

distance but also the distance between a cross-product matrix and the diagonal 
matrix obtained by zeroing its off-diagonal elements. Therefore, in this paper we 

present a formula that can measure the latter distance and study its properties. 
In Section 2, a measure of multicollinearity effect considered previously by 

Theil (1971) is stated in different but equivalent forms. One of these forms 

shows that this measure can indicate in a precisely quantifiable manner how 
near a cross-product matrix is to the diagonal matrix obtained by zeroing its 

off-diagonal elements. After deriving this measure's first four moments, a study 
of its exact finite sample distribution in the normal case is also carried out. 

Lastly, some concluding remarks are presented in Section 3. 

1 
Views expressed in this article are those of the authors and do not necessarily reflect those of 

the Board of Governors or the staff of the Federal Reserve System, U.S.A. 
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2. A STOCHASTIC MULTICOLLINEARITY MEASURE AND ITS PROPERTIES 

2.1 The model. Let a linear regression model be given by 

y = X?+u, (1) 

where y is a T-vector of observations on a dependent variable, X is a T x K 

matrix of observations on K independent variables, ? is a K-vector of regression 

coefficients, and u is a T-vector of disturbances. (Note : With an abuse of 

notation we use the same symbol to denote a random variable and the value 

assumed by it.) It is assumed that u is a normal variable with ?(u\X) 
= 

0, S(uu'\X) 
= 

a2/, and rank (X) 
= K. 

2.2 TheiVs measure of multicollinearity and its generalizations. To 

know the effects of the nondiagonality of XX on the contributions of the 

columns of X to the square of the multiple correlation coefficient of y with 

X, Theil (1971, p. 179) considers a multicollinearity measure which is 

k 

rh = 
R2-Y,(R2-R2-3), (2) 

i=i 

where R2 is the square of the multiple correlation coefficient of y with the 

columns of X, and jR'i is the square of the multiple correlation coefficient of 

y with the columns of X_y which is X without X's jth column. The quantity 

(R2 
? 

R^_j) 
> 0 is termed the "incremental contribution" of the jth regressor by 

Theil. If we use a Bayes estimator of ? in place of the least squares estimator 

of ? used in (2), then we get Swamy, Mehta, Thurman and Iyengar's (1985) 
generalized multicollinearity index. This index may be of interest to those who 

believe that Bayes estimators produce very stable parameter estimates. 

2.3 Analytical properties of in. Defining R2 = 
b'Xy/y'y and 

R?Lj 
= 

yfX-j(X,_jX^j)~1X'_jy/yty, 
we can write 

m=^, (3) yy 

where Q = 
XiX'Xy'X' 

- 
^^(X X)'1 X - 

X-^X^X^X'^] 
which, in view of the matrix identity given in Theil (1971, p. 682, (B.23)), 

simplifies to Q 
= 

X^'X^X' 
- 

Y?=\ M^Xji^M-jX^x'^j 
if M-j 

= I - 

X-j(X_jX-j)~ 
X' . The vector M-jXj may be recognized as the residual vector 

resulting from the least squares fit of the jth column of X on its remaining 
columns. Letting e; 

= 
M-jXj, we obtain Q = 

X(XX)~ X ? 
X^=i ej(e'jej)~le'j' 

In their discussion of Stewart's (1987, p. 95) paper, Hadi and Velleman point 
out that plots of the ?th diagonal element of 

ej(e^Cj)~ e'j 
versus the jth diagonal 
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element of 
X-j(X,_jX-j)~ Xt_j. 

for each j, can detect multicollinearities and 

multicollinearity-influential points. Since the matrix Q compares each element 

of X(XfX)~ X' with the corresponding element of J^ =1 ̂ (e^)- e^, 
it combines 

the merits of Hadi and Velleman's scatterplots in a single diagnostic measure. 

Many feel that when there is a constant term in model (1), model (1) 
should be centred before the measure (2) is applied. So a restatement of rh 

in terms of centred data may be useful. Suppose that the first element of ? 

represents the constant term of model (1). This means that a vector of unit 

elements, denoted by ?, is the first column of X. Let the remaining columns 

of X be represented by the T x (K 
? 

1) matrix Z. Let Z_; be Z without Z's 

jth column and let A = I ? 
(1/I)uf. Then suppressing the contribution of 

the constant term, we can define R2 as y'AZ(ZfAZ)~1 Z! Ayjxj Ay and i? as 

yfAZ-j(Zf_jAZ-j)~1 Z,_jAy/y'Ay. 
The jth t-ratio, denoted by tj, may be de 

fined as the ratio of the jth element of {Z'AZ)~ Zf Ay to the square root of the 

jth diagonal element of [y'My/(T- K)](ZAZ)~l. A useful identity that holds 

among these variables is 
\l-R2)t)l{T-K) 

= 
R2-R2_j (see Theil 1971, p. 175). 

Because of this identity m can be expressed in terms of R2, R?_- and tj as 

. y'AZ{Z!AZ)-^Ay (1 
- 

R2) ^2 TO 
=-VTy--p=K?2Jr 

W 

The use of the same symbol m to denote the statistics (2) and (4) should not 

obscure their differences. The former estimates ?(rh\X, /?, a2) while the latter 

estimates ?{fh\AZ, slope coefficients, a2). It is possible that these two condi 

tional expectations are not equal. The equivalence of the conditions, (i) XtX 

is diagonal, (ii) Q 
= 0, and (iii) m in (3) is degenerate at 0, is established by 

Swamy et al. (1985). Equation (4) gives one more condition under which rh 

is degenerate at 0. The usual F and t tests of hypotheses about ? are equiva 

'ent *f 
(K^?m-ifl) 

= 
(K-\) ̂ 3=1 tf' 

Under precisely this condition, m = 0 with 

probability 1, as can be seen from equation (4). In real econometric situations, 
one can test whether multicollinearity is a "problem" or not by comparing the 

conclusions of the Fand t tests. For example, if a test based on the F statistic 

(K-im-R?) Te?ec^s (or accepts) the hypothesis that /32 = = /?/r = 0 and a test 

based on the tj statistic accepts (or rejects ) the hypothesis that /3;- 
= 0, then 

there is a contradiction. The greater the probability with which m takes large 
absolute values, the greater the chance of this contradiction occurring. For this 

reason, the econometrician cannot turn away from rh altogether. 

An alternative form of equation (4) is 

_ (t,D?2D*?2CD*?2Dh-t't)y,My 
. . 

m 
=-iMifCT-?)-' 

(5) 
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where D and D* are the diagonal matrices obtained by zeroing the off-diagonal 
elements of (Z?AZ)~l and (HAZ), respectively, C= D*"^Z/AZD*"^ is a corre 

lation matrix, (1 
? 

R2) 
= 

xjMyjy1 Ay, and 

t = 
(h,t2, 

- - 
.,**_!)' 

= 
JLfJ?D~^(ZfAZ) lZfAy 

. 

The standard decomposition, y1 Ay 
? 

y1 AZ(Z' AZ)~l Z' Ay+y! My, shows that 

the factor yfMy/[i/Ay(T? K)] in (5) is positive and less that 1 with probability 
1. The first term on the right hand side of this decomposition divided by 

y'My/(T? K) can be expressed as a quadratic form in t, as shown in (5). 

Substituting these results into equation (5) gives 

_ . 
(t'D?ZAZD* -T)t m = 

-?-L-?-)?, (6) 
t'DiZ'AZDh + T-K 

which is in the form of a ratio of two quadratic forms in Student's t vari?tes. 

1. It now follows form equation (6) that m measures the distance between 

D^ZAZD^ and J or between ZAZ and D~l which is the same as D* 

whenever Z AZ is diagonal. The numerator of the ratio (6) measures 

the distance between D*2?AZD* and / and its denominator has only the 

effect of making this measure less than one. This means that there is a 

direct relation between m and near multicollinearity represented by the 

departures of Z AZ from D*. 

2. The diagonal elements of D?Z'AZD? are the same as those of DD* which 
are the variance inflation factors (VIF's) computed from centered data 

(see Stewart 1987, p. 72, (4.1)). The VIF's are greater than or equal 
to 1 because every diagonal element of D is greater than or equal to the 

reciprocal of the corresponding diagonal element of D* (see Rao 1973, p. 

74, Problem 20.2(a)). 

3. The reason why the VIF's do not measure the distance between the ma 

trices D^ZAZD* and /is that DD* is not equal to D^ZfAZD^ (which is 

equal to D?D**CD*?D?) unless C = I. When there is near multicollinear 

4. Even though multicollinearity is present in model (1) whenever X'X is 

nondiagonal, it is only apparent but not real if the population values of 

the elements of ? corresponding to the nonorthogonal columns of X are all 
zero. Real multicollinearity arises if X7X is nondiagonal and the popula 
tion values of at least two elements of ? corresponding to the nonorthogo 
nal columns of X are not zero. From this it follows that the VIF's which are 

functionally independent of ? cannot detect real multicollinearity. Since 
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the nondiagonality of XX cannot be taken as an indication of the 

presence of real multicollinearity in the absence of information about /?, 
the dependence of rh on both the ?-ratios and Z'AZ shown by equation 

(5) is desirable. The variable rh being a function of both the matrix 

{DvZ'AZD? ?I) and the t-ratios is more comprehensive and more closely 
related to near multicollinearity than the VIF's if by near multicollinear 

ity economists mean the departures of D?Z'AZD? from /. We use the 

values of m to distill a large amount of information about the matrix, 

(D?2?AZD? ?I), and the vector /3, into a single number. A nonzero value 

of rh can point to real multicollinearity if the F and tj tests reject the 

hypotheses that ft 
= = ?x 

? 0 and ?j 
= 0, respectively. 

5. Stewart (1987) likes the VIF's because they are invariant under a scaling 
of any column of X. The variable rh is scale invariant, not only with 

respect to the scaling of the columns of X but also the scaling of y, as 

equation (2) shows. 

6. While equation (3) proves that rh is always bounded between ra? and 

mu which are the smallest and the largest eigenvalues of Q, respectively, 

equation (6) proves that mu < 1. This result was noted previously by 

Swamy et. al. (1985, p. 411). 

7. It can be shown that the trace of Q is zero. This means that mu and ra? 
cannot have the same sign. Since mu is positive, mi has to be negative. 

Consequently, rh can take negative values with positive probability. 

8. Equation (6) implies that pr{rh >, =, or < 0) 
= 1 according as the matrix 

(D?Z'AZD? 
? 

I) is positive definite, 0, or negative definite regardless of 

the value of ?. It cannot be shown that real multicollinearity does not 

arise when the matrix (D^ZAZD^ 
? 

J) is negative definite. Therefore, 
the fact that rh can take negative values with positive probability is of 
no concern. Since it is the distance between D^Z'AZDi and / that gives 
the correct measure of real multicollinearity when the population values 

of the coefficients corresponding to the nonorthogonal columns of X are 

nonzero, a value of rh does not halve the wrong sign if it is negative. 

9. However, we shall see in section 2.7 below that the probability that mi < 

rh < ? 1 can be very small even when m? is much smaller than ?1. It 

is also possible that for ?1 < rao < m\ < l,pr(rao < rh < m\) & 1 (see 
Sections 2.4 and 2.7 below). 

10. Replacing the matrix D?Z'AZD? by the matrix D?D*?CD*?D?, we can 

write explicitly the individual terms in the numerator and the denominator 
of the ratio (6) as 
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m = 

K-\ K-\ K-\ 

?(</,</*-l)?2 
+ 

? Y, rijtitjjdidtdjd* 
t=iy(#)=i 

K-\ K-\ 

??<W?t? + ]? Y. rijtitj^jd^djd) 
+ (T- K) 

t=i 

where di and d 
* are the ith diagonal elements of D and D*, respectively, 

U is the ?th element of t, and r?? is the ijth element of C. Using the 

identity did* = 
(1 

? 
R2) , where R2 is the coefficient of determination 

resulting from the least squares fit of the tth column of X on its remaining 

columns, established by Stewart (1987, p. 72) and then multiplying both 

the numerator and the denominator by Ylh=i 0- 
~" 

^D> ^he ratio m can 

be rewritten as 

m = 
R2 

K? 1 K? 1 K? 1 

Drz^^n^-^ + ? ? rijtitjfiti-Rti 1 h=i h=\ 

i 

1- 
Rt2Y 1-?| 

tf 

+ EE ^n^-WrWr^ 

tf-1 #-1 

EE 

+ 
[T-ranfc(X)]I](l--R2ft) 

R2 

where K in the definition of t is replaced by rank(X). Now let the ftth 

column of X be linearly dependent on the other columns of X. Then 

rank(X) 
= K ? 

I, R\ 
= 

1, and the hth VIF is equal to oo. When these 

results are true, if the t,'s are kept finite and nonzero by using the Moore 

Penrose generalized inverse of ZfAZ in place of its regular inverse used in 

(6), then the terms in the numerator and the denominator of the above 

ratio become t\\[-r?h\=l(l 
? 

R2) if i = h and zero otherwise and rh will 

be equal to 1 with probability 1. This shows that rh tends to 1 with prob 

ability 1 as near multicollinearity approaches extreme multicollinearity, 

provided the t-ratios remain finite and nonzero. 

Now we numerically evaluate the distribution of rh by considering both par 
ticular and general cases. 
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2.4 Analysis of a particular case of equation (5). For K = 3, equation 

(5) specializes to 

_ [t?(dlCf? 
- 

1) + t\{d2d\ 
- 

1) 4 2ry/dld\d2d\t?2]y'My 
m=-W^??Ty-' 

(?) 

where d\ and a\ are the diagonal elements of D, d\ and d*> are the diagonal 
elements of D*, and r is the correlation coefficient between the two noncon 

stant regressors. The following results are easy to establish: (did* 
? 

1) 
= 

{dad\ 
- 

1) 
= 

r2/(l 
- 

r2), y/d1d*1d2d*2 
= 

(1 
- 

r2)"1 and y'Ay 
= 

(t2 + 2rtxt2 4 

t2)(l 
- 

r2ylrjMy{T- 3)_1 4- ?/My. Using these results in (7), we find that 

- 
= r(rt2 + 2M2 + rt2) m 

?2 4- 2^ 4 t2 + (T- 3)(1 
- 

r2) 
' W 

This result makes it clear that when there are two non-constant regressors in 

model (1), rh is degenerate at 0 if r = 0 and nondegenerate if r ^ 0 regardless of 

the values of ?. When r = 0, there is no real multicollinearity. Even though \r\ 
cannot be exactly equal to 1 under our assumption about the rank of X, it may 
be noted that pr{ lim |r|_?im 

= 
1) 

= 1, provided t\ and t2 stay finite and nonzero. 

Both the signs and magnitudes of r, ft and ft influence the distribution of rh. 

Note that the distribution of rh depends on ft and ft only through the means 

of t\ and t2. 
To study the distribution of (8) using Monte Carlo methods, we consider the 

following example : Draper and Smith (1966, p. 366) present the data which 

they have used to estimate a linear regression model with five nonconstant 

regressors. Taking two at a time out of these five regressors, we formed ten 

linear regressions: For i = 
1,2, , 10; t = 

1,2, , 13 

Vit = ft 4 ?ixlit 4 ?2x2? 4 uit, (9) 

where the number of observations on the variables of this equation is 13. The 

correlation coefficients (r?) between every pair of the nonconstant regressors in 

these ten regressions are: -.973, -.824, -.821, -.535, -.245, -.139, .030, .229, 

.731, .816. For each regression in (9), we considered 19 different combinations 

of the values of ft and ft. ft is zero for each of these combinations. One of 

these combinations was formed so that ft and ft would be close to zero. The 

remaining 18 combinations were formed by fixing the value of ft (or ft) at 1 

and varying the values of ft ( or ft) between -10 and 10. These values are 

displayed in Table 1. 

For each i = 
1,2,- , 10, thirteen values of the variables uu were drawn 

independently from a normal distribution with mean zero and constant variance 
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Table 

The intervals (mo,mi) for whi 

a2 = . 

?x ?2 -.973 -.535 

1 -10 (.9, 1) (.3, .35) 
1 -5 (.9,1) (.3, .4) 
1 -.2 (.9,1) (.45, .6) 
1 .02 (.9,1) (.15, .35) 
1 .1 (.9,1) (-.05, .20) 
1 .5 (.6,.8) (-.6,-.4) 
1 1 (-.9,-.6) (-.2,-.1) 
1 5 (.9,.l) (.2, .25) 
1 10 (.9,.l) (.2, .3) 

-10 1 (.9,.l) (.4,-45) 
-5 1 (.9,.l) (.45, .5) 
-.2 1 (.9,-1) (.3, .4) 

-.01 1 (.9, .1) (.25, .35) 
.01 1 (.9, .1) (.25, .35) 

.1 1 (-9, .1) (.2, .3) 
.5 1 (.7, .8) (0, .15) 
5 1 (.9, .1) (-.25, -.15) 
10 1 (.9, .1) (.05, .1) 

.01 .02 (-.7, .8) (-.5, .45) 

pr(mo < m < mi) 
= 1 

.030 .731 .831 

(-.05, 0) (.5, .6) (.5, .7) 
(-.05, 0) (.45, .5) (.45, .6) 

(-.05, 0) (-.3.-.05) (.45, .6) 

(-.05, .05) (.45, .7) (.6, .7) 

(0, .05) (.6, .7) (.6, .8) 
(0, .05) (.7, .8) (.7, .9) 
(0, .05) (.6, .7) (.8, .9) 
(0, .05) (.5, .6) (.7, .8) 
(0, .05) (.5, .6) (.7, .8) 

(-.05, 0) (.25, .3) (.6, .7) 

(-.05, 0) (-.2, -.1) (.5, .6) 

(-.05, 0) (.4, .6) (.45 .6) 
(-.05, .05) (.45, .6) (.6. -7) 

(-.05, .05) (.5, .6) (.6, .7) 
(0, .05) (.5, .6) (.6, .8) 
(0, .05) (.6, .7) (.7, .9) 
(0, .05) (.7, .8) (.7, .8) 
(0, .05) (.6, .7) (.7, .8) 

(-.05, .05) (-.5, .7) (-.3, .8) 
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a2 = 0.2. For each combination of the values of ft and ft, 130 values of yu 
were generated using equation (9). This procedure was repeated 3,000 times, 

giving, for each replication and for each regression, a vector yi of order 13 x 1, 
and a matrix X( of order 13 x 3 with a column of ones. This matrix consists 

of observations on 3 regressors of equation (9). The vector t/? was different for 

different replications and also for different regressions. But the matrix Xi and 

the coefficients ft and ft were different for different regressions and not for 

different replications. 
The 3,000 estimates of rh were used to form an empirical conditional distri 

bution of rh given r = r?, ft, and o2 = 0.2 for i = 1,2, , 10; j 
= 1, 2, , 19, 

where the number of different combinations of the values of ft and ft is 19. 

The intervals (rao, rai) for which pr(mo < rh < mi) 
= 1 are presented in Table 

1. We have presented these intervals only for 5 values of r: a value near each 

of 4-1 and ?1, one value between ?1 and 0, one value between 0 and 1, and 

one value near 0. It should be noted that since our empirical distributions are 

only approximations to the exact distribution of ra, pr(mo < rh < mi) is not 

exactly equal to 1 and mo and raj, unlike ra? and mu, are dependent of ft 

Also, the probabilities with which rh takes values in the intervals {mi, mo) and 

(mi, mu) may not be exactly zero. The following conclusions emerge from the 

values given in Table 1: 

1. Both rao and rai are negative in 5 out of 95 cases. Of these 5, 4 correspond 
to negative r and positive ft and ft and 1 corresponds to positive r, 

negative ft, and positive ft; ra0 is negative and mi is nonnegative in 16 

out of 95 cases. In the remaining 74 cases, rao is nonnegative and rai is 

positive. This means that ra > 0 with probability close to 1 in majority 
of the cases we considered. The probability with which ra takes negative 
values depends on the signs and magnitudes of r, ft and ft. 

2. If r is sufficiently away form 0, then the distribution of ra is rather sharp, 

being concentrated about a value that is approximately equal to the mag 
nitude of r, unless the values of both ft and ft are sufficiently close to 

0, in which case the distribution is spread out over an interval around 
zero. If r is close to zero, then the distribution is close to a degenerate 
distribution at 0 regardless of the values of ft and ft. 

In sum ra is a good estimator of real multicollinearity except when \r\ > 0 and 

either ft or ft or both are equal to 0. In these cases ra may take nonnegligible 
values even though real multicollinearity is not present. 

2.5 The exact distribution function of rh. The exact distribution 

function of ra is 

pr(rh < c) 
= 

pr[y'(Q 
? 

cl)y < 0] 
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= 
pr(? Xivf < 0) (mL < c < mLJ), (10) 

*=i 

where y* 
= 

(y\, y*>, , y*r) 
= 

((l/a)P y, P is an orthogonal matrix that diago 
nalizes the matrix o2(Q 

? 
cT),\\ < X2 < ,Ay are the eigenvalues of o2(Q 

? 
cT) 

and y\, y\, , y*T 
are independent normal deviates, each having unit variance. 

The mean of y* is //2 which is the ?th element of (l/a)P X?. Therefore, y*2 is 
a noncentral chi-square var?ate with 1 degree of freedom and the noncentrality 
parameter /?2 and the y*2 are independent. The transformation of rh which gives 
a positive random variable is 

m-mL 
m =-. 

(11) 
mu 

- 
mL 

The exact distribution function of rh can be deduced from that of rh as 

follows: 

, ~ ^ x ( rh-mL c-mL \ 
prim < c) 

= pr \ 
- < -J 

\mu~mL mu-ruLj 

= pr(rh < d), (12) 

whered=^-J^LandO<d<L 
Following Imhof (1961), we can show that 

1 1 /?? sin{0(t)\ , , . 

where 

1 ^ 1 "^ 2 \ + 

m = 
g Earctan &*)+? ? ?f?> 1=1 ?=1 * 

/w = 
n(i+w*exp{i?i^} 

and 

sin 0(t) 
lim . v 

? ^ 
t-o tp(t) 2 

= 
1?A?(1 

+ /.2). 
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2.6 The first four moments of rh. It follows from Mehta and Swamy 

(1978, Lemma 3, pp. 6-7) that if the rth moment of ra exists and if the joint 
moment generating function, $(ti, t2) 

? ? [ exp (hi/y 4 t2i/Qy)], exists and is 

uniformly continuous for ?oo < t\ < e > 0 and \t2\ < e > 0, then 

?{?lr)=_L_l (_?irl[^(?i,t2) ? J.K dtr2 
dtu (14) 

t2=0 

Since rh is bounded, its rth moment exists, For ?oo < t\ < e > 0 and 

1^21 < 6 > 0, it can be shown that the moment generating function $(ti,t2) 
exists and is continuous and equal to 

*(ti,t2) = 
|B|-* exp ?-??0X'(I- B-^X?l, (15) 

where B = 
(I?2o2t\)I?2o2t2Q. Applying the formula (14) to the function (15) 

gives 

?{rh) = qij(l, |+ 2) +a2gij(l, ^4 
l) , (16) 

where q\ = 
?fXQX?, g\ ? 

trQ and 

J(r,n) = 
r^)/0O("?irl(1"2<T2?l)"n 

? ?fXX? ?tX'X? \ ^ 
expr-2^+2^(i-2^1)rti 

It may be noted that the second term on the right-hand side of equation 

(16) is zero because trQ 
= 0. The integral J(r,n) can be easily evaluated by 

expanding the integrand into an infinite series (see Sawa 1972, pp. 677-678). 

Similarly, we can use the formula (14) to find the second, third, and fourth 

moments of rh. In preparation for stating these moments compactly, we need 

to introduce the following notation : For i ? 
1,2,3,4, 

qi^PXQtX?igi^trQi; 

/i = 12?i?2; k = 6Qi92 + 24?3; /3 = 
24(fiq2; 

fi = 96?i?3 + 48^ 4 12gfo; h = ^qm 4 48g2^2 4 192g4; 

and 

f6 = 
12fl? 4 4804. (17) 

In terms of this notation 

?(m2) = of 
j(2, ̂  

+ 
4) 

+ 
4<?V(2, | 

+ 
3) 
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+ 2aig2J< 
K4 

(18) 

?(mJ) 4 J 
(.3, | 

+ 
6) 

+ a2/! J 
(3, \ 

+ 
5) 

+ cr4/2J 
(3,1 

+ 
4) 

and 

+ 8(T6<73 J 

(*H1 
(19) 

f (m4) = 1 g4 
j(4, | 

+ 
s) 

+ <t2/3 
j(4, | 

+ 
?) 

+ 
<r4/47(4, | 

+ 
e) 

+ ?V. 
j(4,f 

+ 
5)+a?/.j(4,| 

+ 
4)_ 

(20) 

If /? = 0 and X'X is nondiagonal, then real multicollinearity is absent. In 

this case, it follows equation (16) that ?(rh) 
= 0 and from equations (18) 

- 

(20) that ?(rhr) ^ 0 for r = 2,3, and 4. If, in addition, misa nonnegative 
or nonpositive random variable, then the distribution of rh is degenerate at 0. 

Thus, in some cases where real multicollinearity is absent, rh takes the correct 

value 0 with probability 1 but the VIF's give misleading results by taking values 

greater than 1. 

2.7 Analysis of a general case. The exact cumulative distribution func 

tion (cdf) of rh has been numerically evaluated by use of (13) for suitably chosen 
cases. We used Koerts and Abrahamse's (1969) subroutine called FQUAD to 

evaluate (13). However, it takes prohibitively long computation time to evaluate 
the exact cdf to sufficient accuracy when the noncentrality parameters, /??'s, are 

large. In these cases, it is difficult to control the accuracy since it is difficult to 

decide when to truncate the range of the integral in (13) so that the truncation 
error is negligible. Therefore, this computation was restricted to the following 
centred model: 

y = c[?0 + (l/T)t'Z6] + AZD-?6 + u, (21) 

where the symbols t,A,Z, and D* are as explained in equations (4) and (5), 

? = 
(A),<5')' an<i ^ = D*?6. The 6j denotes the jth element of 6. If we treat 

6 as the vector of unknown coefficients and set ?o 
= 

?(l/T)tfZ?, then K and 

X in Q get replaced by K ? 1 and AZD*~*, respectively, and the noncentral 

ity parameter of y*2 in (10) will be equal to the square of the ?th element of 
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(l/a)PAZD*-?6. Since D*~^Z'AZD*~^ is a correlation matrix, the values of 

noncentrality parameters will not be unmanageably large. 
Let us return to Draper and Smith's (1966, p. 366) data used in Section 2.4. 

From these data the following two correlation matrices for four nonconstant 

regressors were computed: 

and 

/ 1.000 .229 -.824 -.245 \ 
1.000 -.139 -.973 

1.000 .029 

1.000 j 

( 
1.000 0 -.382 -.031 

1.000 -.478 -.323 

1.000 .294 

V 1.000 j 

(22) 

(23) 

It can be seen that there are no orthogonal pairs of variables among the re 

gressors whose correlation matrix is (22). Of the four regressors having the 

matrix (23) as their correlation matrix, the first two are orthogonal to each 

other. Table 2 and three other tables which are not presented here are based 
on the correlation matrix (22) and Tables 3 and 4 and two other tables which 
are not presented here are based on the correlation matrix (23). (The tables 

which are not presented here are available from the authors on request.) The 

symbol rij appearing in these tables refers to the correlation coefficient between 

the regressors whose coefficients are nonzero. The values of ra? and mu implied 

by the matrices (22) and (23) are also presented in these tables. 

For each correlation matrix, four pairs of coefficients were taken to have the 
zero values. For each of these pairs, one of the remaining two coefficients was set 

equal to 1 and the other was allowed to take 6 different values between ?5 and 5. 

Throughout o2 was set equal to 1. The absolute value of the error that is made 

in truncating the range (0, oo) of the integral in equation (13) was kept below 

0.0000001. Tables 2-4 and the excluded tables contain the values of the mean, 

mode, median, the variance, the skewness, and the kurtosis of the distribution 

of rh for each case we considered. We employed Simpson's composite rule to 

numerically evaluate the integral J(r, n) involved in the moments formulas (16) 
and (18)-(20). The values of d defined in (12) are also presented in these tables. 

The properties of rh can be inferred from the tables. The first important 
feature of these tables is that the probability that ra? < rh < ? 1 is either zero 

or negligible even when ra? is much smaller than ?1. Also, the probability that 
ra is positive is greater than 

\ 
and in many cases markedly so. This result 

can be easily seen from the tabulated median which is positive in all cases we 

considered. In fact, each distribution is shifted towards positive values, this 

asymmetry about 0 generally increases with the magnitude of one of the two 
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Table 2 

Exact CDF of Theil's measure of multicollinearity 
mL = 

-2.910, mu = 
.998, r24 = 

-.973,6\ 
= 

?>3 
= 

0, 62 
= 1 

c 64 = 5 ?4 = 1 ?4 = .1 64 = ?.1 A4 = ?1 ^4 = ?5 d 

1 1.000 1.000 1.000 1.000 1.000 1.000 1 

.95 1.000 1.000 1.000 1.000 1.000 .997 .99 

.85 .975 1.000 1.000 1.000 .999 .838 .96 

.75 .855 .999 .998 .997 .988 .496 .94 

.65 .654 .995 .990 .986 .952 .238 .91 

.55 .446 .982 .967 .958 .880 .107 .89 

.45 .282 .952 .921 .904 .772 .049 .86 

.35 .171 .894 .843 .816 .636 .023 .83 

.25 .103 .798 .728 .694 .490 .011 .81 

.15 .062 .656 .580 .545 .354 .005 .78 

.05 .038 .476 .415 .387 .242 .003 .76 

-.05 .024 .324 .283 .264 .165 .001 .73 

-.15 .015 .236 .205 .191 .117 .001 .71 

-.25 .009 .175 .151 .140 .083 .68 

-.35 .006 .130 .111 .103 .060 .66 

-.45 .004 .097 .082 .076 .043 .63 

-.55 .002 .072 .061 .055 .030 .60 

-.65 .001 .053 .044 .040 .021 .58 

-.75 .001 .039 .032 .029 .015 .55 

-.85 .028 .023 .021 .010 .53 

-.95_.020 
.016 .015 .007 

_J50_ 

E(rh) .5350 .0031 .0516 .0747 .2122 .7230 

Median .557 .063 .101 .122 .257 .751 

Mode .643 .060 .091 .113 .299 .797 

var(rh) .0525 .1159 .1163 .1159 .1060 .0207 

73 -1.432 -1.335 -1.258 -1.235 -1.205 -1.556 

74 6.707 6.024 5.718 5.798 5.718 7.292 
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Table 3 

Exact CDF of Theil's measure of multicollinearity 
mL 

= 
-1.004, mu 

= 
.616, r23 = 

-.478, ?i 
= 

64 
= 

0, S2 
= 1 

c ?4 = 5 ?4 = 1 ?4 = .1 ?4 = ?.1 64 = ?1 64 = ?5 d 

.65 1.000 1.000 1.000 1.000 1.000 1.000 1.02 

.55 1.000 1.000 1.000 1.000 1.000 .996 .96 

.45 .986 1.000 1.000 .999 .996 .821 .90 

.35 .878 .998 .994 .992 .964 .447 .84 

.25 .655 .983 .965 .953 .854 .184 .77 

.15 .414 .904 .860 .833 .641 .065 .71 

.05 .228 .660 .595 .559 .355 .021 .65 

-.05 .111 .302 .236 .216 .127 .006 .59 
-.15 .048 .148 .104 .093 .050 .002 .53 

-.25 .018 .070 .045 .039 .019 .47 

-.35 .006 .030 .018 .015 .007 .40 

-.45 .002 .011 .006 .005 .002 .34 

-.55 .004 .002 .001 .001 .28 

-.65 .001 .22 

E(rh) .1655 -.0106 .0182 .0299 .0987 .3458 

Median .188 .011 .027 .035 .099 .365 

Mode .238 .008 .008 .008 .061 .389 

var(rh) .0283 .0210 .0191 .0193 .0213 .0136 

73 -.6887 -.9394 -.7160 -.6227 -.4199 -.9922 

74 3.445 4.751 4.864 4.726 3.973 4.449 
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Table 4 

Exact CDF of Theil's measure of multicollinearity 
mi 

= 
?1.004, mu 

? 
.616, ri2 

= 
0,63 

= 
64 

= 
0, 61 

= 1 

c ?2 
= 5 ?2 

= 1 ?2 
= .1 S2 

= ?.1 b2 
? ? 

1 b2 
= ?5 d 

.65 1.000 1.000 1.000 1.000 1.000 1.000 1.02 

.55 .999 1.000 1.000 1.000 1.000 1.000 .96 

.45 .946 .999 1.000 1.000 1.000 .985 .90 

.35 .733 .987 .997 .998 .997 .811 .84 

.25 .459 .933 .976 .980 .973 .464 .77 

.15 .244 .793 .885 .892 .852 .200 .71 

.05 .114 .530 .620 .623 .539 .074 .65 

-.05 .047 .232 .237 .232 .188 .024 .59 

-.15 .017 .109 .101 .097 .074 .007 .53 

-.25 .005 .049 .042 .040 .028 .002 .47 

-.35 .001 .020 .016 .015 .010 .40 

-.45 .007 .006 .005 .003 .34 

-.55 .002 .002 .001 .001 .28 

-.65 .22 

E(rh) .2433 .0341 .0124 .0124 .0341 .2434 

Median .266 .041 .022 .023 .041 .261 

Mode .316 .008. .008 .008 .008 .291 

var(rh) .0236 .0238 .0172 .0162 .0153 .0153 

73 -.7947 -.6057 -.8033 -.8457 -.7893 -.8628 

74 3.695 4.286 5.134 5.256 5.133 4.176 
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nonzero coefficients. For some combinations of parameter values, such as (mu 
= 

.998, Si 
= 

0,62 
= 

1,5s 
= 

0,64 
= 

-5, r24 
= 

-.973) 
or 

(mu 
= 

.998, ?1 
= 

1,62 
= 

0,63 = ?5,04 = 0, ri3 = 
?.824), the probability that rh is positive is greater 

than .99. It is also true that the probability that rh takes values in the interval 

(?.05, .05) increases as at least one of the two nonzero coefficients moves closer 

to zero. Since real multicollinearity arises when at least two coefficients cor 

responding to the nonorthogonal columns of Z are nonzero, these results show 

that the probability that rh takes values outside the interval (?.05, .05) increases 

as the degree of real multicollinearity increases. This is a desirable property of 

rh. 

The second important feature is that with three exceptions the spread of the 

distribution of rh decreases as one of the two nonzero coefficients moves in either 

direction away from zero. This property is demonstrated by the coefficient of 

variation which is not tabulated but can be calculated by dividing the square 
root of each tabulated variance by the corresponding tabulated mean. It will 

be noted that this relationship is exactly opposite to that of the preceding 

paragraph. That is, asymmetry towards positive values is associated with a 

small spread; the smaller spread means the distribution is tighter and centred 

at positive values when real multicollinearity is present. The tables also show 

that the speed with which the tightness of the distribution of rh increases as 

the magnitude of a coefficient increases depends on the signs of r?; and the 

corresponding coefficients. If we compare rh with the square roots of the VIF's, 
the former would be certainly preferred in terms of the ability to detect real 

multicollinearity, particularly when the absolute values of mu and coefficients 
are large. 

It is possible that when mu is much smaller than 1, m? is not much smaller 

than -1. The above properties of the distribution of rh are more clearly notice 

able when mu is very close to 1 than when it is not close to 1. For example, 
when mu = .616, the variance of rh is not very different for different values of 

coefficients and r^ we considered. Also, in these cases, the asymmetry of the 

distribution of rh towards positive values is not very pronounced. When there 
are more than two nonconstant regressors in the model, the distribution of rh 

does not seem to be as sensitive to changes in the value of r{j as it is to changes 
in the values of mu and coefficients. These results cast doubt on the ability of 

the regressors' correlations to correctly diagnose real multicollinearity. 
Table 4 covers the cases with ri2 = 0. In these cases, there is no real mul 

ticollinearity because all the coefficients corresponding to the nonorthogonal 
columns of Z are zero. The nondegenerate distribution of rh tabulated in Ta 

ble 4 for these case shows that when there is no real multicollinearity, rh can 

take values outside the interval (?.05, .05) with positive probability, though this 

probability decreases with the magnitude of at least one of the two nonzero co 

efficients. This shows that rh does not always give an accurate estimate of the 

degree of real multicollinearity actually present in model (1). 
Since we have already discussed the spread of the distribution of rh, let us 
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now consider its moments other than its variance. The mean of ra is positive in 

all but two cases we considered. It is generally higher for the coefficients of bigger 

magnitude. It cannot adequately represent the degree of real multicollinearity 

actually present in model (1), except when ? = 0 for the following reasons: (i) 
The distribution of ra is asymmetric and (ii) for the parameter combination, 

(mu = .998, ?i = 
0,62 = l,6z = 0,64 

? 
1, r24 = 

?.973), which represents a high 

degree of real multicollinearity, ?(rh) is as small as .0031 (Table 2) and for the 

parameter combination, (mu 
= .616, ?1 = 1,?2 = ?5,03 = 

0,64 = 0, ri2 = 
0), 

which represents the zero degree of real multicollinearity, ?(rh) is as big as 

.2434 (Table 4). The median and modal values of rh are positive in all cases we 

considered. With one exception, the mean is smaller than the median. However, 
the modal value is smaller than the mean in several cases when mu = .616. In 
some cases with mu = .616 the mode of the distribution of ra, unlike its median 
or mean, is relatively insensitive to changes in the value of a coefficient. In 

several cases we considered, the median or mode increases as a coefficient moves 

away from zero. These results show that the absolute value of ra is a better 

indicator of the actual degree of real multicollinearity than its mean, mode, or 

median. In cases, where mu is sufficiently close to 1, the larger the absolute 

value of ra, the greater the degree of real multicollinearity. 
The distributions are also skewed; this property can be seen from the tab 

ulated coefficient of skewness (73) which is negative in all cases we considered. 

This means that the long tails of these distributions are on the negative side. 

The 73 is smaller in magnitude when mu = .616 than when mu = .998. The 

values of the coefficient of kurtosis (74) presented in the tables indicate that the 

probability density curves of ra are taller and slimmer than a normal curve in 

the neighbourhood of their modes. This relative peakedness is more pronounced 
when mu 

= .998 than when mu 
= .616. 

On the basis of the values of c and d given in the first and the last columns of 

the tables, respectively, we could make some comparative statements between ra 

and ra defined in (11). The variable ra has the disadvantage that it transforms 

the small absolute values rh takes with positive probability in the absence of 

real multicollinearity into large positive values. 

5. Conclusion 

We have found that though Theil's (1971) measure of mutlicollinearity has 

its defects, it is preferable to other measures used in the statistics literature 

to diagnose multicollinearity. More specifically, Theil's measure, unlike other 

multicollinearity diagnostics adheres to economists' definition of near multi 

collinearity and can differentiate between real and apparent multicollinearities 

in numerous cases. To confirm this claim, we have given numerical tables of the 

exact cdf of Theil's measure in the normal case. A by-product of the confirma 

tion is the derivation of the first four moments of Theil's measure. 

Acknowledgement. Thanks are due to a referee for helpful comments. 
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