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Ahstract

Crossover designs are used for a variety of different applications. While these designs have a number of attractive features, they
also induce a number of special problems and concerns. One of these is the possible presence of carryover effects. Even with the use
of washout periods, which are for many applications widely accepted as an indispensable component, the effect of a treatment from
a previous period may not be completely eliminated. A model that has recently received renewed attention in the literature is the
model in which first-order carryover effects are assumed to be proportional to direct treatment effects. Under this model, assuming
that the constant of proportionality is known, we identify optimal and efficient designs for the direct effects for different values of

the constant of proportionality. We also consider the implication of these results for the case that the constant of proportionality is
not known.

Kevwords : Direct treatment effects; Proportional carryover effects: Universal optimality

1. Introduction

Crossover designs are used in experiments that call for each subject in the study, such as a person or animal, 1o
successively receive multiple treatments over a number of time periods. These designs are widely vsed in several
areas, including clinical trials, leaming experiments, animal feeding experiments and agricultural field trials. Practical
considerations, such as the possible scarcity of subjects and the ability o compare different treatments on the same
subject, which isespecially important in case of large natural differences between the subjects, are but two of the reasons
why a crossover design can be attractive for certain studies. But using these designs may also introduce a number of
possible problems and concems (cf. Stufken, 1996). One of these is the possibility that an observation on a subject is
not only affected by the treatment currently administered to this subject, but also by lingering effects of one or more of
the treatments that the subject received in eardier periods. Such effects are called carryover (or residual) effects.

During the last years more and more researchers in this area have adopted the view that, if carryover effects can
oceur, a crossover design should only be wsed with sufficiently long pedods between the treatment periods so that
any effects from the previously administered treatments can vanish. Such intervening periods are known as washout
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penods. On the other hand, 1t s not always known when a washout period is “sufficiently long™ for the carryover effects
to vamsh completely, and, even if 1t 18, this requirement may lead to washout penods with a duration that s in conflict
with practical or ethical considerations. Whatever view one subscnbes w on this issue, the use of washout periods 1s
highly recommended for these studies since, if nothing else, it should help to diminish the size of any camryover effects.

Crossover designs have played a role in experiments for a long time, and the notion of carryowver effects 1s already
present in the work of Cochranet al. (1941). The study of optimal crossover designs starts with Hedayat and Afsardnejad
(1978), who use the same model as Cochran, Autrey and Cannon. The work by Hedayat and Afsarinejad inspired a
number of other researchers, including Cheng and Wu ( 1980), Kunert (1983, 1984) and Mathews ( 1987). Stufken
(1996) provides a review of selected optimality results. More recently, the work by Kushner (1997, 1998) has spurred
a renewed inerest in opimal crossover designs and represents a breakthrough that elevates our understanding 1o an
entirely new level. Hedayat and Yang (2003, 2004) also provide additional recent advances.

Most of the work cited hitherto focuses on varants of what may be called traditional modeling of camryover effects
(as already present in Cochranetal., 1941). Such models allow for a carryover effect from the treatment in the previous
period only, and assume that this effect only depends on that treatment. Much work has been done on the optimality
of crossover designs under different models, including the recent work by Afsarinejad and Hedayat (2002) and Kunent
and Swifken (2002). For a comparison of optimality results under different models for the carryover effects we refer 1o
Hedayat and Stufken (2003).

The model that we will focus on in this paper is conceptually very simple but technically a bit more complicated.
The key assumption is that there is only a carryover effect from the treatment in the previous perod and that the size
of this effect is proportional to the direct effect of that treatment. This is conceplually guite simple—a treatment with
a stronger direet effect will also have a stronger lingerng effect. 1t is technically, however, a more complicated model
since it is intrinsically nonlinear.

This model has received attention in the literature before. In particular, recently Kempton et al. (2001) study the
model for an unknown constant of proportionality. They obtain the information matrix for direct effects using a linear
approximation of the model at the true values of the parameters. Then, by using a combination of analytical reasoning
and computer search, for a few special cases they obtain designs that are optimal for the direct effects for different
vitlues of the constant of proportionality. The optimality criteria that they use is an integrated A-optimality criterion,
where the integration is needed because their information matax does depend on the true value of the direct effects.

We also consider the proportional carryover effects model, but we assume initially that the constant of proportionality,
say 11, is known. This is admittedly not a very realistic assumption, but the results are nevertheless insightful. By making
this assumption we are able 1o obtain closed-form, analytical solutions for optimal designs for the direct effects for
ranges of values of (. These results reveal that there are designs that are optimal for a broad range of plausible values
for . What we ignore by making this assumption is the loss of efficiency resulting from actually having Lo estimate
i when it is unknown. But we will show that this loss is small in some cases, keading to designs that are optimal or
efficient in the more realistic case that (1 15 unknown.

The optimality criterion that we consider is that of universal optimality, so that the resulting designs are optimal for
direct effects according to any of the usual criteria, such as A-, D- or E-optimality. The class of competing designs
considered in this paper is the class of all crossover designs. Unlike Kempton et al. (2001), we do not have 1o restrct
ourselves o smaller subclasses of designs.

In Section 2, we state the model and derive the relevant information matrix. Section 3 contains the optimality
results for the case that the constant of proportionality, (1, is known, while optimal designs for various useful parameter
combinations for different ranges of { are obtained and presented in Section 4. Section 5 assesses the implications of
the results in the previous sections for the important case that 15 unknown.

2. The model and a siraiegy

Let Q”r_p be the class of all crossover designs with ¢ treatments, p periods and n subjects. For a design o € Q,_,r_J,,
amodel that has been used extensively 1s given by
Yij = + ﬁ_,‘ + 146,y + Py ey I=L2..., P =12, n,

where d(i, j) stands for the treatment that 1s assigned w subject jin penod @ under design &, pois a general mean, o 15
an effect due to the ith period, i 15 an effect due to the jth unit, Ty ;) 15 the direct effect due 1o treatment d(i, f) and
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fagi—1,jy 15 the first-order carryover effiect due to treatment d(i — 1, j). All the above effects are assumed to be fixed
effects and we define g0,y = U The g; are mdependent identically distnbuted Gaussian random eror terms. (The
miodel 15 often presented with an overall mean g included, but that 1s merely a reparametrization of the model given
here and makes no difference for our considerations.)

In matrix notation the above model may be writlen as

y=Pa+ U+ Tyr+ Rap + & o

where ¥ = (v, vz .., Ypn)s &= (&1, ..., ap), = (8...., B.Y. T = (tr, ..., ) p = (e, Y. e=
(811, 812, v s f.'llm::lr: the matrices P and U7 denote the parts of the design matrix that correspond o period effects
and subject effects, respectively; Ty and By are the incidence matrices for direct and carryover effects for design o,
respectively; and & is the vector of random errors.

Under the assumption that the carryover effects are proportional 1o the direct effects, model (1) becomes

y=Pa+ U+ Tyt +0Rat+ 5 o

where 1is the constant of proportionality. We place no constraint on @, although it would normally seem plausible for
i 1o take values in the interval [—1, 1] or even in the interval [0, 1] (see also Kempton et al., 2001).

While model (2) is a nonlinear model, following the discussion in the previous section we will treat  in Sections 2—4
as a known constant (reducing the model to a linear model) in order o investigate the dependence of the performance
of designs for estimating treatment contrasts as a function of .

In what follows, we write 1, and [, {or occasionally just 1) to denote the m x 1 vector of ones and the identity
matrix of order m, respectively. For a matrix A, e A) denotes the projection matrix onto the column space of A and
wr( A) denotes T — (A ), where 1is an identity matix of appropriate order. Tr| A] denotes the trace of matrix A.

With the ordering of the elements of y, as shown after model (1), it follows that P= 1, @ 1, and U =1, & [,. Writing
Xl = Ty 4 Ry, it follows that under model (2), for a design d in £, p and a fixed value of 0, the information
matrix for 7 is given by

Cal(0) = (X () 0~ (P U)X (D). (3

Aside from changes in notation, the difference between the matrix in (3) and the information matrix in Kempton et al.
(2001), which is obtained by treating  as an unknown parameter and using a linear approximation o model (2), is a
nonnegative definite matrix that depends on 1 and . We will return 1o this in more detail in Section 5.

A design d € £, p is said W0 be wuniform over the periods if each of the treatments oceurs equally often (e, n/t
times) in each period in . 1t is said to be invariant over the periods if for every treatment, the treatment is replicated
equally ofen in each period (but different treatments need not have the same replication). Clearly, a design that is
uniform over the periods is also invariant over the periods. Based on the results in Kiefer (19735), for a fixed value of 0,
we will seek designs in £y, p that maximize Tr[Cg (0], Instead of studying Cy((h) directy, we will find a judiciously
selected slightly simpler matax that majorizes Cg(() (in the Loewner ordering). This will eventually provide an upper
bound for Tr[ Cy (1] that applies o all designs d € £ ;o but that does not depend on d. If a design attains this upper
bound and if the information matrix for that design is completely symmetric, then, following Kiefer (1973), we can
conclude that this design is universally optimal for direct effects for the selected value of @,

An essential step in this direction is formulated in Lemma 1. The result of Lemma 1 will be analyzed further in
Section 3, where the importance of the concept of uniformity over the periods will also be elucidated.

Lemma 1. Fora designd €, , .

Cal < (Xa () e (Ryl; U)Xg(D) (4)
in the sense of the Loewner ordering, with equality for all 0 if and onfy if d is invariant over the periods.
Prool. By observing that R;1; belongs to the column space of P, it follows that

(Xa () e (P U)X a(0) = (Xa() o™ (Rg s U)X al0) — (Xa()) ex(er™ (Raly U)o (Rgl)P)Xag(lh.  (5)
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The second term on the right-hand side of (3) is always =0, which shows the validity of (4). This term is equal 1o 0 if
and only if

(Xa(0) @™ (Ryl; Uyer-(Ryl,) P =0. (6

Straightforward computations show that

i i 0y Oy --- Oy
w (Rgly Ul (Ry1) P = ) .
(Rgly U (Rgl) [ﬂﬂlﬂ—l] w{lp_ 1) @1,
Hence, (6) holds for all &1, if and only if
. 0y Oy --- Oy P 0y Oy --- Oy
T, i = R, : = Orxp. o)
|r[ﬂ.lrl,w—l] w{lp_1) @ l.lr] |r[ﬂ'.lrl,u—l] W (lp_1) & l.lr] SR
Writing Ty; for the n x r submatrix of Ty comresponding Lo observations in pedod i, i =1, ..., p. it follows easily that

(7) holds if and only if

T,rr[ ly= T;,rrzln i Ly,

d dp
which is equivalent to d being invadant over the periods. O
3. Optimality result

From the sufficient conditions in Kiefer (1975), given 0, a designd™ € £, , p will be universally optimal in £, , ,
for direct effects if Cg+ (1) is completely symmetric and maximizes Tr[ Cy ()] over all designs d € £ 4 . S0, to search
for universally optimal designs, we consider the upper bound of Cy (i) as given in Lemma 1 and try to maximize the
trace of this bound, keeping in mind that only a design that is invarant over the pedods can attain equality in (4) for
all values of (0.

For simplicity of notation we will use A; to denote the matrix o (1;). We also define

Cant = Ty (T,  Cpz= Ty (U)Ry.  Cun = Ryer (U)Ry. (8)
The following lemma builds on the result of Lemma 1.
Lemma 2. For any ) and any designd € 2y p.

Tr[Cy (N < Tr{Cypy | + 20 Tr{Cypal + 07 Tr[A,C . (9)

and equality holds for every 0 §f d is uniform over the periods.

Prool. Since Cy{t 1, = 0y, we have that Tr[Cy ()] = Tr[ A, Cy( (] Using Lemma 1, this means that

Tr{ Ca(] = Tr{ A, Ca N S Tr[ A X () e ( Ry 1, U)X ()], (101
To evaluate this expression we first observe that

(Xa () e (Ryly U Xg(D) = (Xa (D)) er (U Xg () — (X (D) (o™ (U Rg 1) X (1), (11)
Using the notation in (8), the first term on the rght-hand side of (11) can be written as

(X (0) 0 (N Xg(0) = Cyny + HCor2 + Clpya) + F Cya,
s0 Lthat

Tr[ A (X (0)) - (U)X g ()] = Te[Can1 ] + 20 Tr{Cynz] + 07 Te[A,Cynl. (12)

Since Tr{ A (X () (s (L ) By 1,0 X4 (] is clearly nonnegative, combining (10012} yields the desired result
in (9.
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Equality in (9) holds if Te| A (X () eo{er (U Ry 1) X (] = 0. This is the case if and only if A, (X () w0-(U)
Ryly =0, 1e, if and only if (X () o (U Ry 1 is a multiple of 1, Since X () = Ty + 08 4. if this latter condition
is 1o hold for every 0, then

T (U)Rg1, and  Rijer (U)Ry1,

must each be a multiple of 1;. This holds for a design that is uniform over the periods. Since such a design also attains
equality in (10}, the claim in Lemma 2 follows. O

1t can be shown that the only designs that attain equality in both Lemmas 1 and 2 are designs that are uniform over
the periods.

The bound in Lemma 2 15 very important. It enables us 1o proceed along the lines of Kushner (1997, 1998) and
Kunert and Stufken (2002) in order to find an attainable upper bound for Tr[ Cy((1] that is independent of d. In order
o pursue this we need addiional notation.

For a design d € 2, p. let s; denote the sequence of treatments for subject j in design d, j=1...., n. For
l=iu < v =2, and any sequence s, we write C), to denote the matnix Cygy as defined in (8) with dy denoting the design
in £ | p consisting of only the single sequence 5. It is casy to verify that

M
- 'r’".l
Ciuy = E Cyv forall n, v,
=l

and hence that

i i o
THCy =) TrCH],  TrlCypl =) TrCHL  TrlACpal=)  Tr{A,CL. (13)
_||'=| _||'=| _||'=|_

This implies that, for a given (, 0 maximize the right-hand side of (9), the design must only use sequences s that
MAXITLZe

TR CY | + 20 TH[CLy ] + P TH[ A, Ca . it

We will denote the quantity in (14) by B, (1), and refer to a sequence as admissible (for that value of () if it maximizes
B.(th over all possible sequences s for given ¢ and p. Observe that if a sequence can be obtained from a second
sequence by a permutation of the treatments, then the two sequences yield the same value for B, (). We will call
any Lwo sequences that can be obtained from each other through such a permutation equivalent. In order o find the
maximum of By over s we need to compute B, () for only one sequence s from each equivalence class. We will
refier to an equivalence class as admissible if the sequences in that class are admissible.

A final concept that we need is that of neighbor balance. A design d in £2; 5 is said to be neighbor balanced if,
for two selected treatments, the number of times that 4 assigns the two treatments 1o the same subject in conseculive
perods, irrespective of order, is the same for any two treatments. Note that this definition does not formulate any
requirements on bhow often the same treatment should be assigned o a subject in consecutive periods.

We are now ready to formulate the main result.

Theorem 1. Consider model (2) for a given value of (). Let d* be a design in £, y_p. such that
(1) d* is uniform over the periods,
(i) all sequences in d% are admissible (for this value of 1), and

(1) all of the matrices Cg+11, Cg+12 + C:.f'l o and Cg+xr are completely symmetric.

Then, for the given value of 0, d* is universalfy optimal in €, p Jor direct treatment effects.
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Prool. Forany designd e £, p we have that
Tr[Cy+ ()] = Tr[Cae11 +20C 412 + F A Ceaal =n max B, ({)
2Tr[Ca11 +20C 012 + F A, Cyaz) 2 Tr{Ca (D). (15)

The first equality in (13) follows from Lemma 2 and property (i) in Theorem 1; the second equality is a consequence
of the additvity property in (13) and property (ii) in Theorem 1. The first inequality in (135) follows again from the
additivity property, while the second inequality is simply from Lemma 2. Thus, the information matax for * has
maximal trace over all designs in £, ; 5.

The result of Theorem 1 follows now from Kiefer (1975) if we can conclude that Cy+ (1) is a completely symmetric
maltrix. But

Ca () = Caor1 + K Cyo12 + Clrapa) + P Carzz — (X () e (LY Ry 1) X g+ (0)
= Ca11 + W Ca12 + Clpapa) + P Cyona — 81,1 (16)

for some constant 4. For the first equality in (16) we have used Lemma 1 and the expression in (11), while the
second equality is a consequence of property (i) in Theorem 1. Property (iii) implies now that Cge (1) is completely
symmetric. [

Note that properties (i)=(iii) in Theorem | are sufficient for the conclusion but not necessary. For example, if # =0
all that 1s needed m (1) 1 that Cgeqp 18 a completely symmetric matrix.

In applying Theorem 1, property (i) is of course the easiest Lo verify. In the next section we will derive the admissible
sequences for selected values of rand p, concentrating on 2 << p < 4. Property (i) is a lot easier 1o verify than it might
seem al first It is always satisfied for 1 = 2. For r 23 it is of great help to observe that both Cyyy and Cyz2 can be
interpreted as information matrdces for block designs, with subjects as blocks, under the usual additive model with
block effects and treatment effects. Finally, for a design that satisfies all other properties, the matrix Cgi1z + C) 5 is
completely symmetric if and only if the design is neighbor balanced.

4. Admissible classes and optimal designs for various combinations of the number of treaiments and periods

In this section we will identify optimal designs for various combinations of ¢ and p by using the result in Theorem
1. We pay special atlention o cases with 2= p <4, which tend 1o be used more often in practice. In view of Theorem
1, the initial focus will be on identifying all admissible equivalence classes. Using sequences from these classes only,
we will then obtain designs that possess properties (1) and (i) in Theorem 1.

40 Thecase p=2, t 22

There are only two equivalence classesin thiscase. Representative sequences from these classes and the cores ponding
values of B,(f are shown in Table 1.

Since (.25( 1 — 2)? is nonnegative for all 0, it is clear that equivalence class (2) is admissible for all . When 0 = 2,
both classes are admissible. However, the fact that max, B, (1) = 0 when = 2 means that t; — 72 1% nol estimable in
that case.

For any other value of # we should only use sequences that belong o class (2). If r = 2, a design that uses the
sequences 12 and 21 equally often is universally optimal for direct effects according to Theorem 1. For odd 1 =3

Table 1
The equivalence classes for p=2, ¢ 22

Class Sequence 5 Trici Trici,) TriA, Cis) B

in 1 0 0 il il
2 12 1 —L5 0.25 0250 — 292
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we can always construct a neighbor balanced design that possesses the properties in Theorem 1 provided that s a
multiple of ¢ {r — 1)/2. For even ¢, the same is rue provided that n is a multiple of £ {r — 1).

Example 1. For r = 3 and n = 3.4 for a positive integer 4, let &% be the design that uses each of the sequences 12,
23 and 31 for 4 of the subjects. Then d* is universally optimal for direct effects in €25 5; » for any (. Fort = 4 and
n=124, the design that uses each of the sequences 12,21, 13, 31, 14, 41, 23,32 24 42 34and 43 for 4 of the subjects
is universally optimal for direct effects in £, 3 5.

42. Thecasep =3, t =12

Table 2 presents the four equivalence classes for this case.

The entries in the column for Bg({) in Table 2 show that class (4) is the only admissible class if f = 0 and that
only class (3) is admissible if <0 If § =0, classes (2)—(4) are all admissible. The latter is not surprising since it
corresponds o the well-known case of the common model for a row—column design { without camyover effiects), and it
is known that sequences from all three classes can then occur in an optimal design.

The construction of universally optimal designs is particularly simple for this case, and is illustrated in Example 2.

Example 2. Let d* be the design with each of the sequences 122 and 211 assigned 1o 422 1 of the 2.4 subjects. Then,
for any 1 =0, we conclude from Theorem 1 that &% is universally optimal in €27 2; 1. Similady, a design that applies
only the sequences 121 and 212, using both equally often, is universally optimal in £, 5; 110 0 =0,

Note that design o in this example is the strongly balanced design that is also known o be universally optimal for
model (1).

43 Thecase p =3, 1 =3

There are five equivalence classes for this combination of the number of treatments and periods. Only class (5) in
Table 3 is new compared (o the previous case.

From the discussion in Section 4.2, it is clear that when identifying admissible sequences we only need 1o compare
class (5) w classes (4) (if = 05 and (3) (if < 0).

After simple algebra, it follows that (4) is the only admissible class when0 52 <= 1 = 11 48, (3) is the only admissible
class when —4.73 < ! = — 1.27, while (5) is admissible for other values of (0. In particular, if {# =0 (the case in which

Table 2
The equivalence classes for p=3, r=12

Class Sequence 5 TricCy,) Tric{,) TriA:C3s) Baiih

in i il 0 0 0

{2 12 1.33 —(1.33 0.33 1.33 — (La6i 4 0337
(3 121 133 -1 I 1332 4 i

i) 122 1.33 0 1 1334+ 0°

Tahle 3

The equivalence classes for p=3, 123

Class Sequence 5 T TriC{,) TriA, C3,) B

{1 111 0 i { i

(2 112 1.33 —(1.33 0.33 1.33 — (.66 4 1]..'53”!
(&) 121 133 -1 [ 133 20 +

i 122 133 i [ 1334+ 0°

{3 123 2 =67 L1l 2 — 1340 + L1
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Table 4
The equivalence classes tor p=4, 1 =2

Class Sequence 5 Tricy,) TriC{;) TriA, C3;) B ih

in i1 i 0l 0l il

2 iz 1.5 025 0,375 1.5 — 0.500 + 0.3750°
i3 121 1.5 075 1375 L5 — L.50 + 137507
i 1211 1.5 075 1375 L5 — .50 + 137507
5 122 2 05 1375 24 04 137500

(6 1212 2 —15 1375 2 -3 + 137507

7 1221 2 05 1375 2 — i+ 1.3750°

08 1222 1.5 025 1375 L5 40,50+ 1.3750°

carryover effects are assumed o be negligible), (3) is the only admissible class. This is again as expected based on
existing results for row—column designs.
Optimal designs are presented in the following examples.

Example 3. If .52 < = 11 .48, an optimal design can be obtained by adding a period to the optimal designs in
Example 1 in which the same treatment is used as in the second perod. Thus, if r =3, the design o* that uses each of the
sequences 122, 233 and 311 for 4 subjects is universally optimal for such (F in €24 5; 3. Similarly, if =473 = (0 = —1.27,
then we can again obtamn optimal designs by starting with an optimal design in Example 1. In this case, however, the
third period should be constructed by repeating the first perod. Thus, if r = 3, using each of 121, 232 and 313 for £
subjects results for such values of  in a universally optimal design in €35 5; 1.

Example 4. The more interesting case is that where (f is near zero. If —127 < = 0.32, an optimal design can be
obtained by using each sequence that is equivalent to 123 equally ofien. Since there are £ — 1){r — 2) sequences in this
equivalence class, this would quickly require the use of a huge number of sequences. For ¢ = 3, instead of using all six
sequences, a design that uses each of 123, 231 and 312 equally ofen is by Theorem 1 also optimal. For ¢ = 4, instead
of using all 24 sequences equally often, an optimal design that uses 12 distinet sequences can be constructed. The 12
sequences 123,312 231 421, 142,214, 134, 413, 341, 432, 243 and 324 of the totally balanced design in Kunert and
Stufken (2002) can be used for this purpose.

d4. Thecase p=4, t =2

For this case there are eight equivalence classes, which are all shown in Table 4.

It is immediately clear from Table 4 by looking at the column for B, () that the only admissible class for = 0 is
class (5). Similady, class (6) is the only admissible class for @ < 0. If = 0, classes (57 ) are all admissible—which,
once more, does not come as a surprise based on known results for row—column designs. ldentification of optimal
designs is again extremely simple, as shown in Example 5.

Example 5. Let d] be the design that uses sequences 1122 and 2211 equally often, say 4 times. Then, by Theorem 1,
d|' is universally optimal for direct effects in £25 5; 4 if 02 () Similarly, design &5 that uses each of the sequences 1212

4.5 The case p=4, 1 =3

For this case there are 14 equivalence classes. In addition to the eight classes in Table 4, which also apply now, we
must also consider the six classes in Table 5.

For () = 0, it is clear that class (14) has a larger B,(1) value than any other class in Table 5. Simple algebra shows
that this value also dominates the B, () value for class (5) in Table 4, which was best in that table. Hence, if =0,
then class ( 14) is the only admissible class. Similady, class (10) is the only admissible class if —1 < < 0, while (11)
and (13) are the only admissible classes if f = — 1. For f = 0, all of the classes (9)—(14) are admissible.
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Table 5
Additional equivalence classes forp =4, r=13

Class Sequence 5 Tric] ) TriC ;) Trid, 3] i

i 1123 2.5 —0.25 L5 2.5 — 050+ 1L5IF
")

(10 1213 25 —1.25 L5 252504 1.50F

(1 1231 2.5 —1.0 2 2.5 20+ 2(F

12 1223 2.5 —0.25 L5 2.5 — 050+ 150F

{13 1232 2.5 = | 2 2520428

(14) 1233 2.5 il 2 25420

Table &

An additional equivalence class forp =4, r=4

Class Sequence 5 Tr(Cy,)) Tric];) TriA, C3,) B.ih

(15) 1234 3 —075 20625 3 - 150 + 206250

Example 6. Let df and &3 be the designs that use sequences 1233, 2311 and 3122 and sequences 1213, 2321 and
3132 equally often, respectively. Then ] is optimal for direct effiects if 0= 0, while d3 is optimal if —1 <0 <0.
If = — 1, then an optimal design may be constructed by using each of the sequences 1231, 2312 and 3123
equally often.

4.0, Thecase p =4, t =24

For this case there are 15 equivalence classes, including the 14 classes in Tables 4 and 5. The only remaining case
15 shown m Table 6.

A comparison of the B, (1)) values shows that class ( 14) is the only admissible class if 0.34 < (f = 23,66, while class
(15} 1s admissible for other = 0. When @ < 0, both (11) and (13) are admissible if —6.83 <1 = — 1.17 while (15) s
admissible for other < (). In particular, class (15) is the only admissible class if —1.17 < 1 = (0.34.

Example 7. Whenever class (13) is admissible, the design that uses each sequence from that equivalence class equally
often is optimal for direct effects by Theorem 1. But this class contains ¢ (r — 1)ir — 2)(r — 3) different sequences.
Optimal designs can typically be constructed using fewer sequences. For example, if 1 =4, the design 4% that uses the
sequences 1234, 2413, 3142 and 4321 equally often is optimal for direet effects if (F takes a value where class (15) is
admissible.

Example 8. Starting with an optimal 3-period design with 1 = 4 as in Example 4, if we add a fourth period by repeating
the treatment in the third period in period 4, then we obtain an optimal 4-period design for .34 < ) = 23.66.

It is interesting Lo compare the resulls in this subsection with those in Kempton et al. (2001). Using their ap-
proach, which we briefly described in Sections 1 and 2, and a computer search they looked for the best 4-perod
designs for four treatments and 12 subjects. They found two 4-pedod designs o be dominant. One of these, de-
sign 1, uses 12 sequences that are equivalent to 1234, while the other, design 2, uses 12 sequences that are equiv-
alent to 1233, Since both of their designs satisfy properties (1) and {iii) of our Theorem 1, we would conclude
that, when restricting (f to the interval [—1, 1], design 1 is optimal for —1 < = 0.34 and design 2 is optimal for
034 = (1= 1. Their conclusion agrees largely with ours, except that they found the crossing point 1o be near ! =
042, Moreover, near the crossing point (for 0.37 < (f < 0.48) they found two designs that combined sequences
from classes (14) and (13) o pedorm slightly better than either of design 1 or 2. We return to their approach
in Section 5.
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4.7 Thecase p=6, t =3

We provide a briel disc ussion of this special case where arather special design, called a strongly balanced unifonm de-
sign, exists. Anexample of such a designin {35 g g consists of the sequences 112233 223311, 331122122331, 233112,
311223 132132, 213213 and 321321 is known to be universally optimal under model (1) (cf. Cheng and Wu, 1980).
It contains sequences from three equivalence classes, but it can be shown that, if = 0, only the class consisting of the
six sequences thal are equivalent to 112233 is admissible. The design that uses each of the sequences 112233223311
and 331122 thrice is umversally optimal in {35 g g if ! = 0. Thus, strongly balanced uniform designs do not necessarily
remain optimal under the proportional camyover effects model.

5. But # is not known!

In applications we do not know ( and would have to estimate it. This results in a loss of information for the estimation
of treatment contrasts, aloss that can be more severe with some designs than with other designs. The question is therefore
Justified whether the results in the previous sections, which are obtained under the assumption that  is known, provide
any guidance at all for the important case that  is not known.

The short answer is that the results provide useful guidance. In some special cases they suggest designs that are also
optimal for the direct effects when 7 is unknown. But in other cases they need to be used with caution. This section
provides a more thorough, rigorously supported answer to this question.

If {Fis treated as an unknown parameter then model (2) is a nonlinear model. Following Kempton et al. {(2001),
using a Taylor series expansion we approximate this model by a linear model in the neighorhood of the true parameter
vitlues y and . We then obtain the information matrix for the direct effects © under this linear approximation. Using
our notation it can be shown that the information matrix obtained in this way (see Kempton et al., 2001) can be
wrillen as

Caltlo) = (Xa(0p)) o (P U Rgto)Xalth). (17}

We will wnte C";""{H.;]}l for this information matrix o distinguish it from the matnix in (3), which we will denote in this
section by Cj'{ff.;]]l.

It 1s immediately clear from the expressions i (3) and (17) that C";"' (= C:;{U'q]}l for any design d, no matter what
the true value 1y is. It is also clear from these expressions and the observation in the first line of the proof of Lemma 1
that the two matrices are identical if all treatment effects are the same. Note also that the difference between the two
information matrices is not a function of the size of 7y, but only of its direction.

For a design that 1s uniform over the periods it follows, analogously as in the proofof Lemma 1 (we omil the detals),
thit

C Y (0) = (Xa(l)) er (U Ryl; Rato)Xa(lo). (18)
Consequently, for such a design we have that
Chitl) — CY (0p) = (Xg( o)) (05U Ryly) — e (U Ryl Ryto))Xa(Op)
= (Xa(0p)) (U Ryl; Rytg) — (U Ryl)) Xailly)
= (Xa(0o)) (X (U Ral;)Rato)) Xa(fo). (19)

If, for some thy and 7, this difference is (0 and d is a design that is universally optimal for direct effects under Theorem
1 for (f =y, then d is also universally optimal for direct effects if we treat 1 as unknown and () and t are the
true values. It would be especially useful to know if there are designs d for which the difference in (19) is 0 for
some ly irrespective of the value of 7o, where we assume without loss of generality that r':']lI = (. We will identif’y
such designs.

One of the properties required in Theorem 1 is that Cyy2 + €y, is completely symmetric. If #is unknown it turns
oul that we need to strengthen this to the requirement that Cyyz itsell is completely symmetric. Designs with this
stronger property tend to be better for the latler case. 1t is not difficult 1o obtain designs with this stronger propery
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that satisfy all the other conditions in Theorem 1 from the designs that were constructed in Section 4. To illustrate
this point, in Example 4 we considered the neighbor balanced design consisting of sequences 123, 231 and 312, If we
add the three sequences 213, 132 and 321, which are obtained by permuting 1 and 2 in the first three sequences, then
the resulting design that uses all six sequences equally often has a completely symmetric matrix Cyy2 and satisfies all
other conditions of Theorem 1 for all values of (f for which the original design satisfied these conditions. ( The resulting
design is the well-known uniform design that is balanced for carryover effiects.) This idea of adding sequences 1o a
given design that are obtained by applying certain treatment permutations 1o the sequences of the given design can be
used in general to obtan a new design that has a completely symmetric matnx Cgpz.

We are now ready to stale the main result of this section as a theorem and will formulate an interesting special case
in the corollary that succeeds it. These results identify designs for which the difference in (19) is 0 for any 7 and are
an immediate consequence of the previous discussion.

Theorem 2. Consider the nonlinear model (2). Let d* bea design in(}; p- and suppose that the true (unknown) value
of Bis thy = =Tr[Cae12l/Tr[ A Caea2]. If

(1) d* is uniform over the periods,
(i) alf sequences in d* are admissible for 0y, and
(1) all of the matrices Cg+11, Cg+12 and Cg+a3 are completely symmetric,

then d* is universally optimal in (3 p for direct treatment effects irrespective of the true value of ©.

Corollary 1. Ifd* € Q, , , satisfies the conditions in Theorem 1 for known 0 = 0 and Cyp 13 = 0, then d* is also
wniversally optimal for divect effects under model (2) when 0 is not known and its true value is Uy = 0, no matter what
the true value of T is.

The condition Cg+2 =018 satisfied by a number of well-known strongly balanced designs (see also Cheng and W,
198(), and we will encounter some of these in the next examples.

This special case of Oy = 0 is a very important one if we believe that there are only very small or no carryover
effects—which, as mentioned in the Introduction, is a desirable goal when using crossover designs. Corollary 1 provides
us with a tool to identfy designs that are universally optimal for direct effects, irrespective of the true value of 7, when
the true (unknown) value of is 0. We highly recommend these designs if the carryover effects are expected to be small
relative Lo the direct reatment effects.

Example 9. Let p=3 and r = 2. Based on Theorem 1, the design «* that uses the sequences 112 and 221, each for
half of the subjects, is optimal if it is known that (! = 0 {see Section 4.2). Since this design satisfies Cyv 2 = 0, it is also
optimal, no matter what the true value of 7 is, for model (2) when (0 is unknown and its wue value is 0.

Example 1. Consider the case p =4 and r = 2. From Section 4.4 and Corollary 1, it follows that the design &% that
uses each of the sequences 1122, 2211, 1221, 2112 for a guarter of the subjects is optimal for model (2) when the
unknown true value of 1 is 0.

Example 11. For p =4, + = 3, it follows from Section 4.5 and Corollary 1 that the design % that uses each of the
sequences 1233 2311, 3122 2133 3211, and 1322 equally often is universally optimal for direct effects when the
unknown true value of 1 in model (2) is 0, imespective of the unknown true value of 7.

For other values of () than that in Theorem 2, an optimal design may depend on the true value 7y of 7, making
the problem much more difficult. The discussion about the results by Kempton, Ferris and David in Section 4.6
does, however, suggest that the results in Section 4 provide in that situation also useful guidance for the case that
15 unknown.
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Note added in proof

Recently Bailey and Kunert (Biometnka 2006, 93, 613-625) were able w extend the work Kempton, Femis and
David (2001) and obtain general optimality results without assuming 1o be known. In particular, they found that the
totally balanced designs of Kunert and Stufken, 2002 often perform very well.
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