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Abstract

In this article, we apply the maximum trimmed likelihood (MTL) approach [Hadi, A.S., Lucefio, A., 1997, Maximum trimmed
likelihood estimators: a unified approach, examples, and algorithms. Comput. Statist. Data Anal. 25, 251-272] to obtain the robust
estimators of multivariate location and shape, especially for data mixed with continuous and categorical variables, The forward
search algorithm [Atkinson, A.C., 1994, Fast very robust methods for the detection of multiple outliers. J. Amer. Statist. Assoc. 89,
1329-1339| is adapted to compute the proposed MTL estimates. A simulation study shows that the proposed estimator outperforms
the classical maximum likelihood estimator when outliers exist in data. Real data sets are also used to illustrate the method and
results of the detection of the outliers.

Kevwords: Foreard search algorithm; Mahal anobis distance; Maximum trimmed likelihood estimator; Minimum covanance determinant
estimator; Mixed data; Multiple outliers: Robust diagnostics

1. Introduction

The detection of multiple outliers in multivanate data has been a particulady intractable problem. There are a number
of approaches for their identification, which essentially require a robust estimation of multivadate location and shape.
One difficulty is that most estimation procedures are known 1o break down when the fraction of contamination is
greater than 1/{p + 1), where p is the dimension of the data. Both the minimum volume ellipsoid (MVE) and the
minimum covariance determinant (MCD) estimators provide a high breakdown of the robust estimation of multivariate
location and shape (Rousseeuw and Leroy, 1987). Moreover, Butler et al. (1993) show that the MCD estimator has
better theoretical properties than the MVE. Woodruff and Rocke (1994) give empirical results which show that the
MCD is preferred over the MVE in their applications. Croux and Haesbroeck { 1999) discuss other statistical properties
of mbustness about MCD.
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Ever since the last decade of the 20th century, one of the st important research topics about robust statistics has
focused on explonng fast and efficient algonthms to obtain the existing robust estimates. Hawkins (1994) presents a
feasible solution algorithm for the MCD which involves taking random starting “irial solutions™ and refining each o a
local optimum satisfying the necessary condition for the MCD eriterion. Rocke and Woodruff (1996) propose a hybrid
algorithm using the MCD as the first-stage estimate. They pay attention to high-dimensional problems (up to 40) and
also compare a variety of algorithms. Rocke and Woodruff (1997 describe an overall strategy for the robust estimation
of multivariate location and shape, which involves a variety of recent methods. Atkinson (1994) proposes the forward
search algorithm, which not only rapidly finds estimates satisfying the criterion, but it also leads to the detection of
multiple outliers. Rousseeuw and van Driessen ( 1999) propose a fast procedure for MCD, which is available in 5-PLUS
and some other statistical computing packages. They show that afier stating any approximation to the MCD estimate,
iL is possible 1o obtain another approximation yielding an even lower objective function. They call this a C-step, where
C stands for “concentration”.

Rather than directly trimming the data, Hadi and Lucefio ( 1997) present the tnmmed likelihood estimator, which
is based on trimming the likelihood function. They refer w this method as the mavimum trimmed likelihood (MTL)
method and the comresponding estimator as the maximum tmmed hkelihood estmator (MTLE). Miller and Neykow
(2003) discuss the relationships of the least trimmed squares (LTS ) estimator and MTLE for a generalized linear model.
Cheng (20035) combines both robust and diagnostic approaches 1o obtain the robust regression wansformation, in which
LTS and MTLE are also linked together.

Most robust estimations focus on the data only with continuous variables. There are relatively few works available
about robustness and outliers under a categoneal data analysis (e.g. Barnett and Lewis, 1994 Basu and Basu, 1995;
Shane and Simonofl, 2001). For the linear regression problem, previous studies consider the case where both response
and regressors are continuous. In practice, quite often the data are mixed with both continuous and categorical regressor
variables. However, a problem of singularity may occur when directly applying those robust estimators 1o a model of
this kind. Until guite recently, a couple of papers solve the difficulty by separating the continuous and discrete regressors
isee Hubert and Roussecuw, 1997, Maronna and Yohai, 2000). The problem of singularity occurs as well for those
robust estimators when applied to multivariate data with a mixture of continuous and categorical variables.

In the statistical literature, researchers have paid much attention to the estimation of a statistical distance be-
tween populations, where continuous and discrete vanables are combined (eg. Kreanowsk:, 1983; Bar-Hen and
Daudin, 1995; Bednck et al., 2000; de Leon and Carriére, 2005). All of them are based on the likelibood ap-
proach, which requires calculating the maximum likelihood estimates (MLE) of mean vectors and covarance ma-
trix. However, multiple outliers may have a strong effect on MLE and hence influence the estimate of the distance.
In this artick we apply the forward search algorithm o the MTL approach, from which we are able 1o obtain
the robust estimation of multivariate location and shape, especially for mixed data, and outliers can be revealed
as well.

This paper is outlined as follows. We first discuss some issues related to the MCD in Section 2. The idea of the
rimmed likelihood approach is connected with MCD for multivariate data. Section 3 first shows the general location
model for mixture data and then extends the MTLE 1o data of this kind. The forward search algorithm is extended for
the resulting estimator. A small scale simulation study is camried out to compare the performance of MLE and MTLE
when different propontions of outliers exist in data. Section 4 illustrates the proposed procedure using two real data
examples. Section 5 concludes.

2, The MCD estimator and related problems

This section presents the definition of the MCD. We then build up its relationship with the timmed likelihood
estimator,
21 The MCD estimator

Let y; be the ith of n observations on a p-variate nommal populaton, and ¢ € 2 is an arbitrary subset of {1, 2, .., nt
of size g = [ny], 0=y < 1, where g is referred o as the guantile index. We denote the sample mean and covariance
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matrix based on this subset by ¥( () and 8( (), respectively, as

1
F @y == ¥
4 e

$(0) = —— Y — N — FQT.
q—1 e
where ¥(()is 8 p x | vector and §{)isa p x p matrix.

Consider the subset L} of {1,2, ..., n} for which the determinant of §{ (), |8{ ()], attains its minimum value over all
subsets Qof {1,2, ..., n}of size g. This corresponds to finding the g points for which the classical tolerance ellipsoid
has minimum volume and then taking its center as the estimator of the mean. We call (¥3. Sq.}l = {_1'.‘{{31'}, S {:}}} the
MCD estimator. It is affinely equivariant and its empirical distribution converges at the rate of n~'/%, whereas the
convergence rate of the MVE is n~ Y7 (Butler et al., 1993). Butler et al. { 1993) also find the consistency and asymptotic
normality for the MCD estimator of multivariate location and the consistency for that of multivarate shape.

One practical issue is that the MCD requires a decision on g. This means that one needs 1o decide how many
observations & are o be trimmed. Hawkins (1994) suggests two possible approaches. One is 1o use the value of f that
provides the maximum breakdown point and thus accommodates the maximum possible number of potential outliers.
The maximizing f is (Roussecuw and Leroy, 1987, p. 264

4 n+p+1
h _::—[f .

where [-] indicates the ineger part. The other approach 1s o rim some smaller number of cases in the common
anticipation that no more than a few cases might be outliers. Zaman et al. (2001) suggest that [(0.75#r] is a reasonable
vilue for g for applying LTS in most empirical studies. This suggestion should also be reasonable for MCD.

2.2, The maximum trimmed {ikelihood extimator

Hadi and Lucefio ( 1997) propose a timmed likelihood principle based on trimming the likelihood function mather
than directy trimming the data. They show that this timming likelihood principle produces many existing estimators,
such as MLE, the least median of squares (LMS), LTS, and MVE. 1t is always possible to order and trim observations
according o their contributions 1o the likelihood function, because the likelihood is scalar-valued. For any given value
of (k-

IR x) =l )z 2 s v
where [{{) x;) = In f(x;; () is the contribution of the ith observation to the log-likelihood function. Therefore, the ML
estimator maximizes the log-hikelihood function as

L

D0 x).

i=1

The method proposed by Hadi and Lucefio (1997) replaces the log-likelihood function by the trimmed log-likelihood
function:

]
D wil(0; x), (1)
i=a
where a<b, (a,b) € {1,2,..., n}, and w; =0 are weights. The estimator a, b, w) is obtained by maximizing

i1). They call this method the maximum trimmed likelihood (MTL) method and Na, b, w) is the maximum trimmed
likelihood estimator (MTLE).

Consider the case of w; = l.a<i<h Whena=1and b =n, {1, n) is the MLE of @, so that MLE isa special case
of MTLE. When a = 6 = [{n 4 1)/2], the resulting estimator 15 the maximum median hkelihood estimator (MMLE).
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For multivariate normal data, the MMLEs of pand E are the same as the MVE estimates of pand £ (Hadi and Lucefio,
1997, Theorem 5.1).

We now show that when a = 1 and b = g, the MCD is also the MTLE of & = (., ). Consider the density function
of y:

P
Foi0) =) B2 exp{— (5 — "= i — |
vIn 2
LT -

and
I = 1(0; yi)= — L log |E) — $d?, (2)

where d].l = {vi — )TE" (3 — ) is the squared Mahalanobis distance. The estimate of the squared Mahalanobis
distance for the ith observation is

& = (35 = TS5 - ).

where ¥ and § denote the MLE of the mean vector and covariance matnix, respectively. Asymptotically, d‘-l follows a
chi-squared distribution with p degrees of freedom. The larger values of d7 can be used to flag the outlying observations
in data. However, the effect of the outliers on the estimates ¥ and 8 leads to the rapid breakdown of the Mahalanobis
distances for the detection of outliers.

From (2) we see that the greater the value of :I‘-E is, the smaller the value of I; will be. This also implies that we can
use f; as well as :I‘-I to order the observations. If @ indicates the subset that corresponds to those g observatons yielding
the desired robust estimates {feq,iq} of the trimmed likelihood as

g q
g . q 3
Zf{{?: ¥i) = = log |E4] — = Ed‘?,
i=l - T i=l
then this implies
: s g o4 3 5
sup Zr,- = —= log |y _?de' (3)
Qe - TieQ

Here, [3{ l.g)= {ﬁq . f.q.}l denotes the MTLE of the mean vector and covariance matrix, which are, respectively,

= 1
F:j = : Z_"-"j's
!J'E—Q
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L= g—1 E{F" — Hg) i — )

ieQd
The squared robust Mahalanobis distance for observation i is
~ =l H z
d;i, =y — }EQ}TEH. (i — i) i=1,...n (4)
As (1. g) = (ji,. L) is the MLE of the subset Q,
PR et &
Y i —ig)'E, (i— R =(g—Dp.
e
Thus, Eg. (3) reduces w

gq
max Y _I; = inf [Z(Q)| = ()| = IE,I,
Qed

which is the MCD.
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2.3, The forward search algorithe.

The forward search algorithm stans with a mndomly selected subset of observations. The observatons of the subset
are incremented in such a way that outliers are unlikely to be included. The algorithm can be briefly summarized as
follows:

e (H)) Choose m observations (e.g. m = p + 1, the so-called elemental set) from the data set.

e (F1)Obtaim the ML estimates based on the subset, compute the squared Mahalanobis distances for all observatons,
and order the distances.

o (F2) Calculate the value of the objective eriterion, such as MVE and MCD.

o (F3) Choose m + s (usually s = 1) cases with the smallest squared distances of (F1) as the new subset, and return
to step (F1).

o (Fd) lterate steps ( F1)—(F3) until the size of the subset equals n.

We call steps ( H)—(F4) a one forward search. There are two ways for obtaining the initial subset of step (FO). The
first one is the original version of Atkinson (1994), in which the forward searches are run 100 times and each initial
subset is randomly chosen from the data. The other adapted version is o first get a subset which is intended o be
outliers and then only one forward search is performed (see Atkinson and Riani, 2000,

We first show how the determinant of the covariance matrix changes when one observation is added. Consider that
S () is the covariance matrix of the subset ( with g observations and 8{ (. ) is the covariance matrix of the subset
adding one observation (e.g. the fth observation). The relation between these two is then:

—1 1
soo=L sy +—ccT,
q g+ 1

whene

yin— il
yrz — ¥2(Q)

Yip — ¥pl )

Therefore, the determinant of §{ 5 ) will be

n
S{QJ:(E) S(0) [1+,Ldf], (5)
o g-—1
where .r!'I1 =CS(@)"'CTand | Q. For multivariate data, Mahalanobis distances are used both to order observations
for the forward search discussed later and o detect outhers.
The forward search algorithm takes subsets of m observations intended to be outlier-free (Atkinson, 1994). If a subset
of m observations yields the estimates vim) and Sim), then the Mahalanobis distance based on the subset is

df{n:}l ={¥ — _f{:i:}}TS_l (m )y — vim)).

From (5}, the value of the determinant on adding one observation is related to the Mahalanobis distances. The feasible
solution algorithm of Hawkins {1994) shows that the interchange of observations depends on the distances. Moreover,
result (2) shows that the order of the Mahalanobis distances can also be used to find the MTLE. The forward scarch
algorithm based on the MCD or MTLE stats from a randomly chosen subset of points, now m = p + 1, and adds s
{usually ¥ = 1) observations on the basis of sorted Mahalanobis distances. Outliers are those observations giving large
distances. Atkinson (1994) suggests that the cutoff value is xi.ur—ﬂ..".‘].fn'

The mean and covarance matrix of the subset of g observations are also based on the smallest g Mahalanobis
distances. The forward process of each search will continue until m = n, which yields a series of values of [$(05)| (i =
P+l p+ 1+ p+ 1425, ) The minimum value for the jfthsearch (of |S(05)]) is .’;'_,-, which defines the performance
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of the jth search. Cheng and Victoria-Feser (2002) extend the forward search algorithm for MCD o the missing value
problem.

3. Daia mixed with continuous and categorical variables

In this section, we focus on dealing with the estimation of parameters for multivariate data mixed with continuous
and categorical varables. The notations and expression used in this section follow those in Little and Rubin { 1987) and
Schafer ( 1997,

I 1. General location model

Let ¥, ¥z, ..., ¥y denote a set of categorical variables and 7, Z2, . ., Zp are a setof continuous variables, If these
variables are recorded for a sample of n units, then the resultis ann x (k4 p) data matix (¥, Z), where ¥ and Z represent
the categorical and continuous parts, respectively. The categorical data ¥ may be summarized by a contingency table.
Suppose that ¥; takes possible values 1,2,. .., d ;. so that each unit can be classified into a cell of a k-dimensional
table with the total number of cells equal 1o 0= ﬂj-=ldj-_ Let £y denote a 1 x D vector with 1 at the dih entry and Os
clsewhere.

The general location model, named by Olkin and Tate (1961), is defined in terms of the marginal distabution of w and
the conditional distribution of 7 given u. The former is described by a multinomial distribution on the cell probability:

Pluj=Eg)=m4, I=1,..., ny d=1720000 D,

where u; is the vector representing the summarized categorical responses of the ith individual, and ¥ 7y = 1. Given
that 1; = Eg, the rows of :-{, :_.{ ..... z:{ of Z are then modelled being as conditionally multivariate nomal as
denoted by

(zilwi = Eg) ~ N{p;, By, i=1,2,..., n

where ju; isa p-vector of means coresponding tocell & and L isa p = p covariance matrix. The means of 2y, Z2, ..., Zp
are allowed to vary from cell o cell, but a common covariance structure X is assumed for all cells.

The parameters of the general location model are written as 8 = ({1, I', £), where {1 = (m|,. .., mp) is an array of
cell probability and I = (g, g2, . . ., plisa p = D matix of means. The number of parameters 1o be estimated in
the model 15 thus (D — 1)+ Dp 4 pip + 1)/2.

The joint density of (u;, z;) under the general location model is

plui = Ey, zi|#) o nglE _I'aluxp{—% zi — i)z — pg)) (6)

The likelihood can be written as the product of multinomial and normal likelihoods as follows:
L@, z) e LU LT, Eee, 2)
n D 1 n
) (l_[ I ﬂﬂ”) B exp =33 D@ — k) E @ — pa) )
i=l d=l T d=l ieBy
where By = {i : u; = Ey} is the set of all units belonging to cell d. The log-likelihood for this model is

@)= log f(zilu;, T,E) + ) log f(u;|IT)

=l =1

14 L3
= — ;J![p logi2m) + log [E]] — ;lr (E_l Z :,-:;r) +uXZ-IT (Eu;:}r)

=l =l

n "
Bl -]

d=I =l
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where gy is the dith component of w; and “o™ means the trace of a matrix. This yields the ML estimates 0= {ﬂ' , f' i}l:

L

= Eu,-l.-’n,

i=1
" " =1
P (z T) (ZT) |
i=1 i=1
= Z{z; —Tui)(zi —Tu)/n. )
i=1

The details can be referred to Little and Rubin (1987, Section 10.2) and Schafer (1997, Section 9.2).

3.2, Maximum trimmed (ikelihood estimator

The MLE (9) is indeed known o be sensitive o outliers. The analogous MCD estimator of # for this problem is not
obviously suitable. This is on account that the estimation of {1 and I is not so clear in the objective function of the
MCD set-up, which only focuses on the detenminant of £, The likelihood function (8) for modelling continuous and
categorical data is more complicated than that for only the continuous part. We therefore consider the MTLE approach
to avoid the influence of outliers. For a specific value of g, if ¢ denotes the set of those g observations with the largest
values of plu; = Eg, z;|0;) as (6) and 8, = (11, ;. E,). the MTLE maximizes

Ly le, ) o L{M ) LTy, Eylu, 2)
D0 D0

. 1 :
o« [TTTT |2 enf 1Y 3 Gmm™S - a0

ieQ d=I T d=l ieByi@)

where By (@) =1{i : u; = E;g. i € (3} is the set of those g units belonging to cell &, and D§ () is the comesponding
number of cells. It is also equivalent 1o maximizing

f(}{ﬂq}' = ZIUH Slzilw;, F:,u E-q}' + E log fluijily)

ieQd ieQd

1 1 - =
— iq[p log(2m) + log |[E,(] — U Eq L Z z‘-z?-- =+ er,f ll"q Z“IE;’I

ieg ieQ
Dig 1
+ E Z“IJ (lt}g Tdg — ;‘;Eifz‘;lﬁdq)
d=1 ieQd -

The MTLE of # for (10) evaluated at g is ﬁq = {ﬂ',r, 1““4, i‘j}l, which can be presented as

ﬂ'q. = Zu,-,.-’q,

iegd
-1
f',,« = Z z;u;'r Zumf ;
=t =t
L= ZLI — Cyui)ie — Ty /g, (11)
ie(d

This is analogous to result (9), which can be said that MTLE ﬁq’ is the MLE of # based on subset 0. The main difficulty
here is to find Q.
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1.3, Computing algorithm

To obtain MTLE of 8. the forward search algorithm of Atkinson (1994) is applied in this subsection. For a specific
vitlue of g, we then give the details about using the forward search algorthm o an approximate solution of ﬁ,f.

o Step (1 Choose the initial subset: The forward search algorithm starts with the selection of asubsel of m =mg units,
where my must be large enough to estimate the unknown parameters . The original set-up of Atkinson (1994)
is to randomly choose a subset from the data and 100 subsets are employed. An alternative is o try Lo oblain an
outlier-free subset at the beginning. Atkinson and Riani (2000 consider this approach 1o find the LMS estimate
for the logistic regression model. Here, we suggest that the initial subset is obtained by a way which is based on
the continuous varables. The difference between 100 random subsets and a robust subset will be compared later.
We first compute the MCD estimates of the mean vector and covarance matrix of the continuous variables, which
are denoted by fi, and iq'u ,respectively. This can be directly caleulated by S-PLUS built-in function cov.med or
other available statistical packages. The squared robust Mahalanobis distances are then obtained as

2 . Te] ) )
dﬂf“ = (z; —}t,m]lTEw (2 —Hgg)s i=1,..., n. (12)

The initial subset, denoted by &, consists of m cases with the smallest distances (12). However, 1o ensure that
all cells, Eg's, can be meluded in the chosen subset, a balance device 18 given by setting at least one observation
included for each cell. This setting 15 kept in the following subset augmentation process. This idea is also vsed
in robust diagnostics for the logistic regression model with the binary response of Atkinson and Riani (2000).
Nevertheless, this setting is a kind of option ift outlying cells exist in data. This will be discussed in detail later.

e Step 1: Obtain the ordered log-likelihood: We first compute the MLE (9) of § based on the subset ., which is
denoted by [im —] {ﬂ'm, f,r,,f.,,,} as follows:

i, = Z u;fm,

i df
ey
- (E T) (Z T) ~
Je.dff [
EJ?J = Zizf o f.lu“]'”h’ e ﬁm“]’ }'T.i'rm- (13}
i

We then calculate the value of the log-likelihood of (6) for each case as
a i . a1 . .
fim o logi(mgm) — -I_T log [Eu] — 'l_r‘.zj' — Hdm }'sz (zi —fgm), I=1,..., i, (14}

where 74, denotes the dih element of 11, and iy, 15 the dih column of I',,. However, if the balance selling is
not applied, then empty cells may occur. This results in that the number of cells, D), is not equal w 2. Hence,
zero values are obtained for those corresponding cell probabilities and the comresponding estimates fiy,, s are not
available. For this case of no observation included in the cell, we let

wikk g 1 - 1 - Ta—l B s
lim 2 log (75-) = 5 10g Bl — 3 — ) Ty (@ = Rutm), (15)
where n; 15 the number of cases in cell 4, and @, 1s the average of other available estimated cell means of ].;m .
The first term of the rght side just denotes a relatively small probability for the comresponding cell. If a larger
value 15 assigned, then observations i the comesponding cell could have a higher chance to be included in the
forward search. The ordered log-likelihood of (14) or (13) is then defined as

'r[|].lr].:.-'3'|ll,1].lr].:?-' "'..-'-'3-|I[Jr]m- [lﬁ}'

e Step 2: Add observations during the forward search: Let m = my + 5 (usually x = 1. We then choose those cases
with the largest m values of the log-likelihood (16). These new m cases form a new subset, also denoted by &
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The new MLE fim (13315 then obtained from the new subset, and hence so 18 the valoe of the log-likelihood (14),
I Tor each case and ordering iy, . The objective function of the MTL evaluated at g 1s then

g
bgm = Z-‘Iu']m- (17}

i=l
o Step 3z lterate Step 1 1o Step 2 until the size of the subset equals n: This leads toa series of £,y m =myg +5, mg+
25, .... The maximum value of these £,4,,'s provides the approxzimate solution of MTLE (11) of #, which is also

denoted by [1,: for simplicity.

) It 15 noted that the MLE (13) can be viewed as the MTLE (1 1) evaluated at m for the whole data set. Once the MTLE
fl, is obtained, we are able to compute the robust Mahalanobis distances based on the continuous variables as follows:

£ w1 i 8
(zi — “:.'.lu}'TEm (i —pam)y I=1,..., . (18}

which can be used as a flag for the identification of outhiers. The cutoff value 1s then ;}g in—0.5,/n for all observations,
which is corresponding 10 Atkinson and Mulira ( 1993). If a cell could not be included when the balance setting is not
applied, then the distances (18) of those observations in the cell are defined by

czome AT L oo o
(zi — i) E‘m (zi _“nr.li‘l::l+"r:.|.l.l.li‘—l:].5]."-'i“ (19)

where i, is defined in (15). This is o force those observations to be outlying.

3.4, Simulation study

In this section, we examine the perfformance of the MTLE by the Monte Carlo method. Rocke and Woodruff [ 1996)
define several kinds of outlier patterns. They point out that the hardest kind of outlier w find is that which has a
covariance matrix with the same shape as the good data. Hence, our simulated data focus on a situation in which
there are good data drawn from a mulivadate normal distribution and bad data (in contrast 1o good data which are
outlier-free) drawn from the distribution with the same shape and size as the main population, but with a different mean.
These are often called shift outliers (Rocke and Woodrff, 1996).

I4.0. The optional set-up in the forward search

Firstly, as we mentioned in the previous subsection, there are some different options during the forward search for
the MTLE. They include how o choose the initial subset and whether the balance setting is applied. To examine the
effects of these options on the pedformance of our approach, a small study is given for this purpose.

To simulale conlinuous dalu gm‘.uj data are generated from MN(@, I ;) and bad data are generated from MN(p*, %),

where shift mean u* is 2,#,. ;p :]W‘;-"rf’! and ¥ is the same shape as the good data. The sample sizes n = 50, 100 and

dimensions p=2 and k=2, 3 are considered. Each data set contains 105 of bad data. For categorical data, each variable
has two levels, and so this yields D=4 or 8 cells. These cells are generated from a multinomial distribution. Two kinds
of cell probability are considered. The first one is each cell with the same success rate 1/ D The other configuration is
one cell with a success rate (0L05 and other cells with the same probability (1 — 0L05) /(D — 1),

To present the simulation result, an LL plotis introduced, which is a scatterplot matrix of the log-likelihoods obtained
from different estimates. They include the forward search only using a robust initial subset with or without a balance
setting, denoted by “FR 4 B” and “FR —B", and those using 100 random selected subsets, denoted by “F100 4+ B™ and
“F100 — B”. This plot is originally inspired by the RR plot of Hawkins and Olive (2002). The RR plot is a scatterplot
matrix of the residuals from several regression fits. It is noted that the plot will be linear with slope 1 if the model
assumptions hold.

Different configurations lead to quite similar results. Here, we only show one of them to save space. Fig. 1 shows
the LL plot of 30 simulated data sets for n = 100 and & = 3. All scatterplots in each panel show a linear relationship
with slope 1. It concludes that all different set-ups lead to quite similar results in terms of likelihood values. 1t is noted
that the pattern of the scatterplots of robust distances (12) from these approaches are similar 1o Fig. 1. Therefore, they
are not shown here.
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Fig. 1. The LL plots of 30 simulated data sets.
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Fig. 2 shows the objective values (17) of 30 simulated data sets for the forward search algorthm using different
options. All these values are quite close for each data set. Fig. 3 presents the estimated cell probabilities of 30 simulated
data sets for the forward search algorithm using different options. The empty cell may oceur if the balance setting is
not applied, which can be referred o the outlying cell. This also corresponds to those different objective values in the
panels in Fig. 2.

A robust start can lead to quite a stable result as 100 rmndom selected subsets. However, the fommer one only spends
almost 'Iﬁ the computation time than the latter one. Therefore, the forward search algorithm with a robust stan is
recommended. The balance set-up remains an important option for the approach, becanse we never know whether
oullying cells exist in data. If there 15 no outlying cell, then the results with and without a balance setting lead to almost
the same conclusion. 1 different conclusions are drawn, then one should be careful o re-examine the data structure
and an expert about the data may be called for further discussion.

34.2. The performance of the proposed approach

As the forward search algorithm for MTLE with a robust start performs no different from that with 100 random
searches, we only use the former one in the following simulation study. The sample sizes 100 and 200 and dimensions
p=35and &k =2, 3 are generated. Each data set contains 3%, 10%, 15%, or 20% of bad data. For categorical data,
each variable is generated from a binomial distribution with a success rate of L. This actually results in that those cells
follow a multinominal distribution with equal probability. Therefore, the balance setting is applied in the simulation
study.

Tables 1 and 2 present the average bias of the estimates from 200 simulated data for p =3 and 5, respectively. The
vilues in the parentheses denote the average MSE of the estimates. These simulation results show that the performance
of MTLE is more stable than MLE when different proportions of outliers are included in the data. The bias becomes
larger for MLE when the proportion outliers tum large. It is noted that there is no difference in the estimate of {1
between both estimates, because the cell probability 1s set o be equal in the simulated data.

In order to save computational time, the values of s are 2 and 4 for the sample sizes 100 and 200, respectively, when
applying the forward search algorithm for MTLE. Of course, in some cases, we may oblain better results for the same
dimension and the same sample size if we let s = 1 or some other small values. The default value for g is set 1o be
[0.75n], which is also used in the real data analysis. For the data set with 20% outliers, the value of g is [0.7r]. We can
also expect that the greater the values are of g (provided that the value is not oo large 1o include outliers), the beter
the simulation results will be.

3.5, Ouiliers in mived data

The simulations in the previous subsection assumed that outliers only occur in the continuous part of the data.
However, in practice, we may have outliers only from the categorical part as well as outliers from both continuous and
categorical parts of the data. If, in addition, the categorical part is further contaminated (as in Barnett and Lewis, 1994
Basu and Basu, 1998), then MTLE could work better. We do not compare MTLE with Bamett and Lewis (1994 and
Basu and Basu (1998), because the problem is different. The MTLE could be an alternative of Shane and Simonoff
(2001). All these will be future studies.

The simulation study 1 Section 3.4.1 has shown that the proposed approach is able wodentily outher observations
as well as outlying cells. A real data example 15 presented later to address this issue again. However, the simulation
design excludes outliers from both continuous and categorical variables in Section 3.4.1. This is due to some remarks
as follows. Firstly, the main concem here is ‘observation’, whereas ‘cell” is the topic of Basu and Basu (1998) and
Shane and Simonofl (2001}, in which there 15 no continuous vanable, By outhier we mean an ‘outlying observation’,
but those authors meant an “outlying cell” in terms of occurrence. Therefore, an outlying cell will lead o all cases in
that cell being outliers. On the other hand, if all observations in a cell are revealed as outliers, then this cell will be an
outlying cell. Secondly, according to the well-recognized definition of outliers in the contingency table, an outlying
cell (or frequency) is its frequency that deviates from the comresponding expected frequency about the null model (e.g.
Barnett and Lewis, 1994; Basu and Basu, 1998). Therefore, a test of the cell probabilines can be camed out based
updon the null model. However, we would never know the cell probability of the true null model in practice, especially
when mixed data are present. Henee, in the process of the forward search algorithm, a balance design is introduced 1o
keep at least one observation in each cell as we mentioned before. Finally, it will be more difficult to identify an outlier
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Tahle 1
The simulation results {for bias) for p= 3
Proportion of outliers (%) Pammeters k=2 k=3
MLE MTLE MLE MTLE
{a) n= 100
5 r 0.2382 (.0053 0.2441 (L0319
{0.2705) {01, 2855) (0.4047) (0.4320)
L] (.98497 —0.1730 (89493 —(L1872
{02100 101, 1395) {0.2108) (0.1401)
n (.0000 (.0000 (L0000 (1000
.41 {L.0586) {003 17) ((LK51)
10 r 046493 (.mz21 04810 (L0303
{0.31735) 0. 276M) {0.4811) (0.4363)
L9 ] 18420 —0.1523 1.7555 —{1.1439
0.262%) {0 1378) {0.2645) {0.2115)
i (L0000 (1.0000 (L0000 (10000
0.0 13) {0.0544) (0.0300) (0.0 25)
15 r (1.7061 (0.0229 (7080 (L0264
{01 3043) {01, 3068) {0.5344) {0.3963)
9] 20435 —.1116 25313 —{L1281
{0.3159) 0.2314) (0.3224) (0.1599)
i (10000 (L0000 (L0000 (L0000
(0L 040ED) {0L.0520) (0L03 1) {007 )
20 r 09411 (.53 (19454 LAY
{0.3798) 0.3104) (0.5701) (046001
9] 33286 —1.1267 ERLES —(1L1312
03419 {0, 1588) (0.3615) {(0.1902)
m (.0000 (1.0000 (L0000 (L0001
(0.0 22) {0.0566) (00324 (0.0 50)
{h) =200
] r 0.2412 (L0038 0.2354 i
{0 1964 0. 2066) {0.2857) (0.3285)
L9 ] 10047 —0.1740 09764 —(.1722
0.1515) {0 100K (0.14495) {0.1047)
i (L0000 (1.0000 (L0000 (10000
{0.0302) L0 15) (0.0232) (0.0333)
1) r 047089 (.0024 (4701 (L1 25
{0L.2178) {0, 1907) {0.3353) {0.3082)
9] 18930 —1.1454 1862 — (L1391
{0.1899) {0.1040) (0.1946) (0.1252)
i (.0000 (L0000 (L0000 (L0000
0.02492 {0.03590) (002 35) (003 18)
15 r (.7035 (1.0034 (L7038 (L0173
02470 LN EA ] (0.3752) {0.2895)
9] 27082 —.1188 2l — (LIBT3
0.2232) {0, 1003) (0.2206) {0.2390)
m (.0000 (1.0000 (L0000 (L0000
0.0291) {0.0373) (0.0227) {0.0295)
0 r 0.9343 (.0045 0.9293 (L0087
0. 2690 0. 3055) (0.3941) {0.2755)
L] 33003 —0.1217 inm —{1L 1190
01.2518) (0. 1850) (0. 2440) (0.1266)
I 0.0000 (10000 (L0000 (L0000
(L0300 {0.03493) (0.0235) (0.0327)




H156

Table 2
The simulation results {for bias) for p =5
Proportion of outliers (%) Parameters =2 k=73
MLE MTLE MLE MTLE
{aln = 100
5 r 0.2104 0072 (.2055 00106
(0.2507) (0.2716) (038010 (03813
L4} (0.7313 —(LOBES (L6ET0 —(L 1063
(L1783 {.1366) (01803 (01202
T 0.0000 0.0000 (L0000 (L0000
(LT (0.0552) (L0320 (041 8)
1 r 01.4134 L0136 (1.4130 (L0118
(0. 3004 (0.2657) (4443 (03793
¢ ] L4l 18 —(LO7R7 13444 —(LOBRT
((L.2350) (L1283 (1.2276) (0.1306)
T 0.0000 0.0000 0.0000 (L0000
{L{K34) ((L0555) (0.0322) (L.0416)
15 r (L6137 (L1 56 6124 00106
((.3297) (L2518) {0.4966) (03719
11 20065 —(0643 1LE96 —(L{743
{0.2698) (01312 {0.2605) ((L1358)
I (L0000 (L0000 (L0000 00000
(13 (L0519) (0L0308) (0L0398)
20 r (L8152 0.0049 05106 10212
(L3519 (1. 26449 (.5304) (L4293
¢ ) 25355 LR 23916 —(L6S53
(0.2065) (0.1342) {(.2855) (02017
I (L0000 (L0000 (L0000 (L0000
(019 (0054 3) (00317 (0.0425)
(b} =200
5 r (1.2064 1.0069 01.2065 (10039
(01787 {01860 (0.2681) (0.2774)
¢ ] (1.7576 —(LORR2 (1.7359 —(L{E 5
(0.1297) (LG (0. 1306) (0.09349)
T 0.0000 0.0000 0.0000 (L0000
(00303 ((L0395) {0.0226) (L.0310)
10 r (0.4100 (L0064 (0.4079 0.0013
(0L.2141) (0.1860) (0.3077) (0.2670)
11 Ladal —(L{76as 1.k 5 —(LO79
{0.1628) (L064) (L1587 (0.09749)
I (L0000 (0.0000 (L0000 0.0000
(0L.0296) (00380 (0.0225) ((L0295)
15 r el lé (L0030 (L6008 (L0064
(0.2335) (0.1794) (03340 (L2593
¢ ) 20581 —(LO598 20061 —(L06ST
(L1870 (.57 {0L1ETH) (1L.0954)
I (L0000 (L0000 (L0000 (L0000
(00311 (00381 (00231 (002900
20 r (0.8130 0.0022 08127 (10052
(0.2509) (0.1914) (03603 (0.2736)
L4 ) 25737 —(L06Th 25189 —(L{744
(0074 {(LBRA) (0.2(891) {0.0965)
n (L0000 (L0000 (L0000 (L0000
(00322 (LT (00224 (0.0299)
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from the continuous part than that from the discrete part (e.g. the discussion of the regression problem in Maronna and
Yohai, 2000). Nevertheless, this paper focuses on the identification of outlying observations, while outlying cells can
therefore be revealed.

4. Examples

In this section, two real data examples are used to illustrate the MTLE method for misxed continuous and categorical
data.

d.1. Nambeware polishing times data

The relation between polishing tme and product diameters as well as type of product (casserole, other) is one which
is useful 1o a company for estimating the polishing time for new products which are designed or suggested for design
and manufacture. This data set can be downloaded from hip:/libsatemoedu/DASL/Datafiles/nambedat_hunl. There
are 59 cases and four dummy variables and three continuous variables in this data set, which are described as below:

BOWL: Bowl (1) or not (0).

CASS: Casserole (1) or not ().

DISH: Dishil) or not (0).

TRAY: Tray (1) or not ({)).

DIAM: Diameter of item, or equivalent (inches).
TIME: Grinding and polishing time (minutes).
PRICE: Retail price ($).

The four dummy variables form five categories and the MLE estimates of parameters are listed in Table 3.

Applying the forward search algorithm for MTLE to these data, Table 4 gives the estimates of 8, which are quite
different from those in Table 3. The comresponding Mahalanobis distances based on MLE and MTLE are shown in plots
fa) and (b) of Fg. 4, respectively. None of the cases appears o be outlying as shown in plot (a), while there are 14
outliers revealed when robust estimates are used. To check out the difference, Fig. 5 shows the scatter matrix of those
continuous variables by cell. Outliers belong o categories 1 and 4. This results in the different estimates of Tables 3
and 4.

It is noted that no matler what options, such as balance setting and starting subset, are used in the forward search
algorithm, the same results are obtained for this data example.

Table 3
MLE for Mambeware polishing times data

Cateparies Cell Tl iy

BOWL CASS [MSH TRAY DlAM TIME FRICE
(1) Expected frequencies and cell means
1 L] | i} i} 017 1249 532 13575
2 | i} L] L] (1.3 Q944 7.12 67.39
3 i} i} | i} 012 LA 35.01 R.14
4 ( i} i} | 17 1428 449 44} 11215
5 i [} i} i L15 186 2419 5628
(b1 Covariance marrix

DamM TIME FRICE

DlAM 10.491 3273 11457
TIME 12 .52 56248

PRICE 1805 44
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Tahle 4
MTLE for Mambeware polishing times data
Categories Cell Ty fiy
BOWL CASS DISH TRAY DIAM TIME PRICE
(1) Expected frequencies and cell means
I 0 1 il 0 (L8 13.55 41.20 9h.62
2 | 1] 0 { (.44 9.2% 24.00 G111
3 i i} 1 i} 13 870 3.5 TLIT
4 i i} 0 1 013 10.75 3183 5875
5 0 0 i} 0 0.0 1086 2419 5628
(b1 Covariance matric
DIAM TIME PRICE
DIAM £29 1366 6760
TIME 57.53 139.33
PRICE 61932
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Fig. 4. Mamheware polishing times data: 1) squared Mahalonobis distances hosed on MLE; (h) robust distances hased on MTLE.

4.2, Appendicitis data

The second data set comes from Fisher and van Bell (1993, pp. 680-683) as an example of discriminant analysis,
and it is ofginally from Koepsel et al. (1981). The data show the occurrence and non-occurrence of the perforation of
the appendix. de Leon and Camiére (2005) also use this data set to show their generalized Mahalanobis distances for
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Tahle 5
Cells for appendicitis data
Categories Perforation status Sex Gungrene Frequency
{1 =yes: 1 =na) {1 = male; 0 = female) {1 = yes: 1 =nan)
1 0 i} i} 51
2 1 1 1 25
3 i I 0 76
4 1 i} 1 12
5 0 1 1 1
f 1 i} i |
7 i i 1 4
Tahle 6
MTLE for appendicitis data
Categaries Ty iy
X2 X Xa Xs
(1) Expected frequencies and cell means
1 0.28 295 295 (.11} 1314
.31 299 289 Lag 1324
131 299 289 Lag 1324
2 0.14 315 L% 1.1 1.53 14 36
.15 328 182 1.55 1340
.15 328 182 1.55 1340
3 .42 293 299 (.11} 1324
0.51 290 285 1.74 1306
(.51 290 285 1.74 1306
4 007 120 364 1.57 1442
(.01 277 309 (L.649 14 00
5 (L6 in 304 218 1380
.02 314 322 1.19 14 33
.01 289 318 110 1100
fi .01 314 512 Lal 1800
L 314 412 Lal 1800
7 0.02 296 262 1.84 1525
.01 294 387 220 14 000
[ 294 187 220 14 001
(b1 Covariance matrix
X2 X3 Xy X5
X 131 02 —102 —{111
023 —02 —{104 .06
(.23 -2 —104 (105
Xs 1511 16 —{1.80
050 16 —i1.42
0449 (16 —i1.41
Xy 071 —1.00
043 —i1.49
43 —1.49
Xs 16.17
9.60

9.46
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Fig. 6. Appendicitis data: squared Mahalonobis distances based on {a) MLE: {b) MTLE without balince setting using a robust initial subset;
{c) MTLE with halance setting using a mbust initial subset; {d) MTLE with balance setting using 100 forwand searches; {e) MTLE without balance
setting using 100 farwand searches,

mixed data. There are 192 patients and seven varables listed in Fisher and van Bell (1993), in which four continuous
variables are descrbed as below:

Xo: age in years.

X5: duration of symptoms in hours prior to physician contact.
X4: time from physician contact 1o operation (in hours).

Xs: white blood count in thousands.
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The other three dummy variables form seven categories as presented in Table 5. 1t is noted that we take logarithms
on X7, X, and X ;. Missing values are excluded from the analysis, which result in 179 cases in the following analysis.
Applying the MLE and MTLE with and without a balance setting in the forward search for these data, Table 6 shows
the results of the different estimates. The first line of each panel in Table 6 is the MLE, the second one is the MTLE
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without a balance setting in the forward search, and the last one is the MTLE with a balance setting in the forward
search using a robust initial subset. As discussed in Section 3.5, we can see that complicated and different situations
may happen in the detection of outliers for the mixed data. The important feature of this difference is due o the outlying

cells in the analysis. There is only one observation in category 6 and 4 cases to category 7.
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If the balance design 1s not apphiea, then the cel probabilities of categones 4 and 6 are zero. All the observations in
these two categones are then excluded from the data in the forward procedure. This keads o zero cell mean estimales
for these two categones. However, if the balance setting 15 considered in the forward process, then the observation of
category 6 has a guamantee o keep in the robust fit. Another interesting feature in Table 6 15 that no matter whether
the balance setting is applied or not, there is no difference in the MTL estimates of cell probabilities and cell means
for categories 1, 2, and 3. The MTLEs of the covariance matnix corresponding o variables X2, X, and Xy are also
the same for the situations when the balance design is used and not used. Nevertheless, the results of MTLE are quite
different from those of MLE.

To see the effect of the different estimates on the identification of outliers, we can look at the Mahalanobis distances
and the scatterplots. The corresponding squared Mahalonobhis distances are shown in Fig. 6. Here, plot (a) is the result
based on MLE. As in Section 34,1, MTLE is obtained by different options in the forward search. Plots (b) and (c)
are results using a mobust mitial subset with or without a balance setting, respectvely, while plots (d) and (e) are the
distances using 100 random selected subsets with or withoul a balance setting, respectively. Because outlying cells
oceur in MTLE without the balance setting, symbaol *47 denotes those observations in outlying cells, and the distances
are calkculated by (19). Both Figs. 7 and 8 show the scatter matnx of those continuous variables by cell, but those
outliers revealed by the former apply the robust initial subset with a balance setting, and the latter figure ignores the
balance setting for the cell probability. 1t is clear 1o see that outliers appear 1o be away from the bulk of observations
in each panel (cell) in both figures, except that the entire cases of categories 4 and 6 are revealed as outliers when the
balance design 1s not used i Fig. 8.

To examinge the effect of the balance setting, the corresponding optimum of (17) for MTLE using 100 forward
searches with a balance setting is —355.416 (F100 4+ B), and it is —361.207 (F100 — B) without a balance setting,
while one robust initial subset with and without a balance setting yields —358.553 (FR + B) and —360.167 (FR — B),
respectively. Both using a balance setting lead w better optimum than those without a balance setting. Both using 1040
random subsets perform better than those using a robust initial one. Moreover, the latter one spends only ﬁ the Lime
of the former one. Therefore, in this case we may conclude that those values of the third line in Table 6 will be the
better MTL estimates for these data. Furthermore, it is noted that the case in cell 6 is located in the majority of data if
only continuous variables are considered.

5. Conclusions

In this paper, we propose the maximum trimmed likelihood estimates for multivariate data mixed with continuous
and categorical varables. Given an initial small subset, intended to be outlier-free, the forward search algorithm can be
relatively fast to compute the proposed MTL estimates. A simulation study shows that MTLE outpedomms the classical
MLE when an appropriate proportion of outliers exists in data. Real data are used to illustrate the proposed method.
The results of the detection of outliers by MTLE are significantly different from those by MLE. One of the real data
examples shows that the outliers from the categorical part may remain o be further examined, which will rely on the
decision of the users. Nevertheless, the proposed method is able to deal with the robust diagnostic problem of outliers
for mixed data.

Some broader issues sull exist related o the mixed data and the method discossed in the present paper. From the
theoretical part, the statistical and robust properties of MTLE, such as breakdown point and efficiency, are needed 1o be
verfied. For the application of multivarate data, the MTLE can be extended to factor analysis, discriminant analysis,
and cluster analysis for mixed data. A decisive conclusion may be very important to analysts for the identification of
outliers from the categorical part. For this case, we suggest that one can apply the forward search algorithm both with
and without the balance setting, as we did in example 2 in the previous section.
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