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Abstract

New subsets of symmetric balanced and symmetric correlation immune functions

are identi�ed. The method involves interesting relations on binomial coeÆcients and

highlights the combinatorial richness of these classes. As a consequence of our con-

structive techniques, we improve upon the existing lower bounds on the cardinality

of the above sets. We consider higher order correlation immune functions and show

how to construct n-variable, 3rd order correlation immune function for each perfect

square n � 9.
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1 Introduction

An interesting subclass of Boolean functions is the set of symmetric functions.

The study of balanced symmetric functions and correlation immune symmet-
ric functions was made by Br�uer [1], Mitchell [5] and later by Yang and Guo

[11]. Independently Chor et al [2] and later Gopalakrishnan et al [4] studied
symmetric functions possessing both the properties of balancedness and corre-
lation immunity. Following Mitchell [5], we provide de�nitions of the relevant

Boolean function properties. We will use � to denote addition modulo 2.

De�nition 1.1 Let f(Xn; : : : ; X1) be a Boolean function.

C1. Balancedness. The function f is balanced if the number of ones in its out-

put column is equal to the number of zeros.

C2. NonaÆnity. The function f is aÆne if it can be written as f(Xn; : : : ; X1) =

�i=n

i=1
aiXi�b, where ai; b 2 f0; 1g. If b = 0, the function f is called linear. The

function f is nonaÆne if it is not aÆne.
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C3. Nondegeneracy. The function f is degenerate on variable Xi if f(Xn; : : :,

Xi+1; Xi = 0; Xi�1; : : : ; X1) = f(Xn; : : : ; Xi+1; Xi = 1; Xi�1; : : : ; X1): The

function f is nondegenerate if it is not degenerate on any variable.

C4. Correlation Immunity. The function f is correlation immune (CI) if Prob(f =
Xi) =

1

2
for all 1 � i � n.

C5. Symmetry. The function f is symmetric if f(Xn; : : : ; X1) is the same for

all the vectors (Xn; : : : ; X1) of same weight.

An(i1; : : : ; it) is the set of all n-variable Boolean functions having the properties

Ci1; : : : ; Cit.

In Sections 2 and 3 we provide construction of new functions in the sets
An(1; 2; 3; 5) and An(2; 3; 4; 5) respectively. These are used to improve known
lower bounds on the sizes of such sets. Our constructions explain the \spo-
radic" examples in An(1; 2; 3; 5) reported by Br�uer [1] and Mitchell [5]. In
Section 4 we present a method to construct 3rd order correlation immune
functions and compute the algebraic degree of some of these functions.

Let wt(s) denote the Hamming weight of a binary string s. For a symmetric
Boolean function all input vectors with the same weight have the same output
value. Based on this observation, we de�neWTS(f) for a symmetric function f
as WTS(f) = fi : wt(Xn : : :X1) = i implies f(Xn; : : : ; X1) = 1g: The weight
of a Boolean function f is wt(f) = jf(Xn; : : : ; X1) : f(Xn; : : : ; X1) = 1gj. If f

is symmetric then wt(f) =
P

i2WTS(f)

�
n

i

�
.

We �rst state some binomial coeÆcient identities. These will be interpreted
in terms of symmetric functions in later sections to provide constructions of
balanced and correlation immune symmetric functions.

Proposition 1.1 Let n > 0 and 1 � r � n be positive integers. Then (1)

3r = n + 1 if and only if 2
�

n

r�1

�
=

�
n

r

�
; (2) (n � 2r)2 = n + 2 if and

only if 2
�
n

r

�
=
�

n

r+1

�
+
�

n

r�1

�
[4]; (3) (n � 2r � 1)2 = n + 3 if and only if�

n

r�1

�
+
�

n

r+2

�
=
�
n

r

�
+
�

n

r+1

�
.

2 Balancedness

In [1; 5], the problem of enumerating An(1; 5) is discussed, where a lower bound
on the number of balanced symmetric functions is obtained. A simple way to
obtain balanced symmetric functions is provided in [5]. Let f; g be symmetric
functions such that WTS(f) = fi : i eveng and WTS(g) = fi : i oddg. From
properties of binomial coeÆcients both f and g are balanced. Also these are
the two nondegenerate n-variable aÆne functions.

Further, if n is odd, one can form additional balanced functions in the following
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way. Since n is odd, for 1 � i � n, we have that i is odd if and only if n � i

is even. Let Pi = fi; n� ig. We form a set S by choosing exactly one element

from each Pi. Clearly
P

i2S

�
n

i

�
=
P

i62S

�
n

n�i

�
= 2n�1

: Thus the function f such

that WTS(f) = S is balanced. From the construction it is clear that there

are 2
n+1

2 such possible functions which also includes the two nondegenerate

aÆne functions. We will call these ways of partitioning to be trivial. These

partitionings immediately give rise to the lower bound j An(1; 5) j � 2
n+1

2 if n

is odd, and � 2 if n is even.

The inequality is strict when some nontrivial partitioning is found. Br�uer [1]

tabulates j An(1; 5) j for odd n � 17 and obtains j An(1; 5) j = 2
n+1

2 except for

j A13(1; 5) j = 144. Mitchell [5] has also shown that j A8(1; 5) j > 2 and termed

these as \sporadic" examples. We show that these are not sporadic and there

exist in�nitely many integer values of n for which we get strict inequality.

Theorem 2.1 1. Let n � 2 mod 6. Then it is possible to construct f 2

An(1; 2; 3; 5). Consequently, j An(1; 5) j > 2.

2. Let n � 14 be an even integer such that n+2 is a perfect square. Then it is

possible to construct functions in An(1; 2; 3; 5). Consequently, jAn(1; 5)j > 2.

3. Let n � 13 be odd and (n + 3) a perfect square. Then j An(1; 5) j �

2
n+1

2 + 2
n+1

2
�3
:

Theorem 2.1 explains the sporadic examples obtained by Mitchell [5] for n = 8.

For n = 13, Theorem 2.1 provides jA13(1; 5)j � 144. In fact, jA13(1; 5)j = 144

as observed by Br�uer [1].

3 Correlation Immunity

Here we consider the construction problem for the set of symmetric correlation

immune functions. The following is a characterization of correlation immunity

for symmetric functions.

Theorem 3.1 Let f 2 An(5) with WTS(f) = fi1; : : : ; irg. Then f is CI i��
n�1

i1

�
+ : : :+

�
n�1

ir

�
=
�
n�1

i1�1

�
+ : : :+

�
n�1

ir�1

�
.

A consequence of Theorem 3.1 is the following fact: Let f and f
0 be such that

k; n � k 62 WTS(f) and WTS(f 0) = WTS(f) [ fk; n � kg. Then f is CI if

and only if f 0 is CI. A Boolean function f is said to be palindromic if for each

n-bit vector (bn; : : : ; bn), we have f(bn; : : : ; b1) = f(1� bn; : : : ; 1� b1).

Proposition 3.1 A symmetric function f is palindromic if and only if for

each i, WTS(f) contains either both i and n� i or none of them.
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The importance of Proposition 3.1 lies in the fact that any palindromic Boolean

function is CI [5]. The number of symmetric palindromic functions is clearly

2b
n

2
c+1 (see Theorem 8 of [11]). Thus it is of interest to �nd nonpalindromic

CI functions. We provide such constructions in this section.

Theorem 3.2 1. Take n; r; i such that 2
�
n�1
r

�
=

�
n�1
r�i

�
+
�
n�1
r+i

�
, i � 1. Then

one can construct nonpalindromic f 2 An(4; 5).

2. Let n + 1 be a perfect square and n � 8. Then j An(2; 3; 4; 5) j � 2b
n

2
c+1 +

2d
n�1

2
e � 2.

3. Let n+ 2 be a perfect square and n � 14. Then j An(2; 3; 4; 5) j � 2b
n

2
c+1 +

2d
n�1

2
e � 2.

4. Let n+ 3 be a perfect square and n � 13. Then j An(2; 3; 4; 5) j � 2b
n

2
c+1 +

2d
n�5

2
e � 2.

5. Take n; r; i such that 2
�
n�1
r

�
=

�
n�1

r�i�1

�
+
�
n�1
r+i

�
, i � 1. Then there exists

nonpalindromic f 2 An(4; 5).

It is interesting to note that j An(4; 5) j = 2b
n

2
c+1 + 2(n mod 2) for n =

4; 5; 10; 11; 17; 28. However, n does not appear to follow any obvious pattern

for this exact equality condition.

4 Higher Order Correlation Immunity

The class of correlation immune functions was introduced by Siegenthaler

[8]. In the introduction we mentioned only the special case of �rst order CI

functions as considered in Mitchell [5]. In this section we consider the general

class of CI functions and present new constructions of 3rd order CI functions.

De�nition 4.1 A Boolean function f(Xn; : : : ; X1) is said to be correlation

immune of order m (m-CI for short), if

Prob(f(Xn; : : : ; X1) = 1 j Yt = ct; : : : ; Y1 = c1) = Prob(f(Xn; : : : ; X1) = 1);

where the variables Yt; : : : ; Y1 are chosen from fXn; : : : ; X1g, ct; : : : ; c1 2 f0; 1g

and 1 � t � m. A balanced m-CI function is called m-resilient.

Construction of 1-resilient and 2-resilient symmetric functions were presented

in [4]. In section 3, we presented new constructions of 1-CI symmetric func-

tions. Here we present a new construction of 3-CI functions.

A consequence of [7, Theorem 3.1] is the following result.

Theorem 4.1 A symmetric function f(Xn; : : : ; X1) is m-CI if and only if

for each t, 1 � t � m, wt(f0) = : : : = wt(f2t�1) where for 0 � k � 2t � 1,

fk(Xn�t; : : : ; X1) = f(Xn = kt; : : : ; Xn�t+1 = k1; Xn�t; : : : ; X1) and kt : : : k1 is

the t-bit binary representation of k.

179



For 0 � k � 2t � 1, by wt(k) we will denote the weight of the t-bit binary

representation of k.

Lemma 4.1 Let f be an n-variable symmetric function and 1 � t � n � 1.

De�ne fk(Xn�t; : : : ; X1) as in Theorem 4.1. Then WTS(fk) = fi � wt(k) :

i 2 WTS(f); 0 � i� wt(k) � n� tg:

Lemma 4.2 Let f(Xn; : : : ; X1) be a symmetric function with WTS(f) =

fr; n�rg. For 0 � k � 2t�1, de�ne fk as in Theorem 4.1. For 0 � i; j � 2t�1,

if wt(i) + wt(j) = t, then wt(fi) = wt(fj).

Above proof follows from Lemma 4.1. We use Theorem 4.1 and Lemma 4.2 to

obtain the following result on 3-CI functions.

Theorem 4.2 Let n and r be such that (n�2r)2 = n. Then f 2 An(5) having

WTS(f) = fr; n� rg is 3-CI.

Siegenthaler [8] showed that the maximum possible degree of an n-variable,

m-resilient function is n �m. Next we compute the degrees of the functions

described in Theorem 4.2. We present them in the form (n; deg) which are

(9; 6); (16; 11); (25; 14); (36; 29); (49; 30); (64; 55); (81; 62); (100; 61); (121; 118).

The maximum degree is obtained only for n = 9; 121. In fact, we were unable

to �nd any other n, such that the function of Theorem 4.2 has degree n� 3.

Also it is interesting to note that the degree of the function for n = 100 is less

than the degree of the function for n = 81. Though this is a rare phenomenon,

this also happens for other values of n. A good explanation of the behaviour

of the degree seems elusive.

If a function f is m-CI, then a function g obtained by setting any input of f

to constant is (m� 1)-CI. Thus Theorem 4.2 also shows the existence of 2-CI

functions. Earlier existence of 2-resilient functions were shown in [4]. In our

computer experiments we did not �nd any 4-CI function for 6 � n � 20. Fur-

ther all the 3-CI functions obtained were palindromic. We give a few examples

of 3-CI functions not covered by Theorem 4.2. These are written in the form

(n;WTS(f)) as (8; f2; 3; 5; 6g), (10; f1; 3; 4; 6; 7; 9g), (14; f2; 3; 5; 6; 8; 9; 11; 12g),

(15; f5; 6; 9; 10g), (15; f3; 6; 9; 12g), (16; f1; 3; 5; 6; 7; 8; 9; 10; 11; 13; 14g),

(16; f1; 3; 4; 7; 9; 12; 13; 15g), and (16; f1; 3; 4; 6; 7; 9; 10; 12; 13; 15g). Some of the

examples can perhaps be explained along the lines of Theorem 4.2. These form

tasks of future research problems.
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