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Abstract  In this paper we study the neighbourhood of 1 5-variable Patterson-Wiedemann
(PW) functions, ie.. the functions that differ by a small Hamming distance from the PW
functions in terms of truth table representation. We exploit the idempotent structure of the
PW functions and interpret them as Rotation Symmetric Boolean Functions (RSBFs). We
present technigues to modify these RSBFs to introduce zeros in the Walsh spectra of the
modified functions with minimum reduction in nonlinearity. Our technique demonstrates
15-variable balanced and | -resilient functions with currently best known nonlinearities 16272
and 16264 respectively. Inthe process, we find functions for which the autocorrelation spectra
and algehraic immunity parameters are best known till date.
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1 Introduction

In [15], Patterson and Wiedemann presented Boolean functions on 1 5-variables with nonlin-
earity strictly greater than the bent concatenation bound. After more than two decades. in [9],
Q-variable functions having nonlinearity exceeding the bent concatenation bound have been
demonstrated. Most interestingly, both of these constructions rely on a specific structure



95 8. Sarkar, 5. Maitra

of the Boolean functions. Under the interpretation that a Boolean function is a mapping
F @ GF(2"y — GF(2), the functions presented in [8.9.15] are such that .quz} = fi(x)
for any x € G F(2"), ie., these functions are invariant under the action of the group of
Frobenius automorphisms. These functions were studied in [5-7] and referred as idempo-
tents. By fixing any imeducible polynomial of degree n over GF(2), one may interpret the
mapping £ : GF2"y — GF(2yas f {0, 1}" — {0, 1}. One can use this interpretation
to get an RSBF from an idempotent by choosing a primitive polynomial of degree i and a
normal basis [5]. The RSBFs are studied in great detail recently and it has been found that
this sub class of Boolean functions is extremely rich in terms of cryptographic and combi-
natorial properties (see [8,9] and the references in these papers). Motivated by these results,
we concentrate on PW functions in this paper and exploit the rotation symmetric structure
of such functions to get best known nonlinearity results in terms of balanced and 1-resilient
functions.

High nonlinearity of a Boolean function is important when it is used as a building block in
any cryptographic system. On the other hand nonlinearity of a Boolean function is directly
related to the covering radius of the first order Reed-Muller codes. It is well known that
the maximum possible nonlinearity of an n-variable Boolean function is 2"~! — 27~! for
n oeven [3,16] and functions with this nonlinearity are called bent functions. The bound
pi—l [Ei_l'l is in general not known to be achieved when n is odd. For odd n, one can
easily get (balanced) Boolean functions having nonlinearity 2! — 2 F by suitably con-
catenating two bent functions on (r — 1) variables. That is the reason the nonlinearity value
2= _3%% forodd n is called the bent cnncatena\ti{m bound. For odd n = 7, the maximum
nonlinearity of r-variable functions is =1 _ 275 [1.13] and for odd i = 7, the maximum
nonlinearity can exceed this bound [8,9,15].

Since balancedness is a useful cryptographic property for a Boolean function, the question
of getting balanced Boolean function with high nonlinearity is an important issue. Further it
is also combinatorially very interesting. As the bent functions are not balanced, the maximum
nonlinearity for n-variable balanced functions for even n must be less than pe=logsel
Denate the maximum nonlinearity for any balanced Boolean function on m-variables by
nlhin). Dobbertin conjectured in [4] that for v even, nlbin) # g L S |, B S mlb(%). This
conjecture still remains unsettled. )

For odd n, the challenge is to get balanced Boolean functions having nonlinearity greater
than the bent concatenation bound. The first attempt in this direction was in [21], where
15-variable PW functions were used as a black box to construct balanced functions on
odd number of input variables (=29) having nonlinearity greater than the bent concate-
nation bound. Later, in [12, 17], the truth tables of the PW functions were modified to get
15-variable balanced functions having nonlinearity 16262 and that shows the existence of
halanced Boolean functions exceeding the bent concatenation bound for odd numberof input
variables greater than or equal to 15.

We like to refer to [2,8,12,20] for the basics related to a Boolean function f and the def-
initions of Walsh spectrum Wy (). nonlinearity nl{ ). autocorrelation spectrum, maximum
absolute value in the mtocorrelation spectrum A ¢ and al gebraic immunity.

A Boolean function [ is called rotation symmetric (RSBF)if it is invariant under the
action of the cyclic group C, acting on {0, 1}". Under this action, the orbit generated
by (xp.x2.....0 X ) 18 Gelxy, xa, ..., Xyl = {,of,{.n P vt TR )Nl = k = n}, where
pf;g.-.], « oy Xy ) isthe k-cyclic shiftof (x), ... .. ty ). That means for an RSBF £, f{y) = fix).
for all v & G, (x). The number of such orhits is denoted by g,,. Thus the total number of
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distinct n-variable RSBFs is 2%+, Let ¢ be the Euler's phi-function, then it is known that
En = % ZEPI dik) zr

An orbitis completely determined by its representative element A, ;, which is the lexico-
graphically first element belonging to the orbit [ 22]. These representative elements are again
arranged lexicographically as A, ... .. My po—i- Thus an n-variahle RSBF § can be repre-
sented by the g, length string [ f{A, o). - .. Sl g =10 In[22], it was also shown that the
Walsh spectrum of an RSBF f can take only g, many different values. To analvze the Walsh
spectrum of an RSBF, the matrix .« was introduced [22]. The matrix .o = (.o, .j}.k'« * iy

L;deﬁneda_u,,u’ = Zv?f‘ rhi ]{—]}"'-'"«-j for an n-variahle RSBF. Uu'tngth'm matrix, the

Walsh spectrum fnr an RSBF can be calculated as WA, ;) = Z'JL:‘, (= 1) Pas) niy |

In this paper we present a deterministic technigue that searches the neighbourhood of PW
functions. The PW functions are interpreted as RSBFs and our motivation is to introduce
Walsh spectrum zeros by modifying these functions with very little reduction in nonlin-
earity. In the process we get examples of balanced and 1-resilient functions with currently
best known nonlinearities and A values. Our results improve upon the results available
in [10.12,17.19]. Further, for the first ime we demonstrate Boolean functions with maxi-
mum possible al gebraic immunity having nonlinearity greater than bent concatenation bound.

Or technigue is not a heuristic search, but an exhaustive search in a restricted domain
based on the theoretical results presented in Theorems | and 2. We work on the rotation
symmetric implementation instead of idempotents as the matrix structure of ;.57 g, g,
can be exploited nicely for implementation purpose.

A more general study of Boolean functions invariant under the action of some finite groups
has been presented in [11] that demonstrated 15-variable functions with nonlinearity greater
than the hent concatenation bound (but not exceeding the nonlinearity reported in [15]). Our
study can be considered as looking into a particular case where the functions are invariant
under the action of the group of Frobenius automorphisms.

2 Studying the Walsh spectrum of PW functions as RSEF

We first present the construction of RSBFs from the two PW functions on (n = 15 )-variables
given in [15]. Each of these functions is idempotent when we consider them as a mapping
from GF{2") o GFi2). Let fpw denotes one such function.

Construction 1 Take n = 15 Consider a PW function few on n-variables. Take the prim-
itive polwomial P(X) = X34+ ¥ 4 1 over G F(2). Consider a root ¢ of P(X). Take the
normal basis N = ¥ 2@med 28D ., g 14}, Represent each x € G F(2") as an
n-bit binary vector with respect to A", Denote the corvesponding mapping {0, 11" — {0, 1}
by f. The function f isan RSBF with nl{ fy =271 — 2T +20= 162764

In the rest of the paper we will consider f as the RSBF obtained from a PW function
using Construction 1. We get two distinct (the first one is of algebraic degree & and the second
one is of algebraic degree 9) RSBFs up to affine equivalence from Construction 1. Each of
them are of nonlinearity 16276 and the distribution of the Walsh spectra of both the functions
are the same. The Walsh spectrum of each of these functions consists of the distinct values
{—216, —88. 40, 168].

Henceforth we consider n = 15. Then g, = 2192, out of them there are 2182 orhits of
size 15, 6 orbits of size 5. 2 orhits of size 3 and 2 orhits of size 1.
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We are interested in modifying each of the PW functions such that we can get zeros in the
Walsh spectrum with minimum number of toggles at the output bits. In [17], authors adopted
arandom heuristic to achieve the similar goal. Here our motivation is to toggle the outputs
of [ corresponding to one or more orbits. It means that after the modification, the function
will remain RSBF.

2.1 Modification with respect to one orbit of size 15 and another of size 5

Theorem 1 Refer io the function | as in Construction 1. Let G iAo ) be an orfit such that
Wp(Ay ;) = 40 and (1 ) g "'”Fq.‘. + (=1} A ,,.c:-"w. = ), for some g, r., where
My g Is the representative element af an orbit of size 15 and Ay ;- is the represeniative element
af an orbit af size 5. Construct

glx) = f(x) for x € {0, 1" 4 (Gl A g) U Gl A ),
=1 If{-r} for x Gar{ﬂar,q} U GJI{‘:‘I"JI.J’}'
Then WA, j)=0
Further, let Ay ; be the representative elemenis such that Weid, ;) = =210 as s varies.
i1 Hia! "'”re.r.x + (= 1) s :',,.u"rl_‘ < M) forall s, thennl{g) = -1 _ 2%t

Progf Since, q—]}-"r”‘“r:',,.m"qd- + (=1 Ae) o, =20,andg = 1 & f for the inputs
belonging to G, (A, UG (A, . ). we have, (—1)EHag) ,,.m’q J.+{—] Jalhns) , of i= —20.
Also since WA, ;) =40and (— 1) "na) ,,ﬂ"q_}. + (— 1) (s s, j= ), therefore we

have
¥ A=) o= 20,
iglg.r}

Thus,

P"rg{-'-ﬁln.j} = (‘._]}Krﬁ"q]nqu_j + ':._] }.l:l'-"m.r]"_qrr.‘l_] + z ‘._”mﬁ“”ar'nr,lj
ig[aq.r}
=-=204+20=0.

This proves the first part of the theorem.

MNote that for any c. such that W{w) = —88, 40, 168, |W,(w)| = 168 + 40 = 208, Fur-
ther, consider the points A, , where the Walsh spectrum values of f are maximum in absolute
terms, we have Wy (A, ) = —216 ass varies. Let {_]}_.fl!'nm]"_qrw +{—1) fAar) nsf, =
M — &, where §; = (), Thus,

W(Ays) = (=18 Ang) '”Fq.x + (— 1)E ) wil,  + Z (— A ol
i§lg.r)
- ({_] }ﬂﬁmq]"'ﬁ:r.x + (-1 }fm“ ]-'""fr.x) + z {_]}fm“.] wid ) g
i¢lg.r)
= —20+ & + (=216 — 20 + &,) = —256 + 23,.
Thus nl(g) > 2*~1 - 2% m|

Using the idea of the dhm-e theorem, we describe a strategy to get 15-variahle RSBFs g
such that nf(g) = 27 1_2%5 wn‘h W, iw) = 0 for some point co. There are 217 arbits {each
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of size 15) at which the Walsh spectrum value of § is 40. We take an orbit &, (A, ;) such
that Wy (A, ;) = 40. Then for each pair of orbits G, (A, ) and G, (A, o) of size 15 and 5

respectively such that (— 1) Aheg) .n.*fq st (=1 Aerd '-'?':J = 2, we construct

glx) = flx)forx e {0 11"\ (Gl 4) U GulAp 1)),

16 _.f“-} for x € GJI‘.":II"".{[} U GJI{‘:‘I"JI,J’}-

Then by Theorem 1., we have Wy (A, ;) = 0. ie, Wylw) =0 for each w € Gy, ). As
|Gy Ay ;)| = 15 number of the zeros in the Walsh spectrum of g will be 15. We store the
tuple {Ay ;. Ayg. A, ilig)hina file F. We repeat these steps for all the 217 orbits where
W takes the value zero. At the end. we see that 16264 is the maximum nonlinearity that
has been achieved by some functions in F. We get 253 and 63 RSBFs g respectively from
degree 9 and degree 8 PW functions with nonlinearity 16264 and for each of these functions
the Walsh spectrum contains 15 many zeros which occur exactly at an orbit of size 15. We
further check these functions and find that they are all affinely non-equivalent as their Walsh
distributions are different. We find that some of these functions have the maximum absolute
value in the autocorrelation spectrum as low as 192, In the rest of the paper. we express a
binary pattern (x...... o) e {0, 1} by its equivalent decimal number, where x| is taken
as the most significant hit.

For example, we take the RSBF f from the PW function of degree 8 and we take the func-
tion g from F represented by (1893, 1843, 1057, 16264). where A, = 192, Now consider
the input o = 1893, then g'(x) = g{x) P x willbe balanced. Also nl{g") = nii g) = 16264
and Ay = A, = 192, This improves the result of [12.17] in terms of nonlinearity as well
as autocorrelation.

Closer studies to these functions provide further improvementin nonlinearity. Note that the
maximum absolute value in the Walsh spectrum of g is 240 and the sign is negative. If for any
of these functions, the second maximum absolute value in the Walsh spectrum comesponds
to 232 and the sign is negative, then one may increase the nonlinearity by 2 by modifying
the output of the functions at two points. There are plenty of such functions among the 316
functions reported above. Thus one gets balanced functions having nonlinearity 16266, We
skip the details of this technigue (which is available in [20]) as laterto the conference version
of this paper in WCC 2007, further search in this domain has produced better nonlinearity
16268 [10] for 15-variable balanced functions. In [10], the PW functions having nonlinear-
ity 16268 [15] are studied. Directed search has been exploited in [ 10] to toggle the outputs
corresponding to 20 orbits (13 of size 15, 5 of size 5, 2 of size 1) to get a balanced function
without any reduction in nonlinearity. Note that, in our technigue we motivate the exhaustive
search in the neighbourhood of the PW functions. Exhaustive search considering 20 orbits is
computationally infeasible, but the kind of directed search [ 10] motivated by our technigue
may provide more improved results.

The next challenge is to get 15-variable balanced functions with nonlinearity more than
16268 (by searching the neighbourhood of PW functions, but not by some heuristic search).
So far we have considered the neighbourhood of the PW functions by modifying the outputs
corresponding to the inputs containing one orbit of size 5 and another of size 15. The next
motivation is to extend the neighbourhood further and we study the neighbourhood consid-
ering three orbits of size 15. Thus there are {‘ll;{l} = 2*! many options. We study this space
and find unbalanced functions with nonlinearity 16271, having 2 as the minimum absolute
value in the Walsh spectrum. We need to modify one more point at the output to get zeros
in the Walsh spectrum. We try any one of the two size | orbits for this. In the process the
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nonlinearity is increased further to 16272'. For example, an RSBF g| is obtained by toggling
the outputs of f (degree 8 PW function having nonlinearity 16276) at the orbits 315, 2275,
B183 (of size 15) and 0 (of size 1). The function g, has 7 zeros in its Walsh spectrum with
Ay, = 248 and algebraic degree 11. Consider the input e = 4681 as one of the points such
that Wy, (e} = 0. Construct the function g2(x) = g (x) & @ - x. Then g3 is balanced with
nliga) = 16272 and A, = 248, We have checked that the algebraic immunity of g is equal
to&. This demonstrates a Boolean function on an odd number of variables having nonlinearity
greater than the bent concatenation bound and maximum possible algebraic immunity.

For general case, construct the balanced function £ on odd numberof variables m = 15 as
Fixy, ., AL N ST PR Xm ) = BalX), ..., s hing, ..., ¥ ). where b is a bent function.

IR

Then nl{ F) = 2"~ _a% g x 275

3 Strategy to get 1-resilient functions

Any 15-variable RSBF g with nonlinearity 16264 has 15 many zeros and all of these 15 input
points with Walsh spectrum zeros belong to one orbit of size 15, Now one may note that
for an r-variable |-resilient function, the number of Walsh spectrum zeros is at leastn + 1.
Thus the functions g cannot be affinely transformed to 1-resilient functions. To get more
Walsh spectrum zeros, we need to modify the functions further. We consider the additional
points where the Walsh spectrum values are close to zero. We observe that the value in the
Walsh spectrum closest to zero is 16 which occurs for some functions g, also for each of
these functions the Walsh spectrum value 16 occurs at one or more orbits of size 15 only. We
constrict the ser § which consists af the functions g such that the second minimum Walsh
spectrum value is 16 We would like to modify any function from § such that

1. the existing orbit with Walsh spectrum value zero stays at zero and
2. one or more of the existing orbits with Walsh spectrum value 16 drop to zero.

This strategy will indeed increase the Walsh spectrum zeros in the modified function. The
only issue that has to be noted is the drop in nonlinearity after this modification. As the
nonlinearity of 1-resilient functions must be divisible by four [18] and we are interested
in nonlinearities greater than the bent concatenation hound 16256, the nonlinearities of the
modified functions should be 16260 or 16264 (or even more, but we actually did not get more
than that in the experimentation we did).

Theorem 2 Consider a function g & 8 such that Wi, ) = 0and WyiA, ;) = 16 Let

1 (=1 (Ang) _ﬁrq ; + (=1 thns) "'Ulrr.j = &, and
2, |{_]].4"L.*'m.fr]"_L-j,:r St (=1 ) sl , = 0,

where Ay . Ny are two orbit representative elements. Consiruci

hix) = gix) forx & {0, 1} Gu(Ay, .q} U Gu‘.-‘-ﬁlar.rL
=1 «Eﬁg{‘f} for x € GJI{":II"JI.L_[} U G.u (M),

then H'I.l'r‘.-':l'lu.j} = Hj.fri-':l"-u,p} =0

I' tme of the reviewers has also pointed out this neighbourhood by identifying 2 nonlinearty 16268 function
with the Walsh spectrum zems,
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Pmﬂf S‘EME, .Llr"lu_{-l!"ur.j} = 16 and :_—] }.lfr."mq]"_,'-:fqu + {_] }.L'r."l.“_, ]“.ﬁ;rlj x 81 mmefME‘
Zl.f[qlr}l;:—]}.l-'l-"l.‘r.:]"_mr‘.‘l_ — & Now,

HJIrI:ﬂJI .,l'} — Z "_]}.I'r[."m_.:]"_mrl_-j +(— ]}.frl.."'m_.-r] "'qu_j + (— ]}J'rl.."'m.J] % o

5y
igla.r}
s Z E_]}xm«;:l"_du_ _ E—]}K'ﬁ“""jnﬂ’q.j _ E_]}xm,.,!”_ffw_
iglar)
=8—8=0.

Again since, W, (A, ,) = 0 and {—]}f”‘“f],,.qr"q_p + (= 1) Ans ]"""r.,u = (), the proof
that WyiA, ,) = 0 follows easily by the similar argument as given ahove. a

We take a function g € 5. Then choose the orhit G, (A, ) (size 15) such that Wy (A, ) =
0 and also an orbit G, (A, ;) (size 15) such that W, (A, ;) = 16, Now we form the sets
i grland{r,.... ri} suchthat foreach g € {g). .... grlandr € {r. ..., ¥i}. we have,

|,,.f:r'w.| = 5 and |,,.f:r'w.| = 3 Then we consider those pairs for which

'ﬁ} — ]}I[ﬁ“q]u 'qu'.fH_] }"r,l-ﬂl“"'] L "'Trrl‘, = g: and {H} = 1 }Irﬁ“"‘r]ar _qf{r. |,,+:._]}flﬁ“" ]JI
ol ,,=ﬂ- Construct

fi{.f} = ,g‘[f} forx & '“:]1 ]}“ I"u Gar‘.-'-ﬁl.u .q} U Gu‘.-‘-ﬁlar.rL
= $H“-} for x € Gar{ﬁlu.q} u Gar:.-'hu.rL

Then by Theorem 2, we have Wy{A, ;) = WiiA, ;) = 0. Thus the medified function f will
hawve at least 30 zeros in its Walsh spectrum. Due to this modification, nonlinearity may fall.
However we intend to keep functions & which have nonlinearity more than the bent concat-
enation bound 16256 and divisible by 4 (as a l-resilient function must have its nonlinearity
divisible by 4). We represent such a function /i by the tuple (sr{g), Ay 4. Moo, 0l (R)), where
stig) points to the PW function f and the tuple which represents g.

Given an m-variable Boolean function ¢, let us define Sy = {ew & {0, 11" | Wyiaw) =0},
If there exist n linearly independent vectors in 8, then one can construct a nonsingular
m o= m omatrix By whose rows are linearly independent vectors from 5. Let. Cy = B;I.
MNow one can define ¢'(x) = ¢(Cypx). Both ¢ and ¢ have the same weight, nonlinearity and
algebraic degree. Moreover, Wy () = 0 for wrie) = 1. This ensures that ¢ is correlation
immune of order 1. Further if ¢ is balanced then ¢ is 1-resilient. This technique has been
used in [14].

We use the above mentioned strategy for a few functions g € §. Consider the RSBF f
obtained from the 8-degree PW function using Construction 1. We take functions g € §
obtained from [ such that the value 16 occurs exactly at 15 points in the Walsh spectrum.
For these functions we find 32066 functions with nonlinearity either 16260 or 16264 and
having at least 30 Walsh zercs. For example, we take a function g € § obtained from f
and represented by stig) = (1893, 935, 11627, 16264). We present the function i which is
represented by (srig), 6895, 1971, 16264). We note that W (w) = 0 for the input e = 539.
Thus the function ¢¢ = A & @ - x will be balanced. Then as described above, we find 15
linearly independent vectors from S, and hence a | -resilient function ¢ having nonlinearity
16264 is found. We note that for ¢, Ay = 232 with algebraic degree 12 and algebraic
immunity 7. This shows for the first time the existence of a 1-resilient function exceeding
the bent concatenation bound in nonlinearity with maximum absolute autocorrelation value

| =20 |
less than 277,
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In [9], existence of 1-resilient functions having the maximum absolute value in the auto-
correlation spectra < 2" has been demonstrated form = 9, 11. However, the nonlinearity
in those cases did not exceed the bent concatenation bound.

In[17.19], a method to construct resilient functions on odd numbers of variables, having
nonlinearity greater than the bent concatenation bound, has been proposed. The construction
used the PW functions asa part of it. In the process, a 4 1-variable 1-resilient function ) has
been designed with af () = 2" — 22 4 51 % 219 Thus so far, the resilient functions, hav-
ing nonlinearity greater than the bent concatenation bound, had been known for 41 or more
variables. Our example shows the existence of a 15-variable function with nonlinearity that

exceeds the bent concatenation bound. Again for odd = 15, the function bix)s. .. ... Ny VB
FUE TS v5) will be I-resilientwith nonlinearity 2" ~' —2"T" +8x 2T~ . This shows that

l-resilient functions are available for 15 or more variables with nonlinearity more than the
bentconcatenation bound. Thus the gapbetween 15 and 39 variablesis now settled. Further we
show that using the function ¢ we canconstruct a 41 -variable 1-resilient function with nonlin-
earity that exceeds the lower bound nl_"nfl[m}. Let ¥ = Blx15, ... . ) B d g, ..., X5k,
then ni(yra) = 290 — 220 4 § 5 2%5° — 240 _ 220 4 64 x 210 which is greater than
240 _ 220 4 51 % 2'° the lower bound of ni (y).

4 Conclusion

In this paper we successfully modify the two 15-variable PW functions [ 15] to construct hal -
anced functions | with currently best known nonlinearity and autocorrelation parameters.
Some of these functions provide the maximum algebraic immunity & These results improve
the parameters presented in [10, 12, 17]. Further we could also construct 1-resilient functions
on 15-variables having nonlinearity 16264 that were not known earlier. The 1-resilient func-
tions on odd number of variables having nonlinearity greater than the bent concatenation
bound were earlier known for 41 or more variables [17,19]. Apart from the improvements
in the parameter values, the theoretical contribution of this paper is to modify any of the
PW functions keeping their idempotent structure unchanged and inducing Walsh spectrum
zeros in the modified function. Given balancedness, 1-resiliency, maximum possible alge-
braic immunity, very good nonlinearity and nice autocorrelation properties, we recommend
use of these functions in cipher design.
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