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Abstract

The results on optimal designs for diallel crosses are presently available for
the standard fixed effects linear model. In some cases, however, parental
lines may be randomly selected from a population of lines resulting in a
random effects model. Ghosh and Das (2003) discussed A-optimal designs
in this context for estimation of heritability. In this paper we first propose
an unbiased estimator of the ratio of the variance components which has
a one-to-one relation with heritability. We then obtain an expression of
the variance of this unbiased estimator of the ratio of variance components.
Through minimization of the variance we obtain optimal designs and show
certain connections with the optimization problem under the fixed effects
model.
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1 Introduction

Plant breeders frequently need overall information on average perfor-
mance of individual inbred lines in crosses known as general combining abil-
ity. For this purpose diallel crossing techniques are employed. Griffing (1956)
defines a model for diallel crosses in terms of genotypic values where the
breeding value of the cross (i, 7) is expressed as the sum of general combin-
ing abilities for the two lines. In certain contexts, specific combining ability
effects representing the interaction between lines 7 and j in a cross (7, ) are
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also included in the model; see Kempthorne (1969) and Mayo (1980) for
details.

Accordingly the analysis of the observations arising out of n crosses in-
volving p lines is carried out by postulating a model

Yiji=w+gi+gjt+ej;i<j (1.1)

where Y;;; is the observation arising out of the /-th replication of the cross
(,7), giis the i-th line effect with E(g;) = 0, Var(g;) = 03 > 0,Cov(gi,g5) =
0, p is the general mean and e;;; is the random error component, uncorrelated
with g;, with expectation zero and variance o2 > 0, 1 < i < j < p. Here
02 and 03 are unknown parameters. Also, the specific combining ability
effects are assumed to be negligible and have been absorbed in the error
component. In the model, (1.1), 4 is a fixed effect while g;, g; (i < j) and
ei;j1 are random effects.

Our primary interest is in heritability, h?, which is defined as h? =
403 / (203 + 02). Such a measure expresses the extent to which individual’s
phenotypes are determined by genotypes. In order to get a good estima-
tor of h? we propose optimal designs for unbiased estimation of 03 /o2 since
B2 — doj _ Mog/od)

202+0?2 2(02/02)+
an estimator of h% is 4T/(2T + 1). Hence an unbiased estimator of 03 /o2
will lead to a asymptotically unbiased estimator of hZ.

7. Let T be an unbiased estimator of 03 /2. Then

The results on optimal designs for diallel crosses are presently available
for the standard fixed effects linear model. In some cases, however, parental
lines may be randomly selected from a population of lines resulting in a
random effects model. In this context, under a random effects model Ghosh
and Das (2003) obtained an estimator of the ratio of the variance compo-
nents. In order to address the issue of optimal designs they considered the
A-optimality criteria for the estimation of heritability in the sense that the
designs minimize the sum of the variances of the estimators of the variance
components.

In this paper we first propose an unbiased estimator 7' of 03 /o2, We
then obtain an expression of the variance of T'. The large sample variance
of 4T /(2T + 1) is proportional to the variance of T', the proportionality con-
stant being a function of 03 /o2, Through minimization of the variance of T
we obtain optimal designs and show certain connections with the optimiza-
tion problem under the fixed effects model.
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2 TUnbiased Estimation of Ratio of Variance Components and
their Variances

Consider a diallel cross experiment carried out using a design d with p
lines and b blocks each having k crosses. Our model is

Y =ul, + D)3+ Dig+e (2.1)

where Y is the vector of bk (= n) observations, 4 is the general mean, g is the

p % 1 vector of general combining ability effects with IE(g) = 0 and ID(g) =

UZI , B is the fixed effect due to blocks and e is the error vector with IE(e) = 0
(1)

and ID(e) = 02I. Also, D1 = (dyy) is the p x n line versus observation
incidence matrix with dﬁ}v) = 1 if v-th observation is out of a cross involving
the u-th line and d) = 0 otherwise. Similarly, Dy = (d'2)) is the b x n block
versus observation incidence matrix with dq(fv) = 1 if the v-th observation
arise from the u-th block and dq(?v) = 0 otherwise. Here 1; represents a t X 1
column vector of all ones and I; denotes an identity matrix of order ¢. In
situations where the order is evident from the context, we write respectively
1 and I instead of 1; and I;. Thus, IE(Y) = pl, + Dy, ID(Y|o3,07) =
0D\ Dy + 021,. We assume that Y ~ Ny(ul, + DyB,0,D| Dy + 021,),
where N, (0, Y) denotes n-variate normal distribution with mean vector € and
dispersion matrix X. Let s = (s1, S2,...,sp) where s; is the replication of the
i-th line. Also, for i # j, let g;; be the number of times cross (i,j) appears
in the design, and g;; = s;. Then it is easy to see that D1 D] = G = (gi;)
and D11 = s. Let N = D{D} = (n;;) be the incidence matrix with n;;
indicating the number of times the ¢-th line occurs in the j-th block. For
such a design d, let Cy = G —k~'NN'. Cy is also called the C-matrix of the
design d.

Following Das and Ghosh (2003) and Searle et. al. (1992), expected
value of sum of squares due to lines (SSL) and the expected value of sum
of squares due to error (SSE) have

o 3] -2

I_ ( tr(Cq) p—1 >

0 n—b—p+1

where
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and for a square matrix A, tr(A) stands for the trace. Also,

D SSL
SSE
B 2{(7;1 tr(C3) + 20203 tr(Cy) + o2 (p— 1)} 0
N 0 20n—b—p+1) ot )°
(2.3)
Then,
G2 SSL tin t
D) =L"'D Ly =of "1t "2 2.4
(&g) (SSE>( ) < o1 o2 24)
where

tn={(n—b—p+ 1)(03L tr(Cg) + 20303 tr(Cy) + a;*) + U;L (p— 1)2}
/{(n—b—p+1) tr*(Ca)},
tiy =tor = —0, (p—1)/{(n—b—p+1) tr(Ca)},
and tyy = 02 /(n —b—p+1).

THEOREM 2.1. For a design d, an unbiased estimator of 03/03 is

(n—b—p—1)(SSL/SSE) —p+1

r= r(Ca)

Proor. Note that S’SE/UE ~ X727,7b7p+1 and is distributed independently
of SSL. Furthermore, E(1/(SSE/0?)) =1/(n —b—p —1). Thus,

E(SSL/SSE) = E(SSL)E(1/SSE) = 0,?E(SSL)E(1/(SSE/c?))
=0, 2E(SSL)/(n—b—p—1).
Now using Equation (2.2) we get
E(SSL/SSE) = 0, (c2tx(Cy) + 02(p — 1)) /(n —b—p — 1)
= ((og/02)tx(Ca) + (p—1))/(n —b—p —1)
and the theorem is established. O

We have considered the estimator T because of it being simple and un-
biased. However, other estimators with better properties may exist. This
estimation problem is open for further research.
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THEOREM 2.2. Let d be a design with p lines, b blocks each of size k.
Then, the variance of T is
V(T;d,05,07)

_ L (D) 9 9 1 a1 4
= {(n b—p—1)o, 2(Ca) +2tog oy G +t(p—1)o, 7#2(0[[)4—09 (2.5)

where o = 2/{(n —b—p—3)oi} andt =n—b—2.

PROOF. In view of Theorem 2.1, Var(T) = % Var(SSL/SSE).
d

Now,
Var(SSL/SSE) = E(SSL/SSE)* — E*(SSL/SSE). (2.6)

The second term in (2.6) can be obtained from Theorem 2.1 itself and
is given by E*(SSL/SSE) = {((07/02)tr(Cq) + (p — 1))/(n — b —p —
1)}2. For the first term, since SSL and SSE are distributed independently,
E(SSL/SSE)? = E(SSL?) E(1/SSE?). Now from Equation (2.2) and
(2.3),

E(SSL?) = Var(SSL) + E*(SSL)
= 2{(7;1 tr(C3) + 20203 tr(Cy) + ot (p— 1)}
+ {0} tr(Ca) + o7 (p — 1)}

Also, E(1/SSE?) = E(1/(SSE/0?)?)/a;. Now, since SSE/a? ~ X7 4 115
it is easy to see that E(1/(SSE/0?)?) =1/{(n—b—p—1)(n —b—p—3)}.
Substituting the above expressions in (2.6), we get the desired result. O

The results for estimation of UZ /o2 and the corresponding variance ex-
pression under unblocked diallel cross experiments can be obtained as a
special case of the above results by taking the number of blocks as one. For
example, the unbiased estimator of 03 /o2 under an unblocked model, using
a design dy with p lines and n crosses, reduces to {(n —p—2)(SSL/SSE) —
p+ 1}/tr(Coq,) where Coq, = G — 255, is the C-matrix of dp.

3 Optimal Designs

A diallel cross experiment is said to be complete if each of the (’2’) crosses
appear equally often in the experiment, otherwise it is said to be a par-
tial diallel cross experiment. Let D(p,b,k) be the class of diallel cross
designs with p lines arranged in b blocks of k crosses each and D(p,n)
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the class of unblocked designs for diallel crosses involving p lines and n
crosses. Also, for 2n/p an integer, Dy(p,n) denotes the subclass of designs
in D(p,n) with s; = 2n/p ;i = 1,...,p. In fact, among designs in D(p,n),
only designs in the subclass Dy(p,n) have maximal tr(Cpy). Finally, let
Do(p, b, k) be the subclass of designs in D(p, b, k) for which tr(Cy) is maxi-
mum.

A design d is said to be optimal if, among all designs in D, d mini-
mizes the variance of 7. From 2.5 it then follows that an optimal de-
sign in D(p, b, k) minimizes tr(C3)/tr*(Cy) and 1/tr(Cy). In other words,
from 2.5 we observe that the minimization problem addressed in Ghosh
and Das (2003) is analogus to the minimization of variance of 7. Thus,
A-optimal designs obtained in Ghosh and Das (2003) are also optimal for
the minimization of the variance of T. Analogous results hold in the un-
blocked situation since in order to minimize the variance of T', within the
class of designs D(p,n), it is sufficient to minimize tr(CZ,;)/tr*(Coq) and

1/tr(Coq)-

In view of the above, A-optimal designs in Ghosh and Das (2003) are
optimal for the estimation of 03 /2. Thus we have the following results on
optimal designs for estimation of 03 /o2

(i) Complete diallel cross designs in D(p,n) are optimal.

(ii) The existence of a nested balanced incomplete block (NBIB) design
d with parameters v = p,b; = b,by = bk, k1 = 2k, ky = 2 yields an optimal
incomplete block design d* for diallel crosses. The construction methods and
elaborate tables of NBIB designs are available in a review paper by Morgan
et. al. (2001). The tables in their paper provide solutions to our optimal
diallel cross designs within the parametric range 2k < p < 16, bk < 15p.
The case 2k = p is dealt in Gupta and Kageyama (1994). The NBIB designs
have been extended to nested balanced block designs and a series of designs,
optimal under our setup, is given in Das et al. (1998).

(iii) Das et al. (1998) gave two general methods of construction of block
designs for partial diallel crosses. Their designs belong to Dy(p, b, k) with
2k /p an integer. The designs are optimal in Dy(p, b, k).

(iv) For unblocked designs, partial diallel cross designs in which every
line appears 2n/p times and each cross appears either A = [2n/{p(p — 1)}]
or A + 1 times are optimal. A common way to construct such a design is
to form crosses between the two treatments in each block of a conventional
binary incomplete block design with p treatments each occurring 2n/p times,
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n distinct blocks of size 2 each and treatment concurrences A and A+ 1. This
includes the M-designs of Singh and Hinkelmann (1995), the first series of
designs of Mukerjee (1997), and some designs listed in Das et al. (1998).

(v) As a result of the very nature of the derived objective function under
the random effects model that is being minimized, every previously known
M S-optimal design under the fixed effects model (Das et al., 1998) would
also be optimal under our set-up.

Optimal partial diallel crosses listed above necessarily have orthogonal
blocks. A diallel cross design is said to be orthogonally blocked if each line
occurs in every block r/b times where r is the constant replication number
of the lines in the design; see Gupta et. al.(1995). In general, for non-
orthogonal block designs, Mukerjee (1997) has provided some methods for
constructing efficient partial diallel crosses. Let p = nyne where ny > 2, ny >
3. Partition the set {1,2,...,p} into n; mutually exclusive and exhaustive
subsets {S1,S2,...,Sn, } each of cardinality ng. Let

dy* ={(i,j): 1 <i<j<pand i,j€S, for some u}. (3.1)

In the construction of the block design d** with p (= ning) lines, the
lines are denoted by ag-”, 1<u<n, 0<j<ny—1 In 3.1 take S, =
{ag,af,...,apn, 1} Then from Equation (3.1) dg* consists of ning(nz —1)/2
crosses where in a cross the two lines are from the same S,. For ns (> 5)
odd, Mukerjee’s general approach for grouping the crosses in d;* into blocks
is now given.

Let M; be the incidence matrix of a general block design d; involving
ny1 treatments and ny blocks such that each block has size n; and each
treatment is replicated no times. For 1 < u < nj, 0 <1 < ny — 1, in the
[-th occurence of treatment u in dy, replace treatment u by the (ny —1)/2
crosses {(aj ;,ap, ;)11 <j < (ng—1)/2}, where j+1and ny—j+1 are
reduced mod ngy. The resulting block design, d**, for diallel crosses belongs
to D(ning,na,ni(ne — 1)/2) and represents a partitioning of the crosses in
dy* into blocks.

EXAMPLE. Let n; = 3,n9 = 5. Then p = 15,b = 5,k = 6 and the design
with rows as blocks is:
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Let, for a block design d, Ag1 < Ag2 < -+ < Agp—1) be the non-zero eigen-
values of the information matrix Cy. Then, after some algebra, we find
that for 1 = 1,...,n9 — 1, Ager; = No — 2 — %, for ¢ = no,...,p — nq,

Ag=«i =ng—2and fori = p—ny +1,...,p— 1, Ag==; = 2(ny — 1) with
d™ € D(pa n2, %)

We now give lower bounds to efficiency of non-orthogonal block designs
d** for estimating ratio of variance components. For p = nings, b = no, k =
ni(n2—1)/2, we first obtain the lower bounds to efficiency with respect to the
competing classes Dy(p,b, k). Note that for a block design d € Dy(p, b, k)
for diallel crosses, tr(Cy) = 2b(k — 1). Mukerjee (1997) has shown that
Ado1 < ng — 2 where )\g,; is the minimum nonzero eigenvalue of Cyg, with
do € D(ning,nina(ne — 1)/2). Thus, it follows that, g < Agy1 < no — 2
where d € D(ning,na,n1(n2 —1)/2) and dy is the design ignoring the block
classification of the design d. Also, we know that for d € Dy(p, b, k), tr(C3?)
is minimum when Ay = 2b(k — 1)/(p — 1), i = 1,...,p — 1. However,
26k — 1)/(p — 1) = ny — 2+ {na(n1 — 1) — 2}/(p — 1). Thus, in our
design setup, for block designs d € Dy(p,b, k), with n; > 1, it follows
that tr(C3) = SIING > (n2 — 2)2 + {2b(k — 1) — (na — 2)}2/(p — 2) =

Wy, say. Thus, for a design d € Dy(p,b, k) with m,ng,a;,az fixed, from
2.5, a lower bound to V(T;d, 03,02) is obtained by substituting Wy and

2b(k — 1) for tr(C%) and tr(Cy), respectively. We denote this lower bound
by %*(T;n17n270-§70-g)'

Thus, from 2.5, for given n, no, 03 and 02, the A-efficiency of the design

d** € Dy(p,b, k) is at least as large as e, (n1, ne, 03,02) where

‘/E)*(Ta ny,nz, O-Za O-g)
V(T;d**, 02, 02)

17 gr e

eAO(m,ng,ag,az) = (3.2)

The denominator is obtained by substituting the values of Ag««;, in tr(Cg** )
Also, tr(Cy«) = 2b(k — 1).

Now, for any d € D(p, b, k), where p, b, k are arbitrary but fixed, it is
easy to see that tr(C3)/tr*(Cq) > 1/(p — 1) = W, say. Also, we know that
tr(Cy) is bounded above by k '6{2k(k — 1 — 22) + px(x + 1)}, where z is
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the largest integer not exceeding 2k/p (see Das et. al., 1998). Thus, for

a design d € D(p, b, k) with p, b,k,o§,0§ fixed, from 2.5, a lower bound to

V(T;d, ag,ag) is obtained by substituting W for tt;((ccé)) and substituting
d

kE16{2k(k — 1 —2x) +px(x +1)} for tr(Cy). We denote this lower bound by

V*(T;p,b,k, O'Z, o?).

Thus, from 2.5, for given p, b, k,ag and o2, the A-efficiency of a design
d# € D(p,b, k) is at least as large as e (p, b, k, 02, 0?) where

V*(T;p,b, k, 03,02)
V(T;d#,07,0?)

ea(p,b, k, 03, 0?) = (3.3)

As earlier, the denominator is obtained by substituting the actual values of
tr(Cy#) and tr(Cg#) for the design d¥.

Under classes Dy(p, b, k) and D(p,b, k), using 3.2 and 3.3, we obtained
the lower bounds to efficiency of d** for 2 < ny < 15 and 5 < ny < 15
with ns odd. Here, each of 03 and o2 has been taken within the range of
(0.1,3.0), with increments of 0.1. It is observed that efficiencies are greater
than 0.90 in both cases when 2 < n; < 15, 5 < ny < 15. Furthermore,
the efficiencies are greater than 0.95 for 43.9% of the parametric sets with
2<ny <15,5 < ny <15 and both 03, o2 in the range of (0.1,3.0). For the
parametric range 2 < n; < 15 and ny = 5, (i) efficiencies are more than 0.90
when 2 < ny <4, (ii) 94.2% of the designs with 5 < ny < 15 have efficiencies
greater than 0.9, (iii) the efficiencies are atleast 0.893. We observe that the
efficiencies are generally robust against the values of variance components,
and depends only on design parameters.
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