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Abstract

This paper presents a methodology for model fitting and inference in the context of Bayesian models
of the type Y | X, @)X |88, where Y is the (set of) observed data, # s a set of model parameters
and X is an unobserved (latent) stationary stochastic process induced by the first order transition
model AX™ Y| XY @), where X' denotes the state of the process at time {or generation) r. The
crucial feature of the above type of model is that, given 0, the transition model XD | X0 8 is
known but the distribution of the stochastic process in equilibrium, that is X | #), is, except in very
special cases, intractable, hence unknown. A further point o note is that the data Y has been assumed
to be observed when the underlying process is inequilibrium. Inother words, the data is not collected
dynamically over time.

We refer to such specification as a latent equilibrium process (LEP) model. It is motivated by
problems in population genetics (though other applications are discussed), where it is of interest o
learn aboul parameters such as mutation and migration rates and population sizes, given a sample of
allele frequencies at one or more loci. In such problems it is natural 1o assume that the distribution
of the observed allele frequencies depends on the true (unobserved) population allele frequencies,
whereas the distribution of the true allele frequencies is only indirectly specified through a ransition
model.

As a hierarchical specification, it is natural to fit the LEP within a Bayesian framework. Fitting such
models is usually done via Markov chain Monte Carlo { MCMC). However, we demonstrate that, in
the case of LEP models, implementation of MCMC is far fromstraightforward. The main contribution
of this paper is to provide a methodology 1o implement MCMC for LEP models. We demonstrate
our approach in population genetics problems with both simulated and real data sets. The mesultant
model fitting is computationally intensive and thus, we also discuss parallel implementation of the
procedure in special cases.
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1 Introduction

In this paper we present a class of hierarchical Bayesian models whose fitting has not received
attention in the literature. We propose to work in the general structure that dates at least 1o
Bediner (1996), Wikle et al. (1998) and more recently advocated in Clark et al. (20035); it can
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be descrbed as fidatalprocess parameters) % fi processlparameters) x fiparameters). More
precisely, we are interested i settings where the process 1s assumed to be inequilibrium at the
time of data collection but we do not know the form of the joint distribution of the process
components or variables at equilibium. In particular, we will assume that equilibrium is
defined dynamically as the result of wransitions arising under fi process state at time i+ 1|process
state at time t, parameters) where findexes, e.g., time period or generation. {The process need
not be restricted to first order.) The process state space may be continuous or discrete and,
typically, is high dimensional. However, we do insist upon there being a unigue stationary or
equilibrium distrbution associated with the specified transition kernel {distdbution). Usually
the existence of such a unigue distribution is straightforward o establish (see, e g, Nummelin
( 1984), Meyn and Tweedie ( 1993)) but the explicit form is not available. For fitting these
models standard MCMC methods are inapplicable. Our main contribution is to provide a
computationally intensive altemative strategy.

Such models are natural in population genetics where an objective is o model allele frequencies
atthe population level. Data is usually collected from the population model in the form of allele
frequencies at a set of loci for a collection of populations. The process model is descrbed, for
the ith population, in terms of say N, the number of diploid individuals in the ith population
along with a vector of allele frequencies, pyy at locus { for that population. Specification of the
mutation and migration structure provides the stochastic model for generation o generalion
transition in population frequencies. Inference is sought regarding the population sizes and the
mutation and migration rates. The random vectors of allele frequencies over the populations
and loci comprise the state of the process at any generation and are of less interest. Two other
examples we describe below are in community biodiversity and metapopulation dynamics.

Another promising setting for the use of our methodology is in the development of forward
simulation models. Here, we offer the opportunity to fune forward simulators in the model
fitting process. This seems preferable to having to mun them repeatedly at fixed parameter values
in an attempt 1o ascertain values to align, in some fashion, the output with observed data. Such
simulators are routinely used to model latent ecological processes (see, e.g., Turchin (2003);
Shugart ( 2004), 1o provide output from global and regional climate models and 1o develop
pollution surfaces { Kalnay (2003)). Further potential settings include economic equilibium
models, complex queveing and renewal processes, population diffusion process specified
through (stochastic) differential equations bul implemented through finite difference models,
and perhaps even particle equilibrivm models associated with electrical or magnetic fields.

To fix ideas, we assume that the posterior corresponding Lo the Bayesian model takes the form
FEX|Y) e (Y [X6) f(X]6) 8 (1

In(1l}, Y is the observed data, X is an unobserved (latent) stationary stochastic process and #
is the set of model parameters. When the functional forms of each of the factors in (1) are
known, fiting the model using MCMC is conceptually straightforward (though, of course, it
can be challenging). However, we focus on the case where the functional form of fiX | #) is
unknown but is induced by a known transition model AXD | X9 @), where X' denotes the
state of the stochastic process al ime (or generation) £

A key point is that our approach is an alternative Lo the more customary strategy of allempting
adirect model of the process in equilibrium. We take advantage of the mechanistic knowledge
of the evolution of the process and works with directly interpretable parameters. The resultant
distributional specification for fiY | X) is precisely the model we would use if we could write
it down. In Section 3 we provide an example that demonstrates our asserion.

Star Compar. Author mamiscript: available in PMC 2008 October 2.
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Another important point is the distinction between the above modelling scenano and that for
dynamic models. In the latter situation, data s collected dynamically while in our setting, data
15 collected only when the undedying latent process 15 in equilibium. Hence, methods like
sequential Monte Carlo (for complete details, see Doucet et al. (2001) and Liu (2001)),
appropriate for fitting dynamic models, are inappropriate in our situation. The key idea is the
estimation of fiX | #) using the available transition model.

The paper is structured as follows. The model fitting methodology for LEP modelsis developed
in Section 2. Specialization of the proposed methodology to a problem of population genetics
15 discussed in Section 3. Section 4 presents simulation based applications of our methodology
to the problem discussed in Section 3. Development ofan algorithm for parallel imple mentation
of our methodology to a generalized version of the population genetics problem and relevant
simulation studies for the problem are presented in Section 5. Application of the methodology
to areal data set is discussed in Section 6. In Section 7 we briefly develop the community
biodiversity and metapopulation dynamics examples. Finally, we offer some concluding
discussion in Section 8.

2 Proposed MCMC strategy for updating the parameters
2.1 Approximation of the functional form of X | 6)

The form of the Bayesian model is
LY X8 S (X 6) 1 (6 (2

MOCMC is customarily used to iteratively update draws of (X, #) 10 oblain samples from the
postedor associated with (2). Computation of the acceplance ratio involves evaluation of (2)
atthe new and the current values of the parameters, the new value proposed from some arbitrary
distribution. But since in (2), fiX |#) is analytically intractable the acceplance ratio can not be
evaluated. However, we can oblain an approximation to fi- | #) directly through the transition
kernel fiX=0 | XY, @) as follows

fixia [FX|Z2.8) f(Z]8)dZ

B
I?c.E] S (X1 Z% )

i

FX |6 (3

In(3),Z%:p=1, .., B ar samples drawn from fi- | &), obtained by running a sufficiently
long trajectory of the transition model for a given #. Since the fiX | Z5)_ @) are known, f(X |
&) is analytically tractable. We propose o replace fiX | #) with fgiX | #) in implementing the
MCMC updates. It is important © note that, though we suppress it notationally, the set of
Z'®) depend upon #; there will be a different set for each #. Indeed, 1o ensure that f is well-
defined, we need to guarantee that each time we select a particular value of #, we obtain the
same set of 2's. Computationally, this is most easily accomplished by fixing the seed in the
random number generator that is employed. Furthermore, since # will be updated at each
iteration, the computationally intensive nature of our approach begins 1o emerge.

2.2 Updating parameters

Recall the general form of the acceptance ration for an MCMC algorithm 1o sample say g(U)

. g, I:UV-T“':} |iII {U{h’rr}
using an importance sampling density A(U), Le., s " (L) (U for current {curr)
and new (new) values. Henee, if we propose to update (X, #) in (2) we obtain the simple

1 S (Y™™ .07
aceeptance ratio, M ( F Y X ,ﬁr.'ul.l'}). Unformnately the dimension of X and & will jointly
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be much o large for a single block update; the chain will never move. So, we have W consider
sub-block, perhaps even component-level updating.

We make a clarification of (2) o
JOY | X FOX |00 ) (0D (4

In (4), we have separated the process parameters from those that are associated with the data
maodel. Updating a is familiar and does not warrant further discussion; it may be done as a
block or component-wise according to the specifications. As for updating #, given the
approximation of fi- | #) by fyi- | @), the components of the parameter # can be updated
sequentially. Using a symmetric proposal distribution, the acceplance ratio is the ratio of
JeiX 1 @)fi# evaluated at the new over the current values of the respective components of &,
all other components and X remaining fixed at the current values.

For updating X consider proposing from fgi X | #). Since the latter is simply a mixire of the
transition distributions with equal weights, drawing from this distribution is straightforward.
Given that X7 s the current value of X, the acceplance probability of the new proposal
X" simplifies to
: ¥ | X"
min f—il
FUY | X7 ) {5)
However, if X is a high-dimensional random variable, then this block method of updating will
likely lead to very low acceplance rate of X. Fortunately, convenient simulation of each
component from the conditional density given all other components will be possible in cerain
_ases. For instance, suppose that the transition model fiX | '), @) is factorizable as
i
F(x12™8)=[ | r(x:12".9)
i=l

(6}

where K is the number of components of X. In such a case, the density estimalte in (3 ) becomes

1
X|¢ Ly r(x |z
FX10) 5,20 (X129.0)

n K :
#bxl [L‘[Ijr {Xf | Z[I}Jﬁ})

i.l

(7

Thus, the conditional distribution of X; given X j # i is simply a weighted mixture of the

densities fiX; | Z'2, @) b= 1, ... . B, with the weight of each component being proportional to
b ) . . . r

WI,- :I—J-l,-aer' ..l'-{xj | z{ﬂﬁ}_ S0 in this case, o simulate from fe X I X, . X Xy - X

&) we select by from the set {1, ..., B} with probability proportional o h-':;‘bc'|~ and simulate from

AX; | ZI0) @), [t is easy to verify that the acceplance ratio in this case also is given by (3). In

fact, if Y | X.a) has a conditional independence form, ie., [[f(Y; | X,a), this ratio simplifies

o f{h |X:3Jw'.}-“’} a".f'(l’rj |-’f,r3””“-ft'}. We adopt this strategy in applications of the methodology
to problems in population genetics; see Section 3. However, in the case that fi ¥; | Xpe)f Xl
Z.8) is proportional to a standard density, we can sample the full conditional directly and avoid
the Metropolis step.

In the general case where the transition model is not necessarily expressible as a product of
densities, component-wise updating can be achieved by proposing a value of the given
component from a symmetric density (say) and then accepting or gjecting the proposal using
an acceplance ratio that now adjusts the first term in the brackets in (5) by the ratio of fyiX |
&), evaluated at the proposed and the current values of the component, all other components
and # held fixed at their current values.
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In one version of our population genetics applications we encounter a situation where the
support of all components of X is determined by a component of #. This implies that it is
necessary 1o update all components of X simultaneously with that particular component of 8.
But as discussed earlier, updating so many components jointly leads o very poor acceplance
rate. Strategies o overcome this problem are discussed in Section 3.2,

It is useful o provide some details about the practical implementation of the updating
procedure. Note that evaluation of fyiX | #) is needed to update the components of #, but not

required in order to update X. The latter however requires evaluation of the weighis H=:; . which
depend upon 217 ¢ = 1, ..., B, the latter being simulations from the transition model. In order

to ensure that the weights ware well defined, we adopt the following strategy. For a particular

iteration, for given X, the components of # may be updated in tum, saving the current value as
well as the comresponding fp(X | #). In order to update X, samples Z9; r= 1, ..., B are necded;
but samples needed o evaluate the density estimate corresponding o the last model parameter

updated can be saved. These saved samples can then be used to construct the weights wk'n" thus
avoiding inconsislency concerns.

Finally, once the components of # and X are updated, fp(X | #) needs 1o be evaluated at the
current values of #.X in order 1o proceed to the next iteration.

With regard to achieving arbitrary accuracy relative w (1) using f, we can show the following.
Under the usual assumptions regarding the existence of a transition kernel which is irreducible,
apedodic, and has the invanant distribution in (1), as B — oo, the invariant distribution using
[ converges in total variation 1o the invariant distribution under (1). This is demonstrated with
a simulation study vsing a toy LEP model in the Appendix.

3 Application of the proposed methodology to population genetics

Kingman's coalescent is the basis of most currently used methods for inference about
paremeters of the stochastic evolutionary process because il provides a convenient formalism
for analyzing the composition of genetic samples. The genealogical structure induced by the
coalescent is determined by the population size (N), migration rate (m) and mutation rate (v).
However, inferential methods based on the coalescent are unable to separate N, m and v. Instead
inference is generally based on the product of population size and other parameters relevant Lo
the stochastic process, for example, Nm and Ny (see, for example, Beerli and Felsenstein

( 1999), Donnelly and Tavare (1995)).

Similar limitations affect methods derived from classical diffusion approximations o the
stochastic process (see, for example, Crow and Kimura (1970), Ewens (1979)). The diffusion
process is derived as the mathematical limit of a process as the population size goes to infinity.
The products Nv and Nm are assumed o converge to a finite limit and higher order terms are
ignored (see Ewens (1979), p. 135 for details). Thus, the stationary distribution obtained from
solutions of the comresponding partial differential equations are expressed in terms of Nv and
Nm and inference must be based on those confounded parameters. In fact, a product beta or
Dirichlet distribution emerges, a product over the number of populations sampled. We note
here that this is an instance of an attempt w direcly model the process in equilibrivm. We argue
below that taking advantage of the mechanistic knowledge of the process leads to separation
of the parameters N, v and m. In the process, through the hierarchical Bayesian framework, we
clarfy how much can be learned about them individually.
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3.1 Model description

Fu et al. (2003) propose a first order stationary Markov transition model to provide generation
o generalion transition in population allele frequencies. The model allows for general
migration and mutation structure. Under mild conditions this specification will have a
stationary or equilibrivm distribution.

Focusing on a single locus, assume that there are A allele types, by, ..., by and K populations
indexed by i. Let V4,4 be a general mulation matrix, that is ¥V, = v, is the probability of
mutation from allele type beto allele type b, S0 'V is row stochastic. Let M. g be a general
(backward) migration matrix, that is My=n1; is the probability that the allele in population i
came from population j. So M is row stochastic. L.chE‘n’bc the A x 1 vector of allele frequencies
. - i : 3 . N o

in population 7 at generation r. Then let P be the K x A matrix whose ™ row |5-.~{I-'l|; } S0
P s, as well, row stochastic.

A first order stationary Markov transition model 1o provide the generation Lo generation
transition in allkele frequencies can be developed in two stages. Let
p-MPY (8)

That is, P*" is a deterministic function of P and is, evidently, row stochastic. The rows of

(1" : . ey
Pl (p:, }} provide the allele frequency vectors for the stochastic pan of the specification. We
note that (8) is invariant to whether mutation precedes migration or vice versa. That is, in either

. f el ., =
case the contribution o ,rJJ-:: ! from P 18 m vy

Suppose population i is of size N;, where V; is the number of alleles in the i population. With
Ny diploid individuals, N; is replaced by 2N, In analytical solutions a common N; across {15
often assumed; we allow both varying V; and a common value, N. Given P and N;, the

stochastic specification assumes that the pll-” Y are conditionally independent and
apg < ] N e _alr)
2;p,"”*Multinomial (28:.p; ) )

Through (8) and (9) we pass from PP — P+ P Note, for future reference, that the

el depends upon N,

support of p,
The approach of Fu et al. (2003) provides first and second order moment behavior under
equilibrium for the model given in (8) and (9) obtaining explicit forms for special cases of M
and V. More recently, Song et al. (2003) provide forms for further special cases. However, the
approach does not enable any analytical results regarding the joint distribution of allele
frequencies. That is, letting p; denote the vector of allele frequencies for population i, it is not
possible o provide a form for the population model fipy, ... . pg) arising from the ransitional
specification.

However, consider a hierarchical model that captures both statistical and genetic sampling.
That is, we describe observed allele frequencies given population frequencies and describe
population allele frequencies given population model parameters. If, for the latler, we
incorporate the above specification, we {ind ourselves precisely in the circumstance of Section
2. The sampling model is usually taken 1o be product multinomial given the population allele
frequencies. In other words, with data ;. i= 1, ... , K, based upon a sample of n; multinomial
trials from population i, 2n{; ~ Mulinomial(2n; p;). The population model has parameters
V. the mutation matrix; M, the migration matrix and { N;}, the population size. Denoting all of
these parameters by #, the true population model has some parametric density, say, fipy. ..

o |
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pi | #). In our Bayesian inference framework, it is necessary 1o specify a prior on #, denoted
by fih). Then we seck the postenor distribution of #, given by fié 1 fiy. ... . fig)

This setting 15 clearly seen to be a LEP model; the population model s induced by the ransition

(=11 1 i v v o i
mudLIf( --~-~I'JLH ¥ P.r 191“ f"}. The latter is available explicitly; the former is

uniquely determined but analytically intractable and yet needed in order 1o fit the Bayesian
maodel. Thus this is a setting where our proposed MCMC method can be attempled.

3.2 MCMC strategy for the population genetics problem

The form of the Bayesian model is
=
[I_I_f (p: | p:)
i=1

For the present, suppose we confine ourselves to constant mutation and migralion rales, given
by vand m respectively; in other words, vie= 1 —wv, v =wiA — D and my; = 1 —mmy = m/
(K —1). Comparing this specification to the general setting of LEP models discussed in Section
loitisseenthat 8= {v.mNy, ... Ngl. X={p.....pgland ¥={f. ... . g} Also note that
the underdying transition model is product multinomial; as discussed in Section 2.2, the
components of X, p;, are amenable 1o component-wise updating procedure by simulating from
the conditional distrbutions. Specifically, following the theory developed in Section 2.2

Fipra....p |0) F ()

(100

[y @re B0 = =5 (prepyla...q00)

i LIOEERY S HI’=|' R LY RERR "I”
B I
L[I_[ P.Itlmﬁ]
& 1 (2

In(l 1},{][1"j._ e ,qi’}:r= 1, ..., B, are samples drawn from fi - | #), by running a sufficiently long

trajectory of the ransition model. In this case, the factors [/ (l'-'f | t]:-! ﬂ] are multinomial
probability mass functions given by,

(pilg"4)= ( z.m',-pr-lz_lﬁjzw,-pl_l,_ )[‘f‘.-;])m;p" ()

Given the approximation of fi- | #) b}'jj{;[- | &), the parameters v and m can be updated
individually using, say, a symmetric proposal distdbution.

(14)

Some care is needed when updating N; and p;. Note that they can not be updated sequentially
since the support of each component of p;is the set {0, 1, ..., (N; — LN, 1}, which depends
on N, Thus N; and p; must be updated jointly. We propose to simulate N; from its prior and
given V; we propose to simulate p; fromfip: | pr. -0 Piots Pists --- - Pr #). In order to simulate
p; from the above conditional distribution, given curent values of the other paramelers, we
use expression (3). Given that the other parameters are fixed at the current values, (3) is a

weighted mixture of multinomial distributions of the form / (P‘.- ||l:-r],l‘?}, the weights being
proporional o

! I_If "0) for i=1.....B.

(15)

Thus, to simulate I’mmj(pj-l Pis-oe s Piots Pists --- » P &) we simply select 1y from the set | 1,

. B} with probability proportional 1o 'r*v'?”i and simulate from f(l"r‘ | ‘l:;m'l-.’?}. Required p;is
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then obtained by simply scaling the simulated values by N;. Given that pt™™ is the current value

i

of p;. the acceptance probability of the new proposal pi™ simplifies to
_Jf. ([_],. |p;|r~:|l.')

[in .
7 (o)
If a common value N is assumed across all populations, then it follows that the suppont for each
component of each p; is dependent on N and it then becomes necessary Lo update the entire sel
{N, pis .- . pgt Jointly. However, updating so many parameters in one block will, in general,
not work well; the acceptance probability will be very close to zerm, and as a result, the MCMC
will remain at the same value for very many iterations.

To avoid this difficulty with a common N, we propose Lo approximate the multinomial
transition model for p; with a Dirichlet distribution. Specifically, wriling

ﬂ‘:.i]: 2N -1 ,r;:f:“. - 1:’!’::__?: (2N -1 p:,'r'"] we now assume Lhal

(plr.r L B : ]]Uirichlet {:rﬁ?"‘ L ,{rf_';J} (16)
Since the support of p; in the case of the Dirichlet distribution does not depend upon N; it is
nol needed o update p; and A simultaneously. [Lisalso easy to verify that the first two moments
of p; comesponding 1o this Dirichlet distribution are the same as those obtained from the
multinomial distribution. n this case, the density estimate is given by (12), but i 14) is replaced
with

J=1 i (17}

In this modelling approach N and py, ... . pgcan be updated sequentially.

4 Simulation studies

In this section we describe several simulation studies, involving varying N; and a common N
and corresponding o both multinomial and Dinichlet tmnsition models. A “bottom line™
comment is that the amount of leaming {change from prior to posterior) in all examples is very
limited. This is not at all an indictment of our approach but rather a useful statement regarding
the potental for inference with such models.

4.1 Example 1 : A multinomial transition model for allele frequencies

We simulate a data set with observed data fiy, wherei= 1., S0and j= 1, 2 (that is, with K=
50 populations and A = 2 alleles), using the multinomial (here binomial) transition model. The
true values of v and m are set o 0001 and 0.01 respectively. The ith population size N is
created as a Poisson deviate with mean 1000, and from each population a sample of size n; =
LOM) 15 drawn.

Given the above data set, we implement our proposed MCMC methodology assuming the true
multinomial transition model. As for priors on v and m, we would typically provide a bounded
interval of plausible values and then seek 10 be noninformative over the interval. Since the

intervals will typically span several orders of magnimde, a uniform prior on the log scale seems
sensible. In fact, under the above data set, with priors for v and m uniform on the intervals

(00001, 0,01y and (0.001; 0.1 respectively as well as uniform on the log scale of the intervals,
the posteriors remained almost unchanged, indicating robustness. We therefore report results

Star Compar. Author mamiscript: available in PMC 2008 October 2.
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corresponding to the uniform priors only. Priors for the other parameters are the same as those
adopted for the simulation mechanism. In other words, true priors are used for p; (multinomial
transition model) and N;. For inference purpose, 10000 samples were obtained from a single
MOMC run; this takes about 6 hourson a 2.66 GHz Pentium 4 machine with 1024 MB memory.
This computational expense of our MCMC algorithm is induced by the fact that during each
iteration, evaluation of fg(- | #) is needed for updating each of v and m. Since the calculation
of fgi- | @) involves simulating a sufficiently long trajectory from the transition model, the
evaluation can not be done too cheaply. Our experiments suggest that a sample of size 500
from the transition model afier discarding an initial 100 samples as bum-in is adequate.

Figure 1 displays the posteriors, priors and the rue values for v, m (both on the log scale),
Py and N, the harmonic mean of the N,-'h.lThu true values of v and pyy fall within the highest
density regions of the respective posterors; however, the posterior interval Fails to capture the
true value of m. Finally, we note that the posterior of N is almost the same as the prior. This
demonsirates that very little leaming from the data has been possible. Indeed, there are only
50 data points in this two-allele example but 102 parameters (Ny, ..., Nsg, v, m, pr, pag, ...
s ) thus it is expected that inference about most parameters will be driven by their priors,
Expressed in different terms, we observe 50 g/, They can inform about their associated p;'s
but provide little information about their Ny's. Finally, we show the prior and the posterior of
N, which, again, may be likened to an effective population size. But, as in the case of NV, the
postedor of N, seems 1o be almost the same as its prior, indicating insignificant leaming.

4.2 Example 2 : The approximate Dirichlet transition model for allele frequencies

We use the same simulated data set as in Example 1, but for inference purposes we now assume
that the transition model is Dirchlet in order to test the adequacy of this approximation. The
priors for the other parameters remain unchanged. The posteriors analogous Lo those in Figure
I are shown in Figure 2.

The posteriors of m, pyy, Nag and N, are essentially as before. The posterior of v undergoes
some change compared o Example 1; mass seems o be moved o higher mutation rates.
Owerall, the Dirichlet approximation seems adequate and, bearing in mind its usefulness in
cases where the N are all equal o a common N, we adopt il in subsequent analyses.

4.3 Example 3 : Posterior inference when Nj= N
We use the same set up as in the previous examples, but assume, for data simulation as well
as for inference, that &; = N. The assumption of a common N across all populations reduces
the number of parameters in the model from 102 to 33, and hence facilitates investigation on
how much learning about the reduced number of parameters is possible, given the data.
However, there stll are more parameters than the data, so substantial learning s stll not wo be
expected. It wrns out that the posteriors of v and m are similar to the posteriors for vand m
respectively obtained in Example 1 and so are not shown. Futhermore, due o the direct
association with the data, the posteriors for the p; always included the true values in their
respective highest posterior density regions. Thus, we consider the posteriors of N, Nv and
Nm. Figure 3 displays these posteriors.

From Figure 3 itcan be seen that the posteriors of Nv and Mm also have the same shapes as the
posterdors of v and m of Example 1. Essentially, we have a rescaling by &V, again small values
of Nm receive less posteror mass. The location of posterdor of N is now different from that of

IWhen population size vares from one genertion to the next, the inbreeding effective size of the population is approximately equal to
the harmonic mean of the Nis (Bwens (1979); Earlin (1968)). That is, the hannonic mean provides o measune for the effeat of genetic
drift on the covariance structure of allele frequencies within and among populations under 2 model with migration and a finite number
of populations.
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the proor, but the vanance 15 almost the same as the prior, altogether only a bit more learning
than in the cases where the N were different.

4.4 Example 4 : Effective population size — N; are different, but assumed equal for inference
Finally, we study a case that deals with misspecification of the model. The data is simulated
using the same setup as in Example 1. Specifically, N; are allowed to vary during data
stmulation. However, we pretend that there 15 a common N across all populabons. Quantities
of interest are shown in Figure 4.

We notice that all the posteriors m this example are similar o those in Example 3, where N =
Ninboth simulated data and inference. This is not unexpected, since learning is not substantial,
as demonstrated eardier. In other words, it seems difficult for the originally different N; to have
much effect on the wrongly assumed common N, Lastly, there is no obvious connection
between estimating N in this case and estimating N, in Example 2. Though N can be viewed
here as an “effective” sample size, it does not have the genetic interpretation associated with
the harmonic mean in Example 2.

5 Extension to the multilocus model

In all of the examples in Section 4, we find that we learn very little about N. In this regard,
whal can we gain by extending the above single-locus models w models with muluple loci?
Given L loci, we now observe allele frequencies i f=1, ... Lii=1,... Kandj=1, ...,
A. We let Py = (i, ... . Priag)" and py; = (pyiy. ... . piiay)". The sample size for population i at
locus ! is given by ny. ( We allow the possibility that, due to data collection issues, for a given
population, the number of alleles sampled at different loci might be different. ) At locus [, we
denote the mutation rate by vy, In this case we denote by # the parameters m and V. Here, we
assume a is customary, that allele frequencies are independent across loci (see, e.g., Holsinger
and Wallace (2004) and references 12 therein). Hence, the multilocus model becomes the
product of L single-locus models. The form of the Bayesian model is

LK [
[]_[ [ 17 @l p.'.-}] [T1F .. b 1830 £} £ @)
=1 i=1 =1 (18}
From the structure of the model it is clear that # now has information from data comresponding
to all L loci. We demonstrate by simulation studies that the posteriors of m and N are indeed
more informative than before.

5.1 A parallel algorithm for implementation of the multilocus problem
From i 18), it is clear that the Bayesian model specifies (conditional) independence over the
loci. This model is readily amenable o parallel implementation. We thus propose the following
updating procedure for #, vy, ... . v pys - P (=1, ... L.

Updating v; for each [ sequentially with a symmetric proposal density requires
computation of the acceptance ratio, i.e., the ratio of fgipn. ... . pg | &, v0f),
evaluated at the new and current values of v respectively, other parameters remaining
fixed at the current values. Here fg(pyy. - o o | 8 vidfivy) is evaluated by exactly the
same procedure discussed in Section 2.1, However, sequential evaluation of the later
foreach {=1, ..., Lis computationally intensive, particularly for large L. Parallelising
this computation makes the procedure very efficient. Hence we propose o update
mutation rates by splitting each v 1o a different processor. Al each processor, given
asymmetrie proposal density the new proposal will be accepted or rejected depending
on the acceptance mto, computed independently by each processor. Thus all vi= 1,
.o » Lare updated simulianeously, relaining computational efficiency.

Star Compar. Author mamiscript: available in PMC 2008 October 2.
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For updating each of m and N the acceptance ratio is the mtio

L ' r
1L, {.fg (1o Py |’nﬂ'vﬂ} S m.N ! evaluated at the new and current values of
m or N, other parameters fixed at the current values. We compute the acceptance ratio
by first splitting the evaluation of fy(py. ... . pue | m.N, v) for each {into different
processors. Then we combine all the factors evaluated in different processors o
compute the acceplance ratio (which is done by a single processor). The decision of
accepting or rejecting the proposal 15 then taken by this processor.

Foreach !, we update pyin aseparate processor. In this case, both the proposal density
and the acceplance probability are analogous to the single locus case. The conditional
independence of py; for different values of [ given & and vy, ..., v; suggests that the
same procedure as in the single locus case can be used w update py; incach processor.
The updating procedure within each processor may be roughly inlerpreted as a
replication of the updating procedure in the single locus case.

Application of the methodology to simulated multilocus problems

Since it is anticipated that data from the multiple loci will help us to leam more about the
parameters ( the focus being on the learning about &), an obvious gquestion is whether leaming
is greater when there are more loci and fewer populations or vice versa. We demonstrate below
that the amount of learning is almost same in both situations.

We consider two simulated data sets, one with 10 loci, 5 populations, 2 alleles and the other
with 5 loci, 10 populations and 2 alleles. We use the above algorithm on these two data sets.
However, we note that acceplance rates for m and N were very small. To avoid this problem,
we discretize the parameter space of m Lo have just three points, that is, Probim = 0.001,0.01,
0.1)= 1. We also set & to have mass concentrated on four points; more explicitly, Prob(N =
S0, 100, 500, 10007 = 1. Realistically, we could not expect o learn about m and N to more than
roughly an order of magnitude and the above mass points are considered sensible within a
population genetics setting. Thus, we do not need o use the Meropolis-Hastings step to update
the parameters m and N. We place a discrete uniform prior on these values. We then associate
weights with each of the mass points, the weights being proportional to the full conditional
distribution given other parameters and the data, and select a mass point with probability
proportional to its corresponding weight. We note here that computation of weights for each
mass point involves evaluation of fg(- | #) in each case, which is computationally expensive if
the number of mass points is large.

Figures 5 and 6 display the posteriors of mutation rates comesponding to the two data sets. [t
is seen that for both data sets, the postenors are relatively flat. This is not unexpected, since

the mutation rates are locus-specific, that is, increasing the number of loci will only increase
the number of mutation rates, not the information on any mutation rate.

Posteriors for migration rates corresponding to the two different data sets are shown in Figure
7. In both cases, almost the entire mass of the discretized posteror is concentrated on (0.1 this
indicates almost the same amount of learning about m in both cases. The concentration of the
entire mass of mon 0.1 is also consistent with the single locus cases, where 0.1 gets high
density. However, the true value of m, which is .01, receives no mass from the posierior
distribution; but this is again consistent with the single locus cases.

The posterors for N comresponding 1o the above-explained two simulated data sets are shown
in Figure 8. In both cases, it is seen that the posterior of & gives mass o only two values, 50
and 100, 30 receiving higher mass. The other two values 500 {which, incidentally, is the tue
value) and 1000 receive no mass at all. The above observations indicate a Cair amount of
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leaming about N, demonstrating the benefit of multilocus data. But the fact that the true value
receives no mass, is in keeping with the posterior of m, which does not give mass o the true
value either.

From the simulation experiments it is also clear that there is little difference in the amount of
leaming of the parameters from the two data sets. However, from the viewpoint of our parallel
computation algorithm, the data set with 10 loct and 5 populations 1 more attractive than the
one with 5 loci and 10 populations. This is apparent since, given 10 loci, each can be assigned
to a different processors and each such processor does the computation with 5 populations. On
the other hand, with 5 lociand 10 populations, each of 5 processors does the computation with
10 populations. Given the availability of a large number of processors, the former evidently
utilizes the resources much more efficiently. Specifically, to generate 10,000 realizations,
implementation with 10 loci, 5 populations takes less than one hour, while implementation
with 5 loci, 10 populations takes more than 2 hours,

6 Application of the methodology to a real data set

In this section we apply our proposed methodology to a human microsatellite data set with two
alleles. The sampling units are 52 subpopulations (small linguistic or geographic units) within
5 broad geographic populations. For more details on the data set, see Fu et al. (20035) and the
references therein. The data set consists of genotype counts which we reduce 1o allele counts.
Also, we combined the sample counts within subpopulations into a single sample count for
each geographical population. Thus, we have 5 populations and 2 alleles. There are 377
available loci but, currently, due to severe underflow and computational stability problems we
are unable o achieve reliable estimation of the required density fgipy. ... . pg | @) using all of
these loci. Possible remedies are the subject of a future manuscript but, for the present purpose,
we provide an illustrative analysis based on 10 randomly chosen loci from the set of 377,

The posterors for vy, £= 1, ..., 10, mand N are shown in Figures 9 and 100 In essence, the
postenors e in keeping with those comesponding 1o the simulated data sets. However, there
are notable differences. For example, Figure 9 shows that the posterior of several migration
rates are more informative than those corresponding to the simulated data sets. The mode of
the posterior of m is again seen 1o be 0.1, as inthe simulated data case, but the other points also
receive significant mass, unlike in the simulated data case. The smallest value of N tums out
to be the mode of the posterior of N as in the simulation experiments, but in this case other
points receive more mass compared Lo the simulation experiments. Indeed, for m and N there
15 litthe Bayesian leaming.

7 Other ecological applications

We briefly describe two other ecological settings that are driven by a LEP. In Section 7.1 we
consider a community biodiversity illustration due to Hubbell (Hubbell { 2001 ), McKane et al.
(2004)). In Section 7.2 we wrn to a habital dynamics example (Hanski (1994), Molainen and
Hanski { 1998)).

7.1 Hubbell's neutral theory of community biodiversity

Assume at time ¢ that there are N (t) individuals of species i in the local community and let
I N (n=J for all t, where ris the total number of species in the local community. The
transition from time ¢ 1o me ¢+ 1 selects one individual from the community at random and
replaces it with another individual drawn either from the local community with probability 1
—m or from a regional metacommunity with probability m. When drawing an individual from
the metacommunity we select one of species i with probability P;. Thus,
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An explicit (approximate) solution for the stationary distribution of this process, fIN' | P, J,
m) is possible using an appropriale continuous approximation. Interest in this model focuses
on estimating m and J (Latimer et al. (20035)).

The data consistof s samples collected at the same time from different parts of what is assumed
to be the same metacommunity, where there are S;; individuals of species i in sample 5. 8, the
vector of abundances in sample s, is hypergeometric with parameters N, and sample size T, =
%; 8is. With priors on P, S, and m, the specification of the LEP model is complete.

7.2 Incidence function models in metapopulation dynamics

Populations occupy distinet patches of habitat. Let ,r.rl[.nz Lif patch i is occupied at time ¢ and
F;”—U ifit is unoccupied. Let M be the transition matrix fora Markov chain that describes the
dynamics of pl[.'-}.
f1-Gey Gy °
‘“‘( Lty 1-Lin) ]
where Ci(t) is the probability that patch § will be colonized at time r+1 if patch i is unoccupied
at lime r{,r?ll-”—ﬂ and jJ'Ir-” |‘,|_1} and Eq(t) is the probability that the population at patch i goes

extinct given that it is present at bme ¢ [p?”:l and ;:j””:ﬂ}l. Suppose
E = min(41)
. o Mniy
C-r UJ - Inl_fl r"}“‘_T =11
M, (1) e ﬁk_;j?_ll;“f’_”du‘%f' :
; .

where A; is the area of patch i and dj; is the distance between patch i and patchj. 8 = (g, x. a,
A7, 120 is the vector of model parameters.

The data consist of observations on palch occupancy (presence or absence of a population) and
patch areas. Specifically, ¥; = 1 if patch i is occupied when observed, so ¥; ~ Bernoulli(p;).
Then, collecting the ¥'s and pi's into vectors Y and p, the LEP model isfip, &1 Y) o fiY | p)
fip Léfidh.

8 Discussion

This paper has focused on model fitting strate gies for what we have called latent equilibrinm
process models. While suggesting a range of potential applications, we have concentrated on
population genetics models. In particular, we have investigated the case of two alleles with
constant mutation and migration rates. In principle, our proposed methodology can be extended
to accommodate general migration and mutation matrices and o arbitrary number of
populations and alleles though substantial computational challenges will ensoe.

Also, with a single locus, little learning would be anticipated. However, as in this paper,
leaming may be improved by incornomtine data from multiple loci. But the speed of the
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MOCMC algorithm may remain an issue. For instance, under fully general mutation and
migration matrices, noting that the columns of each matrix are dependent (since the rows sum
Lo ome), 1t will be necessary w0 update the mutation vector (vep. ..., veq) and the migration
vector (myy, ..., m, )" sequentially for each population r=1, ..., K. This implies that the
number of evaluations of fgi- | #) in a single iteration will be the same as the number of rows
of the migration matrix and and the number of rows of the mutation matrdx. For a large number
of populations the difficulties are evident. Also, since il is necessary 1o update all elements of
each row of each of the migration and the mutation matrices simultaneously, in the case of
many more than two of alleles, the ( Metropolis) acceptance rate of the vectors may be very
low. In summary, the methodology we have proposed seems 1o be the most promising way
currently available w attack the fitting of the general class of models that are our interest.
However, much computational refinement is still required in order 1o adeguately handle the
level of generality we seek.

Acknowledgements

All three authors werne supported in part by a grant from the U. 5. National Institutes of Health, 1-ROL-
GMO6E4H901A1L. The authors thank Dipak Dey for valuable conversations,

9 Appendix: Simulation study

We consider a simulation study to demonstrate the validity of our theoretical assertion
regarding convergence of our MCMC algorithm.

Given adata set of the form ¥ = (v, ..., ¥,), we consider a Bayesian model of the form
TEL, (v [0 f (6. In particular, we assume that, fiy; | @) is a normal density with mean # and

variance 1, and that §&) is the statonary distribution corresponding 1o a Markov chain with
three states, whose transition matrix is a reflecting barrier of the form

pog 0
P=1 0 p g
g 0 p

Hence, the stationary probability of each of the three states of @is 1/3. In other words, the prior

S is uniform, with probability 1/3 for each value of &, For this toy LEP model we choose n

= 10, p=g=1/2, and the 3 states of # as 0, 0.1 and 0.2. Given the data set ¥ = (04412,
—1.2335, 1.1727,—-0.6121, 0.0887, 0.0992, —0.1494, 0.4966, —0.1640, —1.5640)' the exact
posterdor probabilities for the three states are then given by 0.4403, 0.3325 and 02272
respectively.

Now, assuming that the stationary distribution of ) is unknown, and that only the ransition
model, which, here, is the reflecting barrier, is known, we implement our proposed MCMC
algorithm on this LEP model. In particular, we propose & by running the ransition model 1o
stationanty at each ieration. Thuos,

1B

/, (#=x)= X f (#=x] ")

is the estimated stationary distribution of &, where {z; r=1, ... B} are obtained by running
the transition model o sttonarity, for sufficiently large B. Since fgif) = x) is expected o
approximate fi ) arbitrarily well, we recognise
[1f (vl 6)
=min {1 ">—

1 .lﬂ{f (v | pheore)
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as the acceptance probability of £
Choosing 8 = 1O, discarding the first 3000 samples as burn-in and storing 1 outof 3 samples
in the next 25000 samples generated, giving a total of 3000 realizations of &, we obtain the
approximate probabilities of the states(, (0.1 and 0.2 as 04438, 03326 and 0.2236 respectively.

The results cleardy demonsirate the validity of our proposed MCMC method for LEP models
and supports our theoretical resulis.
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Posteriors and priors of parameters (v and m displayed on the log scale) when the transition
model is multinomial.
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model is Dirichlet.
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corresponds to 5 loci, 10 populations.
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., 10 using the human microsatellite data (see Section 6 for details).
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Figure 10,

{a) Posterior of m and (b) posterior of N (both displayed on the log scale) using the human
microsatellite data (see Section 6 for details)
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