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Abstract

Simple illness-death model arises in many examples of survival and reliabil-
ity studies with industrial products. In a typical illness-death model, one is
often interested in the event of occurrence of illness (D) which is assumed
to be unobservable. This event is followed by the event of failure or death
(F) which is observable in addition to the presence of illness. Failure (F')
can also be observed before the illness occurs in which case the absence of
disease is also recorded. In this work, we consider the problem of finding
one or more intermediate examination times in order to make inference on
D and/or also to safeguard the event of failure with illness before it is de-
tected at an examination time. The standard likelihood based criteria are
difficult to apply since calculation of the expected information matrix is not
straightforward. We discuss two new optimality criteria which are based on
some simple probability calculations and easy to apply.
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1 Introduction

Simple illness-death model arises in many examples of survival and re-
liability studies with industrial products. In a typical illness-death model,
one is often interested in the event of occurrence of illness (D) which is as-
sumed to be unobservable. This illness can be identified with a disease in
the survival context and a fault in the reliability set-up. This event D is
followed by the event of death or failure (F') which is observable in addition
to the presence of disease/fault. Failure (F') can also be observed before
the illness occurs in which case the absence of illness is also recorded. For
notational convenience, let us also mean by D or F' the corresponding time
of event whenever the context is such. Applications can be found in ani-
mal carcinogenicity experiments, medical studies involving human subjects
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(for example, in HIV/AIDS research), and in industrial applications with
machine faults. See Dewanji and Biswas (2001) for more details.

Borgan et al. (1984) consider the comparison of several designs for an
illness-death model with respect to their efficiencies relative to the design
of continuous monitoring and conclude that the one with intermediate ob-
servation has highest efficiency. Since continuous monitoring is unrealistic
in light of the cost and operational difficulties involved in such design, we
consider here the design with K (> 1) intermediate examination times and
address the problem of scheduling these times.

This design issue is important, for example, in cancer screening studies to
schedule the visits of susceptible patients when they are to be examined for
the presence of cancer (see Day and Walter, 1984). There are some ad-hoc
approaches to schedule the visits, usually once in every year or so, although
a more objective criterion to choose K time points for intermediate exami-
nation will be of interest (see Zelen, 1993). Similarly, in reliability context,
it is important to schedule intermediate inspection(s) for detection of fault
in a machine. It is desirable to guard against the possibility of both illness
(disease or fault) and failure taking place before the illness can be detected
in a subsequent examination time. This feature is particularly useful when
some corrective measures can be started upon diagnosis/detection of illness.
However, one may also be interested in the estimation of the distribution
of D, the occurrence time of illness, in which case it is desirable to have as
much information as possible on the distribution of D. This may be useful
in some risk assessment issues concerning the occurrence of D. In this work,
we consider finding a simple design for serving either or both of the purposes
which is optimal in some sense.

The calculation of expected information matrix for a typical observation
from the simple illness-death model seems to be difficult in general (see De-
wanji and Biswas, 2001, and also the discussion in the following sections).
Therefore, the task of obtaining an optimal design using the standard like-
lihood based criteria, which deal with the expected information matrix, is
not straightforward. For this reason, we introduce some simple probability
based optimality criteria which are very easy to deal with and have com-
pelling intuitive appeal. Unlike Zelen’s optimal scheduling, the approach is
sequential in nature in the sense that the optimal examination times are
chosen one at a time, the later choices depending on the earlier examination
times and also the outcome of those examinations.

In Section 2, we introduce a model for the joint distribution of D and
F, which is used for our description in the subsequent sections. Section 3
considers the design problem for choosing one examination time to intro-
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duce the underlying principle. Section 4 generalizes the idea to choose more
than one examination times. Section 5 discusses some Bayesian designs and
Section 6 ends with some concluding remarks.

2 Preliminaries

We start with the simple parametric assumption of exponential model
for D, with parameter «, having density f(z) = ae™®*, a >0, > 0. The
assumed conditional distribution of F', given D = z, is described in terms of
its conditional density as follows:

| Be By, ify<z
g(y|x) - { 76*51*7(?4*1), ify > . (1)

That is, the conditional hazard  (before illness occurs) changes to v once
the illness occurs (see Freund, 1961). Although, in the following sections, we
work with this model, the approach is simple and flexible enough for other
general models, as noted in Section 5.

The optimal designs will depend on the model parameters which need to
be estimated based on data from some other sources or from previous stages
in a multistage framework. Estimation of the model parameters based on
relevant data has been discussed elsewhere (see, for example, Dewanji and
Biswas, 2001).

We now introduce four different quantities as performance characteristics
associated with different purposes and study the performance of the proposed
optimal designs of sections 3 and 4 with respect to these characteristics using
model (1). See Biswas and Dewanji (2004) for details.

The first characteristic we consider is the average number of examina-
tions (out of K), denoted by E[N], where N is the number of examinations
actually used. It may be noted here that, in the proposed designs, once
the illness is detected at an examination time, the subsequent examinations
are not necessary and hence not scheduled. Since each examination has a
cost associated with it, the average number of examinations may seem to
be a reasonable characteristic to consider. However, if cost is not much of
concern, and noting that more number of examinations at optimally chosen
time points lead to more information on the distribution of D and proper
utilization of the K allowable examinations, larger values of E[N] is desir-
able. For example, in the reliability context, routine periodic examinations
for finding defects are usually not very expensive. For the model (1), E[N]
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is found to be

K
E[N] = Z {Le'r(t]‘t]w) + ﬂe*(oﬂrﬁ)(tj tjl)} e~ (o)t
S latf—y a+pB—y

where t; < --- < tg denote the K optimal examination times.

In most practical situations, the aim is to reduce the time duration of
illness remaining undetected so that, upon detection, a corrective step can
be initiated. Let us, therefore, define ‘loss’ as the above time duration from
the occurrence of illness till its detection at the subsequent examination time
or failure, whichever is earlier. The risk (R), defined as the expected loss,
is, for the model (1), given by

K
R = Z(tjAgj — Alj + A3j — A4j) + (A5 - Aﬁ)a

7=1
where
Ay = e {a +; - 1@ _ g omlariot]
o —(a+B—)tj—1 _ —(a+B—7)t;
+(04+5—7)2 [6 J ‘ ]]}
Ayj = el — +Z — [e*(OH‘ﬁ*’Y)tjfl _ 6*(a+ﬁ77)tj}
o e . e ,
Ag; = —— [tj,le (@+B)ti—1 _ ¢ +6)tj}
@ @ —(a+B)tj—1 _ ,—(a+B)t;
+{(a+ﬁ)2+7(a+ﬁ)}[e ‘ ]
—(t; +7—1)e—vt]~m [e—(a-l-ﬁ—’Y)tj—l _ e—(a-l-ﬂ—’Y)tj} :
o _ ) _ )
A4j _ Py [tj—le (a+B)tj—1 —tie (a‘i‘ﬂ)tj}
_ Y [ ~(atB)tj—1 _ —(atB)t
+(a n ﬁ)2 [e J e J}
ot ® [ —(atB-tjo1 _ —(atB-)t;
‘ (a+ﬁ—ﬂ2F ‘ ]
i Y [ —(atB-ti—1 . —(atB-)
e Ja+ﬁ_7[t],1e J tje J],

and A5 = Agj with t]‘_l = tK and tj = o0, and A6 = A4j with t]‘_l = tK
and t; = oo.
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Another practical aim is to be able to detect illness before failure occurs
with high probability. The probability of this event, as the third character-
istic, is, for the model (1), given by

b i {aiﬁ [ertelios _ o~(ess]

J=1

aef'ytj
_ e 7 | leB-tior (a8t
s [e -t e } } .

In order to quantify the performance for estimating the distribution of
D, without having to calculate the related information matrix, we introduce
the following characteristic given by the sum of absolute differences between
the K optimal examination times and the corresponding quantiles of the
distribution of D. Formally, this characteristic @) is defined as

K

i=1
where ¢;, j = 1,---,K, are the K quantiles of D given by
Plgji—1 < D < qj] = ﬁ, for j = 1,--- , K, which evenly cover its range.

For the exponential distribution of D, given in (1), we have

0-3.

J=1

1 J
ti+—log|1— .
]+a0g( K—)—l)‘

Note that, these g;’s coincide with the d;’s defined later in Section 4 for
exponential distribution of D.

3 One Examination Time

In this section, we discuss the design for choosing one examination time
to introduce the idea, which then can be generalized, in the next section, to
K examination times.

As D is the event of interest, we like to arrive at a design giving most
‘information’ on the event D so that the intermediate examination time,
t1 say, is not too early to miss most of the occurrences of illness. That
is, D should occur before ¢; with highest probability. Without any further
restriction, this will lead to the trivial optimal design of choosing ¢; = oc.
But we do not want ¢; to be too late to observe only the illnesses followed
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by failures. Therefore, we consider maximizing the probability of the event
{D < t; < F} with respect to ¢;. Intuitively, this also has the interpretation
of trying to get 1 as close to D as possible. It has also the natural appeal of
incorporating the information on the associated failure process while focusing
on the illness process. Let us denote this criterion by C;. In order to guard
against the possibility of both illness and failure taking place before the
examination time t1, we may want to minimize the probability of the event
{D < F < t;} as well. In order to achieve this, we consider maximizing the
difference of the two probabilities, that is P[D < t; < F| — P[D < F < t;].
Let us denote this criterion by Cs.
Note that, for the model (1),

tq
PID <t <F] = / e @ +B)z—7(t—2) g
0
_ Y [t (etB)
a+p—v [e € ] ’

assuming « + 3 # y. The value of ¢; which maximizes this probability is
given by
log [( +
3, = loglla+B)/v] 2)
a+fB—r
For criterion Co, the difference P[D < t; < F|—P[D < F < t;] can be found
as
200 [ _ e—(aw)tl} o [1 _ e—(aw)tl}
a+fB—7y a+p ’

assuming « + 3 # . Maximizing this with respect to t1, we get the optimal

t1 as
1 log [(a+ﬁ+7)] ’

[y g 2y ®)
which can be seen to be less than the #; in (2). Note that both the optimal
designs in (2) and (3) involve parameters related to both the illness and
failure processes, as commented in the beginning of this section.

The optimal values of ¢; from (2) and (3), satisfying criteria C; and Cs,
respectively, have been reported in Table 4 of Dewanji and Biswas (2001)
for different sets of parameter values. It is also demonstrated there that the
asymptotic relative efficiency (ARE) of the two designs with respect to the
traditional variance minimizing optimal design is very good. The ARE of C;
is almost 1, whereas that of Cy is above 90%.

The four performance characteristics of the previous section are calcu-
lated for the two designs and presented below in Table 1 along with the
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optimal design points for some sets of parameters. The two entries in each

cell correspond to the criteria C; and Csy, respectively.

TABLE 1. OPTIMAL DESIGNS AND PERFORMANCE
CHARACTERISTICS OF C; AND C» WITH K = 1.

Parameters Performance characteristics

a ] v tiv E[N] R p Q
0.2 0.1 0.15 4.62 0.58 4.87 0.33 1.16
2.70 0.74 6.05 0.30 0.76

0.1 0.1 0.15 5.75 0.53 5.33 0.21 1.18
3.08 0.72 6.50 0.18 3.85

0.02 0.03 0.045 21.07 050 16.90 0.16 13.59
10.81 0.71 20.37 0.13 23.84

As expected, E[N] for C; is lower than that for Cs, since the value of
t1 for the latter is lower than that of the former. In terms of R and P, C;
performs better than Co. However, in terms of ), the choice does not seem
to be that clear.

4 Multiple Examination Times

As a natural generalization of the argument used in the previous section,
for C;, D should occur by the first examination time, #;; if not, then D
should occur by the second examination time, ts; and so on. One would,
therefore, be tempted to choose the first examination time ¢; by maximizing
P[D < t; < FJ, and, if D does not occur by time ¢;, then to choose the
second examination time ¢ by maximizing P[D < ty < F|t; < D, F], and
so on. However, by this natural generalization, ¢; is same as the optimal
time point when only one intermediate examination is allowed. This results
in a large ¢; and the subsequent examinations, in many cases, may not be
necessary at all. Therefore, instead of risking the information on possible
early occurrence of D, it is reasonable to spread the K examination times
evenly, in some sense, over the range of D, that is (0,00). For this purpose,
we choose K time points d; < --- < dg, say, in the range of D. We first
choose d; satisfying P[D < dy] = ﬁ Then, after finding t;_;, the (j—1)th
optimum examination time, d; is chosen satisfying P[t;_1 < D < dj|D >
ti—1] = K+34r2 That is, d; is taken as the first of the (K — j + 2) quantiles
of the residual life time beyond ¢;_; (with ¢y = 0). As a principle, we like
the jth examination time not to exceed d;, for j =1,--- K — 1.
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Then, we may choose the optimal examination times as
t; = min{d;, arg max P[D<t<Fl|tj1 <D,F]}, 1<j<K—-1,
tx = arg max P[D <t < F|tk—1 < D, F].

Choosing tx is equivalent to choosing one optimal inspection time from the
residual life time after ¢x 1 conditional on [tx 1 < D, F]. This is criterion
Ci.

Similarly, the criterion Cs is generalized as follows.

t; = min{dj, argm?x P[D <t< F|tj71<D,F] - P[D< F< t|tj71<D,F]},

1<j<K-1.
tK:argm?xP[D <t<F|tK_1 <D,F] —P[D <F<t|t[(_1 <D,F].

Also, as in Zelen (1993), we can introduce a utility function given by

K
U:Z{P[tj_l<D<tj<F]—P[tj_1<D<F<tj]}, (4)
j=1

which is the sum of differences, at different examination times, between the
probability of detecting illness D and the probability of failure with illness
taking place before the examination. The optimal examination times can be
obtained by maximizing U with respect to t1,--- ,tx simultaneously. Let us
call this criterion C3. Note that, for K = 1, this is same as Co.

Simple probability calculation gives, for the model (1),

P[D <t< F|t]_1 < D,F] = %ﬁ—’y [677@7”71) — 67(a+6)(t7t]‘71)i| .

Maximizing this with respect to ¢, it is easy to see that the optimal exami-
nation times, for the optimality criterion Cy, are given by

log(—‘”ﬁ)
. v .
ti = mindd;, t; 4+ —22 8 i K1,
j BT Y B J
a+f
and t = t +M
K K—1 PO

Similarly, for Ca, one can calculate the difference P[D < ¢t < F|t;j_1 <
D,Fl—P[D<F <tltji1 <D,F]as
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2 «
A | tier) (e B)(Eti—1) | _ o (a+B)(t—tj—1)
a—)—ﬁ—'y[e ’ ¢ ' } a—{—ﬁ[l ¢ ' ]

Maximizing this with respect to ¢, the optimal examination times come out

to be
) 1 a+ﬁ+7>}
t; = min<d;, ti_1+ lo ,
! {’ T at By g( 2v
jzla"'aK_la
a+f+y
and ¢ = tg 1 +——log|{ ——— .
e et p—y g( 27 )

In order to use the criterion C3, the model (1) gives the expression for
the utility function (4) as

U = E: 2067 (a+B8—7)t (a+B8—7)t
—\« —Y)tj—1 —\& —Y)t
j:1{a+5—7[6 J ¢ J]

. @ —(a+B)tj—1 _ ,—(a+B)t;
o [ eeon] ]

Maximizing U with respect to the ¢;’s simultaneously, we obtain the following
recursive relation for the optimal A;’s, where A; =t; —t;_:

o+ 16 — fye(a'i'ﬁ_')/)Aj

e TAj+1 , j=1,-- ,K—1,
atf—v !
Ap = — L1 log (W) .
atf—v 2y
The optimal examination times 1, -+ ,tx, can now be obtained from the

Aj’s above. Unlike Zelen (1993), they are not equispaced.

Biswas and Dewanji (2004) present the K optimal examination time
points satisfying criteria C;, C and Cs, for different sets of parameter values,
for K = 3,5 and 10 (the last three entries in each cell of their Tables 1
and 2). These examination times are seen generally to be evenly located
on either sides of 1/a, the expected value of D. In their Table 3, Biswas
and Dewanji also present the values of the four performance characteristics
for several design criteria. We present, in Table 2, the same for our three
criteria. In order to save space, we denote the set of parameters (o, 3,7) by
0 and the three parameter combinations of Table 1 above by 61, 6> and 05,
respectively. The three entries in each cell correspond to the three criteria
C1-C3, respectively.
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TABLE 2. PERFORMANCE CHARACTERISTICS OF Cy, Co AND C3
wITH K = 3, 5 AND 10.

K=3 K=5 K =10
9 E[N] R P @ EN R P @ EN E P Q
1.62 2.89 049 0.00 247 191 0.55 0.00 4.51 1.00 0.60 0.76
6, 1.64 3.23 048 0.76 248 2.14 0.54 0.76  4.52 1.12 0.60 0.76
1.64 3.26 048 093 238 209 054 1.36 4.11 1.00 0.60 4.69
123 247 034 1.18 192 151 0.39 1.18  3.62 0.71 0.44 1.18
6 1.36 3.44 033 579 1.98 2.09 0.38 579  3.64 0.96 0.44 5.79
1.67 4.07 0.32 10.31 245 2.80 0.38 15.31  4.23 1.44 0.43 24.29
0.97 7.1 0.25 1359 1.55 4.12 0.29 13.59 3.00 1.90 0.34 13.59
fs 1.37 11.65 0.25 53.48 1.71 6.62 0.29 54.85 3.04 2.71 0.34 54.85
1.69 13.58 0.24 70.18 2.48 9.69 0.29 111.83 4.29 5.20 0.34 202.42

As expected, E[N] for C; is lower than that for C, since the examination
time points for the latter are lower than those of the former. This quantity
is generally higher for C3. In terms of R, C; performs by far the best with C3
being the worst. With respect to P, all the three seem to perform equally
well. However, in terms of ), C; stands out ahead of others and C3 seems to
perform badly. Therefore, C; seems to be the best criterion, in general, for
serving both the purposes.

Although the K optimal examination times t1,--- ,tx satisfying any of
the criteria C;1 —C3 can be fixed before the actual study begins, for a particular
patient, in practice, not all of them may be necessary. By construction, they
are in increasing order to maintain the chronological timing. However, as
the study progresses and accumulates information on the disease process up
to, say, the (j — 1)th examination time, use of this information for choosing
the optimal jth examination time becomes important. One can improve
upon the initial optimal choice of Z;, by using the information accumulated
up to tj_1, thus making the optimal choice of ¢; adaptive. We propose to
use this information to update or improve the estimate of 8 = («, 3,7) using
the current accumulated data. This can be done by using the EM algorithm
(Dempster et al., 1977) as described in Dewanji and Biswas (2001). Then,
the improved estimate can be used to choose the next optimal examination
time. For C3, however, since the optimal choice of the ;’s is simultaneous,
this adaptive method is purely algebraic lacking any criterion of optimality.
Note that in each case, t; has the expression as ;1 plus a positive quantity,
which is being evaluated at the current estimate. Thus, the adaptive optimal
scheduling also leads to naturally (increasing) ordered examination times, at
least for the model (1).
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5 Bayesian Designs

The examination times obtained in the earlier sections are functions of
the parameters. For example, for the model (1), the examination times
are functions of 8 = («,f,7), the model parameters, which are typically
unknown. Therefore, to implement the design, we need some idea (or esti-
mates) of these parameters. A reasonable approach is to employ the adaptive
method as described in the last paragraph of the previous section. Another
alternative is to use some Bayesian design where a prior 7(6) for 6 is chosen
according to the belief and knowledge of the experimenter. Let © be the
domain of . We can go on updating our knowledge about these parameters
with the accumulated data (posterior distribution of #) at any point of time.
For the sake of simplicity and administrative convenience, suppose we find
the posterior of 8 only at the successive examination times.

The Bayesian approach can be used in two ways. First, the successive
examination times #;’s can be the expected value of the same, as derived
in Section 4 using C; — C3, with respect to the posterior obtained at the
current time (see Berger, 1985, Section 4.3.4). In order to obtain the first
examination time ¢1, we find the corresponding expected value with respect
to m(6#). For the optimality criterion C; and model (1), for example, this
time is

log <a+5>
t —/@mln dy (), gy m(0)do,

where d; = d;(«) is such that P[D < d;] = K+1, the dependence on a made
explicit. The above integration can be numerically carried out.

Let the likelihood of the accumulated data Ej till the examination time
tj (for j =1,--- ,K —1) from all the subjects be denoted by L;(¢). Note
that E; consists of all information on D and/or F till time ¢; from all the
subjects (see Dewanji and Biswas, 2001). Then, the posterior density of 6
at time ¢; is given by

Lg(9)7fy 1(01E;1)
f@ 7T] 1 9|E],1)d9’

with Ey being empty and my(-) = 7(-). Then, the (j + 1)st examination time
(for j=1,--- , K —2), from Section 4 for C;, and model (1), is

i (01E)) =

log( ’8)
tj+1 :/ min dj+1(0(),t] 7Tj(9|Ej)d9,
o a+fB—
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where d; 1 = dj;1(a) depends on a.

Although this approach seems straightforward, the numerical derivation
of examination times becomes a formidable task as we deviate from model
(1). As commented in the last section, besides the expectation with respect
to the current posterior, the computation of ¢; for given 8 itself will require
numerical integration and maximization. An alternative approach is to take
the expectation of the objective function with respect to the current posterior
before optimizing it. For example, for C; and model (1), the first examination
time ¢ is chosen as

1 = min {/OOO dy ()7 (@) dar, arg méix/@ PID <t< F]w(@)d&} .

The subsequent examination times can be written in similar fashion using
the current posterior. However, as we deviate from model (1), the numerical
task again becomes formidable. One can also think of employing Monte
Carlo integration to calculate the successive examination times as they have
expectation-like expression. Besides the Bayesian approach, there are few
other strategies to deal with the problem of parameter-dependent design
(see Pukelsheim, 1993, Ch. 11) based on mixture of competing models,
constrained optimization, etc.

6 Concluding Remarks

In order to arrive at an optimal choice of the examination times (the
t;’s), at least in non-Bayesian framework, the following strategy may be im-
plemented. We first make a guess for their values from past experience or
prior knowledge, if any. Start the study with n individuals with these exam-
ination times. Based on the n observations, estimate the model parameters
and obtain the optimal choice of #;’s using these estimates. This idea can
be extended to suggest strategies involving multiple stages.

Note that the design by C; — C3 can be obtained in simple closed form
at least for model (1), whereas the ones using expected information are
difficult. The efficiency of C; or Cs also seem to be quite high (at least
for K = 1). These criteria, therefore, seem like a useful and appealing
alternative to the traditional ones, specially when the optimal design is to
be obtained by strategies involving multiple stages, as commented above.
Since the criteria C; and C; optimize some probability terms only and do
not depend on the likelihood, the corresponding designs do not change due
to minor changes in the secondary aspects of data. For example, when
there is possibility of censoring or some missing mechanism inherent in the
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data leading to different forms of likelihood, criteria C; and C; give the
same optimal designs given in sections 3 and 4; whereas, for finding an
optimal design by the likelihood based criteria, the calculation of expected
information matrix requires knowledge on the censoring distribution or the
missing mechanism which is usually unknown. This is the major advantage
of our criteria.

Another advantage of the probability based criteria C; and Csy is easy
incorporation of one or more covariates, denoted by Z = z, say, in the
optimal design. For example, if the distribution of D happens to depend on
7 = z via the exponential parameter o = a(z) = ape®? (say), the optimal
design for the ¢;’s by C; or Ca, can be readily obtained simply by replacing
a by a(z). Therefore, the optimal design for individuals with different Z
values will be different (making it more realistic) but can be obtained by
using one formula. In order to achieve this by a criterion based on expected
information, one has to do the extensive computation again and again for
different values of Z.

Although we demonstrated the results based on the simple model (1) of
Section 2, the criteria C; and Cs can be easily employed for more general
models. The calculation of the probabilities P[D < t < F|t' < D, F] and
P[D < F < t|t' < D, F], in general, involves numerical integration, and so,
the maximization required for C; and Cs may not have closed form solutions
as in sections 3 and 4. However, numerically finding the optimal ¢;’s requires
much less computation than having to calculate the expected information
matrix. Since C3 involves simultaneous maximization with respect to K
variables, this may be more computer intensive. See Biswas and Dewanji
(2003) for details.

Note that the optimal choice of examination times implicitly depends on
the knowledge that a maximum of K examinations are allowed. However, if
this knowledge is not available or there is no such restriction on the number
of examinations (which is the likely scenario in many cases), all the criteria
of this paper fail. One possible solution is to start with a K, and as the
examinations are held, vary the value of K, depending on the current budget
and information, while choosing the successive d;’s. This also makes the
choice of ¢;’s adaptive in some sense. Since C3 makes simultaneous choice of
the t;’s, the above remedy does not apply to it.
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