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In a classification problem, quite often the dimension of the measurement vector is large.
Some of these measurements may not be important for separating the classes. Removal
of these messurement variables not only reduces the computational cost but also leads
to better understanding of class separability. There are some methods in the existing
literature for reducing the dimensionality of aclassification problem without losing much
of the separability information. However, these dimension reduction procedures usually
work well for linear classifiers. In the case where competing classes are not linearly
separable, ome his to look for ideal “features” which could be some transformations
of one or more messurements. In this paper, we make an attempt to tackle both, the
problers of dimension reduction and feature extraction, by considering & projection
pursuit regression model. The single hidden laver perceptron model and some other
popular models can be viewed as special cases of this model. An iterative algorithm based
on hackfitting is proposed to select the features dynamically, and cross-walidation method
is umed to select the idesl mumber of features. We carry out an extensive simulation study
to show the effectivensss of this fully antomatic method.

Keywords: Artificial pewral networks; backfitting: classification using splines; cross-
validation; feature selection; projection pursuit regression.

1. Introduction

In high-dimensional classification problems, it is often seen that ooly a smaller mim-
ber of features (some functions of original variables) contain most of the information
for separating the classes. It is therefore desirable to identify these features so that
it helps to reduce the dimensionality of the problem, which in turn facilitates the
visunalization of class separability in a lower-dimensional space and at the same time

reduces the computational and storage costs substantially.
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If we restrict ourselves only to linear classification, results for feature extrac-
tion are svailable in the literature (see e g, Refs. 14 and 24). However, in practice,
linear classifiers are often found to be inadequate. Therefore, extraction of impor-
tant features for noolinear classification & an important statistical problem. For
linear classifiers, these features are typically linear combinations of the original
variables, which we will consider as linear features in this article. For nonlinear
classification, in addition, we consider features which are nonlinear transformations
either of original variables or of linear features. We will consider them as nonlinear
features.

In regression, projection pursuit regression model (see ep. Refs. 16 and 26)
was developed to compensate for this inadequacy, and artificial neoral network

k53495 provide much more flexibility for classification. Both have their own

maode
strengths and limitations. In this paper, we combine these two approaches to
develop a method which is more fexible and statistically meaningful as well. Later,
we will see that many of the existing models can be viewed as special cases of
the resulting model. We propose an iterative feature selection (IFS) algorithm for
dynamic adjustment of features, and cross-validation techniques are used for zelec-
tion of the final model appropriate to a specific problem.

The organization of the paper & as follows. The problem of classification is
briefly described and the awailable tools for solving these problems are reviewed
in Sec. 2. In Sec. 3, we discuss the motivation for the new method and compare
the corresponding model with the existing ones. The feature selection algorithm
is described in Sec. 4. Experimental results illustrating the new method is pre-
sented in Sec. 5, where we use some simulated and benchmark data sets to compare
the method with some existing classification techniques. Finally, a summary and
concluding remarks are given in Sec. 6.

2. Classification Techniques

In classification problems, one uses the training data {(x., c.) : %, € RBP, &, €
{1,2,...,J} n=1,2,...,N} to build up a decision rule d(x) : RY — i s R
for classifying multivariate observations x into one of J competing populations.
Bayes rule (see e.g. Ref. 1) assipns an observation x to the class with the largest
conditional probability p{ j|x). An accurate approximation of these unknown proba-
bilities helps vs to formulate a decision rule capable of achieving nearly the optimal
misclassification rate. These probabilities can be estimated either parametrically
or nonparametrically. In parametric approaches (see e.g. Refs. 1, 19 and 31), the
measurement vector X & assumed to have a known distribution with inknown
parameters. For instance, in Fisher'’s (see Hef. 15) linear or quadratic discriminant
analysis (LDA and QDA), this known distribution is taken as multivariate normal
with different parameters for different classes. Performance of a parametric classifier
depends heavily on the validity of parametric model assumptions, and when one
or more of these conventional assumptions are violated, parametric classifiers often
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fail to adequately approximate the class boundaries. In such situations, one wso-
ally prefers nonparametric methods, which are more flexdible and robust. Notably
nonparametric methods like classification trees (see e.g. Ref. 5), flexible discrimi-
nant analysis (see eg. Ref. 23), nearest neipghbors (see ep. Refs. 10 and 18), kernel
discriminant analysis (see e.p. Refs. 13 and 22), neural networks and support vec-
tor machines (see eg. Refs. 11, 37 and 42) have been observed to outperform the
parametric approaches in a wide variety of problems.

Many of these classification techniques including the neural network method
define .J indicator wvariables ¥7, Y5, ..., ¥ one for each and repgress them on the
measurement variables to estimate E{Y)[x) = p(jlx) (7 =1, 2,...,J), the posterior
class probabilities. In particular, Bose® followed this principle to develop Classifi-
cation Using Splines {CUS), which is based on nonparametric additive regression.
This method essentially considers smooth functions of the original wariables as new
features and considers a lnear model of those features to estimate posterior class
probabilities. The proposed method in this paper can be viewed as a more gener-
alized version of CUS.

3. Features for Nonlinear Classification

In classification problems, when class boundaries are highly nonlinear, one popu-
lar practice is to find suitable nonlinear features such that the competing classes
are linearly separable in that feature space. Linear classification in that feature
space essentially leads to a nonlinear separation in the space of the original mea-
surement variables. Well-known methods like support vector machines and kernel
fisher discriminant analysis (see eg. Ref. 32) adopt these techniques and use some
nonlinear kernel functions for nonlinear classification. Ghosh and Chaudhuri®! also
used a similar stratepgy for depth based nonlinear classification. However, instead
of estimating features from the data, these methods worked with some predefined
features. In another relevant work, Zhu and Tibshirani tried to extract important
features from the data by madmizing a likelihood ratio criterion. Neural network
training alporithms also extract ideal features from the data automatically, but this
popular method lacks meaningful statistical interpretations.

As we have mentioned in the previows section, CUS considers additive models
(see e.g. Ref. 7) to estimate the posterior probahilities, and these estimates are of
the form

B
ﬁ{jlxj=¢3fj+2¢ji{zij~ T (s ARy | (1)
i=1

where ¢y is a constant and ¢; are smooth univariate functions. Therefore, CTS
may not perform well when the class boundaries cannot be approximated well by

additive models.
Method of suceessive projection (see Ref. 4) was proposed to compensate for
this inadequacy. It nses the estimated posterior probabilities obtained by CUS as
the new messurement variables and repeats the CUS procedure with them to pet
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the final probability estimates

Pilx) = ii]+2¢”](‘”+2¢‘” ) § LBl (2)

=1

where 'Y and ¢'2) are smooth univariate functions estimated in the first and
second iterations, respectively.

In the process, interactions are introduced indirectly in the model much in the
same manner as in the multilayer perceptron model. Successive projection has two
basic steps, one for variable transformation and the other for probability estimation.
This is similar to the Multilayer Perceptron (MLP) model with a single hidden layer,
where posterior estimates are of the form:

Alilx) = p'N ﬁ'm + Z u; pm (ﬂm + Z '"”mk"?"") 3 (3

e

where #71 w'") and p'*) denote the bias term, the weight function and the trans-
formation function associated with the rth (r =1, 2) layer. Several choices for the
transformation function p is awailable in the literature. Because of its ability for
uniform approximation of any continuous function (see e.g. Hef. 25) on a compact
support, sigmoidal fimetion o(#) = 1/{1 + &Y & one of the most popular choices.

However, one disadwantape of successive projection is that the transformations
are estimated once and for all. It lacks the fexibility of neural networks, where
features are modified iteratively. As a result, when the posterior probability esti-
mates obtained by CUS are not good, the improvement over CUS is often not that
significant.

The proposed iterative feature selection (IFS) alporithm, instead of using CUS,
in the first step, extracts the best possible linear features (linear combinations)
of the form aix (i = 1.2,...,p) from the data, and then performs CUS with
them to estimate the posterior class probabilities. Backfitting is used for dynamic
adjustment of o, and that makes the method more flexible. Like neural networks,
IFS can adjust the linear combinations ex iteratively to improve its performance.
It can be viewed as an approach to estimate the posterior probabilities plj|x), (j =
1,2....J) by projection pursuit regression model

P
plilx) = ¥j(x) = @0+ Zﬁbje{ﬂi:x:'- (4]
i=1

In projection pursuit, one has to find the ideal linear combinations and the
corresponding tramsformation functions as well. IFS does this task antomatically,
and the resulting decision rule seems to provide a much better improvement over

CUS, much more than the method of successive projections.
The model used n IFS has some similarities with some of the exsting classi-
fication methods. Obviously, the additive model used in CUS & a special case of
IFS when o= are unit vectors along the co-ordinate axes. In fact, if sipmoidal or
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other known transformations are used as the smooth univariate functions ¢;, this
madel turns out to be a perceptron model with one hidden layer. In the perceptron
model, a fixed set of transformation functions (which could possibly be different) is
used, and a given function is approximated to any level of accuracy by increasing
the mumber of hidden nodes. This usually requires more number of linear features
(linear combinations) and bence a transformation to a high-dimensional feature
space from the original measurement space.

Since our aim & to reduce the dimensionality of the problem, in IFS, we restrict
the number of features to the dimension of the original meassurement vector and
approximate the transfer functions by wing additive splines. Therefore, not only
the linear comhbinations are estimated from the data iteratively, but so are the
transfer functions. As a result, a fewer number of linear combinations may help to
identify simpler structures in the data which has been illustrated with the simulated
Example 1 in Sec. 5.1.

Use of splines as transformation functions makes the posterior estimates affine-
invariant, and it ako leads to the universal approximation property like the
sipmoidal function. Given the set of linear features, vsing sufficiently many knots,
splines can approximate any continuous function on that space to any desired level
of accuracy (see Ref. 3). A detailed discussion is given in Sec. 4.5. The IFS algo-
rithm actually evolved from a similar scheme applied for training perceptrons ear-
lier which resulted in Backfitting Neural Networks (see Ref. 20). Mackay™ has also
proposed many modifications to the traditional backpropagation training alporithm
including regularizations and model selections, but he adopted a different Bayesian
approach.

4. Description of IFS Algorithm

IFS projects the posterior probabilities p(jlx), (j = 1,2,...,J) into the additive
class of functions spanned by the cubic spline functions of edx (i = 1,2,...,p).
Hence 5{j|x) is of the form:

P

plipe) = dy(x) = djo + Zﬁbj,-{u':x:l‘ where ||og|| =1 Yi=12 . ..p (5]

i=1

The constants gyo, the direction vectors oy and the transformation functions (cubic
splines) ¢ (7 = 1. 2,...,J; i = 1,2,. .., p) are determined iteratively. Cubic splines
are pieces of cubic polynomials joined topether at the knots suitably placed on the
range of a variable. They are sufficiently smooth and have contimous derivatives up
to the second order. Following the suggestion of Breiman,” we also put restrictions
on splines to make the extrapolated fit linear in the tails for reducing the effect of
high variability at the end points. IFS starts with sufficiently many knots and then
at the end of the iterative learning procedure, it reaches a smaller dimensionality
by the method of backward deletion. The optimum dimensionality is selected by
cross-validation. Guidelines for other related issues like selection of basis functions
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and method of backward deletion are as given in Ref. 7 which we discuss briefly in
this section.

4.1. Selection of basis functions and parameters

For data with univariate 2, = o'x,, (n = 1,2,..., N) and K knots #; < 2
< --- < tg in the range [Zy) = min, Z,, Z;n) = max, Z,], a cubic spline ¢ is
a cubic polynomial in each interval (g, fpq), for & = 1,2, K — 1, and it has
contimions derivatives up to the second order. It is easy to observe that for a given
set of K knots, the space of cubic splines is { K + 4) -dimensional. Two sets of func-
tions commonly used as the bases for the class of cubic splines are the power hasis
and the B-spline basis (seee g, Ref. 12). In our algorithm, we use the former becanse
deletion of knots is computationally more feasible with this basis. The power basis
for univariate spline consists of functions 1, 2, 22, 2% (Z —#,),% k=1,2,.. . K,
where 2, = Z if £ = (0 and 0 otherwize. To make the extrapolated spline fit
outside the range [Z1), Z;n| linear, Breiman’ suggested to impose the conditions
@"(Zi1y) = &"(Z;13—) =0 for the left tail and ¢"(Z;x)) = " (Z(x)+) = 0 for the
right tail.

A convenient power basis for this space can be constructed by starting with the
functions 1, 2. (2 — f.kjl"i., k=1,2 ..., K. Therefore, the restricted spline function
is of the form

K
HZ)=0+7Z+ Y BlZ — i)}, (6)
k=1
which auntomatically satisfies the condition for the left tail. To make & Z) linear
to the right of Z, 4, Breiman’ suggested to take #; = Zyy and an additional knot
ti 41 at 2y to cancel out the higher order terms. Condition for linearity at the
right end imposes the constraints

K+1 K+1
D Be=0 and Y B(Z-t)=0 for Z2=Zy. (7)
k=1 k=1

For multivariate Z = (Z; = aix, % = abx,...,Z, = opx), we place (K 4 1)
knots on each Z-coordinate and use the power basis, which is the collection of the
functions 1, Z;. (Z; — E,-,::I‘l, (k=12 .., (K+1);i=12,..,p) Conditions for
linearity are imposed similarly on each of the p coordinates.

4.2, The algorithm
Different steps of the [FS algorithm are as follow:

Step 1. Indicator variables Y7, Y5, .. ¥ are defined for J competing classes.

Step 2. Direction vectors o (||eg|| = 11 = 1,2,..., p) are initialized, and the
linear features (combinations) 2, Zs, ..., 2, are computed.

Zi=ogx;, i=12,....p (8]
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Step 3. Foreach Z; (i=1,2,...,p), K knots #, < #, < --- < #;,, are placed in
the range [min, (Z; ), max,(Z; ). Basis functions are computed (as described in
Sec. 4.1).

Step 4. Y; is regressed on basis functions to get the mitial estimates for
@0y Dirsee @i (7= 1,2,...,J). Posterior probability estimates {}’_l." = i (Xn))
and residuals (r;, = Y, —v(x.)), (7 =1.2,...,J, n=1,2,..., N) are computed
to find the residual sum of squares (RS5) Z 1 Z"_I i

Step 5. Backfitting is used to readjust 2y, Za, . .., £, At any stage o is adjusted
by a factor 4, where §; is the least :squmrs solution obtained by minimizing

RSS~ > 3l — Sl (9)

=1 =1

where 13_5:] = %E!LH:{::{" is computed at the current estimates of o, and ¢;;,. This

new estimate of oy is normalized, and Z; is recomputed. Knots are placed on
the range of Z; to find the new basis functions. ¥; — Z‘.%Iﬁbﬁ{gij i regressed
on those basis functions to estimate gy and ¢ (7 = 1, 2,...,J). However, these
adjustments are made only when this new estimate of oy reduces the current value
of RS5, and in that case, probability estimates and residuak are also readjusted.
Otherwise, all the estimates, knots and basis functions are kept unchanped. After
v, we proceed in the similar way to adjust os and all other directions. Thus,
Z1,Za, .., 2y are modified one by one. This step i repeated until no significant
improvement is observed in RSS.

Step 6. Y, is regressed on current basis finctions to pet new estimates for
iy Di1se-esipy (1= 1,2,...,J0). Y, and vy (j = 1,2,...,. TR D B A T
are adjusted accordingly.

The last two steps (Steps 5 and 6) are repeated until convergence is achieved
(relative reduction in BS5 is very small over a number of consecutive iterations).
A detailed version of this alporithm is given in the Appendix.

Like CUS (see Ref. 3), IFS puts no restriction on 1% (j = 1,2,...,.J) to ensure
that they are in [0,1]. Imposing positivity restrictions by any manner results in
much more complicated but not necessarily better classification (see Ref. 27). Due
to special type of effect of bias-variance decomposition on misclassification rates (see
epg. Ref. 17), IFS leads to fairly pood results in spite of having posterior estimates
outside the [0, 1] range. However, inclusion of intercept terms o0 (j = 1,2,...,.J)
in the set of basis functions puarantees the additivity constraint {Z::l 1;"_"_, (%) =T,

W= 1,% 000, N

4.3. The backward deletion procedure: selecltion of optimum
dimensionalily

Az we have mentioned before, IFS algorithm starts with a reasonably large mm-

ber of initial knots. After fitting this full model, backward deletion & used to
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attain models with smaller dimensionalities. At each step, we consider each of the
undeleted knots as possible candidates for deletion, and delete that one which leads
to least increase in the training set RS8S. To maintain linearity at the left tail, a lin-
ear basis function cammot be considered as a candidate for deletion until all the knots
corresponding to that variable have been deleted. During the deletion process, some
restrictions are imposed to maintain the linearity of the fitted functions beyond
the rightmost undeleted knots. If 4, . the rightmost knot on Z, is deleted,
the condition of linearity to the right of #;,, can be imposed by adding another
constraint E:::]-Sik = (). One needs to solve the least squares problem under
one or two such constraints which are to be satisfied for each of the Z-variables.
The whole deletion procedure is done by modified Gaussian sweep algorithm
(see e.g. Ref 7).

Badcward deletion generates a sequence of nested models indexed by the dimen-
sionality of the constrained space. The problem then reduces to selection of an
optimum one under some criterion. As the optimnm dimensionality depends on
the problem itself, it is desirable to find it wing the training set observations. If
resubstitution error rate is wsed as a criterion, naturally one of the larper models
would be selected which may not be the best one for classifying future olserva-
tions. Therefore, to arrive at a parsimonions model, we adopt the cost complexity
criterion. Cost complexity for a model with dimension 1 is defined as

R,(i) = R(E) +~i, i=0,1,2,... (10)

where R(i) is the training set misclassification rate for the corresponding model,
and ~ is the cost complexity parameter. Clearly, v = 0 leads to resubstitution
error rate criterion when the cost complexity pets minimized by one of the larger
modek. This model remains optimum up to a certain positive value of ~ after which
another smaller model turns out to be the cost minimizer. In the process, a number
of intervaks and the corresponding minimizing models are obtained, and the momber
of competitive modelks usually gets reduced. Suppose we get m such intervals for
¥ {(7e—1,7): £ =1,2,...,m}, and the corresponding models are My = Ms = --- =
M.,.. The problem of selection of the final model then reduces to selection of an
ideal cost parameter for which we use cross-validation.

In V-fold cross-validation (see e.p. Refs. 35 and 41), stratified random sampling
is carried out to divide the whole training set into V' groups Ly, Lo, .., Ly of
sizes as nearly equal as possible. Obserwations belonging to different classes are
used as different strata. Leaving one group L. (r = 1,2, ..., V) at a time as a
hold-out sample, IFS & used on the remaining observations. We start with the
same mumber of initial knots per wariable that was used with the whole training
set, and then backward deletion is carried out in the same way. In the process,
a nested sequence of models (8 discussed above) is generated, and each time the
resubstitution error rate is computed. The cost function is then minimized over
these modek for different -+, more specifically for ' = Ao, (E=1,2,...,m).

Let M,':T] be the models which minimize the cost functions R.-(t = 1,2, ... ,m).
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These models are then used to classify the observations in the hold out sample (L),
and in each case, the mumber of misclassifications is computed. We repeat the same
procedure over the V' proups to estimate the misclassification error rates (A) for
different ~;. These estimates are given by

A=) Y 1) o) E=12...m, (11)

=1 {n:(X, e, )EL}

where dE"] is decision rule obtained from the model M'!': ") The value of 7 that
minimizes A is used as the ideal value of the cost complexity parameter, and the
corresponding model is selected as the final model. In our algorithm, we use V' = 10
for cross-validation. Further details on cost-complexity pruning is available in Ref. 5.

4.4, Number and placement of initial knots: selection of initial
features

Number of initial knots should be chosen carefully. To explain local patterns of the
measurement space, this number should be reasonably large. From our simulation
study, we feel that the final result is not too sensitive as long as reasonably large
mimber of knots are used. Our experience suppests that 10-12 knots per wariable
are enough for a moderately larpe sample size. Cross-validation can also be used
to find this mmber. However, one must be careful when working with a large
mimber of knots. Not only it leads to higher variability in the model selected, but
it may also lead to a matrix 2’2, which cannot be stably inverted. This problem
of singularity can be tadkled by carefully placing the knots. Equispaced knots in
the range performs poorly when Zs have larpe paps between some consecutive
observations. Knot placement based on order statistics seems to be a better choice.

Initial direction vectors ef (i = 1,2, ..., p) have to be specified as well. From our
empirical experience we feel that instead of starting randomly, it & wually better
to start with the linear features that maximize the linear separation among the
classes. These direction vectors are the eigen vectors of W W + B), where B and
W stand for between class and within class sum of square matrices. Of course one
can also start with the CUS model, where a''s are taken as unit vectors along the
co-ordinate axes (ie. the original variables are taken as the initial linear features).
In the results reported in Sec. 5, IFS (features) and IFS (variables) represent the
results obtained wing these two different starting points, respectively.

4.5. Convergence issues

There are essentially three minimization procedures in IFS. Minimization over the
linear features (the o parameters) which is done iteratively, minimization over the
class of additive spline functions which is done by estimating the 3 parameters
using least squared method and minimization over the mumber of linear features
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which is done by cost-complexity cross-validation. While convergence of the entire
algorithm requires rather involved mathematical exercise, results regarding each of
the three minimization are available in the literature which provides justification
for the effectiveness of the algorithm.

The minimization over o parameters is done by backfitting, which was effectively
used by Breiman and Friedman® For estimating the additive transformations of
several explanatory wariables, they considered stepwise minimization of the error
sum of squares involving the transformation function of only one variable at a time,
and repeated the procedure until convergence. The advantage is that at each step,
the error sum of squares is reduced by least squared method which guarantees
the comvergence. However there may not be a wunique minimnm for this part of
optimization.

Given the linear features, the IFS procedure is essentially the CUS procedure on
the transformed feature space instead of the original measurement space. Conver-
gence of CUS has been proved in Ref. 2. The proof relies on the mniversal approxi-
mation property of cubic splines.

Finally the optimality of the cost-complexity cross-validation has been discussed
in detail by Breiman et al.® We have also studied the convergence empirically with
a simulated dataset in Sec. 5.1,

4.6. Problem of multiple local minima: uwse of simulated annealing

Like nenral networks, IFS may suffer from similar problems like neural networks
becanse of the presence of possibly mumerous local minima in the transformed fea-
ture space. Therefore, it may be worthwhile to start with different starting points
or to use simulated annealing. We opted for the second one to keep the algorithm
automatic. During feature extraction, each time we compute two competitive direc-
tion vectors, one as discussed in Sec. 4.2 and another by simulation from a uniform
distribution over a unit hyper-sphere with the current value of oy as origin. After
normalization, we chose the one having the smaller training set RSS as the new
estimate of. If this new estimate redoces the current value of RS5, Z; & modified.
Otherwise, we draw a random mumber u from 70, 1) and adjust Z; only when
U = exp {—%ﬁ:}, where RS5* is the residual sum of squares corresponding to
eef. This step helps to overcome the problem of petting stuck at bad local minima.
' B a constant that depends on the number of iteration (m). Generally, a large
mmber is chosen as € to make almost all the directions acceptable at the begin-
ning. It is then decreased gradually over iterations to attain convergence. Several
options are awailable for determining these constants (see Hef. 28), but we use a
simple one. We start with Cy = 00 here p is the number of measurement vari-
ables, and then use O, = U(0.8,0.99) x 7, (m=1,2,...) to modify it. During
modification of direction vectors o and features ¢, at any stage, we always store
the linear combinations 24, Za, ..., Z, for which training set RS5 s minimum up to

that stape.
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5. Experimental Results

In this section, we we some simulated amnd benchmark data sets to ilhestrate the
usefulness of the proposed method. In Tables 1 and 2, we report the misclassifi-
cation rates of IFS alporithm starting with two different sets of direction vectors
as mentioned in Sec. 4.4 and denote them by IFS (variables) and IFS (features),
respectively. For assessing the aceuracy of IFS, we compare their performance with
a mnmber of exdsting parametric and nonparametric classifiers. Results of linear dis-
criminant analysis (LDA), quadratic discriminant analysis (QDA), CUS, method of
successive projections, neural networks (with sigmoidal transformation funetion),
radial basis function networks (RBF), kernel discriminant analysis, nearest neiphbor
classifiers and support vector machines (SVM) are reported to facilitate the com-
parison. Error rates for classification tree method are also reported in benchmark
data sets. For simulated data sets, we compute the optimal error rates and present
them in Table 1. These optimal error rates represent the misclassification rate of
the optimal Bayes rule applied to specific data sets.

For kernel diseriminant analysis (see e g. Ref. 22), we standardized the observa-
tions of a class by using the wual moment based estimate of class dispersion matrix
and then used a common bandwidth in all directions. Optimal bandwidth for a class
density estimate was selected by least square cross-validation (see eg. Refs. 38 and
40). To find the density estimates at a new data point, at first we standardized it
using the same standardization matrices wed earlier to get the density estimate at
the standardized data points. Density estimates at the original data point can be
computed from that wing a simple formula when the measurement vector under-
goes a linear transformation. For pearest neighbor classification (see eg. Hefs. 10
and 18), we used Mahalanobis distance (see e.g. Hef. 30) as the distance function,
which is equivalent to using Euclidean distance after standardization by estimated
pooled dispersion matrix.

For neural networks (single hidden layer perceptrons with sipmoidal transforma-
tion) and radial basis function (RBF) networks, we standardized the measurement
vectors before using training algorithms. For training perceptron models, we tried
both backpropagation (see e.g. Ref. 35) and Levenberg—Marquardt algorithimns (see
ep. Hef. 39) and opted for the latter becanse of its better performance both in
terms of computing time and misclassification rate. On each data set, we trained
the model for several choices of hidden nodes, and reported the best error rate that
we got in the test set. Similarly, we wsed various choices of bandwidth in the case of
radial basis function networks, and several choices of bandwidth and cost parameter
in the case of support vector machines, and reported their best performances on
test sets. Matlab programs available in Matlab peural network toolbox and Matlab
SVM toolbax were used for running these three algorithms. In the case of SVM,
for multiclass problems, voting was used to take the final decision after all pairwise
comparisons. We used the 5-Plus package for building the classification trees. Codes
for other classification algorithms were written in C-language.
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5.1. Resulls from the analysis on simulated data sets

Here, we consider three simulated examples on two-class classification problems.
The first two of these data sets contain two-dimensional measurement vectors, while
in Example 3, we consider a higher-dimensional problem. Since training sets for
real problems are wually not very larpge (because of the cost involving peneration
of samples), we use relatively smaller training sets in our simulations. However, to
obtain reliable estimates for misclassification rates, much larpger test sets are used.
For each of these examples, we generate 500 observations for training and 3,000
for the test sets taking equal mumber of observations from the two classes. Each
experiment is carried out ten times, and average misclassification rates of different
classifiers over these ten simulation muns are reported in Table 1 along with their
corresponding standard errors.

Example 1. In this example, each class s an equal mixture of two bivariate normal
distributions differing only in their location parameters. The population density
functions are given by

p(x|1) = 1/2[Na(1, 1,0.6% 0.6%,0) + Na(—1, -1, 06%,0.6%,0)]

12
p(x|2) = 1/2[Na(1, —1,06%, 06% 0) + Na(—1,1,06%,0.6%,0)). o

Clearly, X1 Xs = 0 is the optimal class boundary for this problem. Therefore, the
ideal linear combinations (nonlinear features) are of the form Z; = o X + 0 Xs
and Z3 = m; X — 02X (0] + of = 1), whereas the corresponding features {trans-
formation functions) are quadratic in nature. It & evident from Table 1 that IFS
performed quite well in this example, and in fact, it could estimate the ideal linear
combinations and transformation functions very accurately i all ten simulation
runs, one of which is chosen below for illustration.

In this example, linear combinations Z; and Za were estimated as 0.705X; +
0. :{}‘-}Xg aml 0L.676.X o — 0.737. ’(1 DIH-' to additivity constraint, as expected, we got
ﬁbh = —ﬁbg, (fori =1,2) H.l]d qu o+ qbgu = 1. Moreover, the desired quadratic nature
of the plotted functions é11 and ¢ (see Fip. 1) clearly suppests the snccess of [FS
in estimating the ideal functions as well. Thongh instead of actual walues of X Xa,
we wsed only the indicator variables, TFS was still able to detect the proper linear
combinations and the corresponding nonlinear features (transformation functions).
Hence the estimated boundaries in Fig. 2{a) also turned out to be quite satisfactory.

Table 1 shows that in this example, perfformance of LDA was not satisfactory
at all, but error rate for QDA came closest to the optimal error rates. Classification
methods like CUS and suceessive projections, which are based on additive regres-
gion, did not perform well. However, IFS and other nonparametric classifiers conld
nearly match the performance of QDA. As the optimal class boundary (X X5 = 0)
is not an additive function of the measurement variables, in a few cases, IFS pot
stuck to bad local minima when original variables were used as the initial features.
Simulated annealing helped in such situations. In this example, successive projec-
tions could not improve upon CUS, but IFS did a remarkable job for this purpose.
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Fig. 1. Estimated features in Example 1.
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Fig. 2. Estimated class boundaries in Examples 1 and 2.

Example 2. Like the previous example, here also competing classes are equal mix-
tures of bivariate normal populations, but overlaps between the competing classes
occur i a different manner. The density functions of these two populations are
given by

52,00

p(x|1) = 1/2[Na(1,1,0.52,0.52,0) + Na(3,3,0.52,0.5 3y
1/2 0.52,0)). '

[
p(x|2) = 1/2[N2(2,2,0.5%,0.52,0) + Na(4,4, 0.5%,

Since the true class boundary is highly nonlinear in this example, neither LDA nor
QDA could estimate it properly (see Table 1). CUS and the method of successive



1116 A. K. Ghaosh & 5. Baze

Table 1. Average misclassification rates and their standard errors (in per-
centage) in situlated examples.

Example 1 Example 2 Example 3
Optimal 9.04 (0.15) 12.08 (0.16) 10.74 (0.14)
LA 49,18 (00.50) 45.23 (0.67) A998 (0.33)
QDA 9.24 (0.11) 45.44 [0.54) 11.61 (0.17)
cus 48.23 (0.83) 18345 (0.41) 14300 ((0.27)
Succ. praj. A4.55 (1.83) 18.54 (0.40) 14412 (0.28)
Mearest neighbor G.62 (0.13) 13.22 (0.19) 16.4%9 (0.20)
Eernel 480 (0.14) 12.86 (0.23) 12.43 (0.16)
SV-machine 967 (0.14) 12.41 ((0.18) 13.04 (0.18)
Neural network 9.74 (0.15) 12.58 (0.21) 1248 (0. 19}
RBF network D46 (016) 12,33 (0.17) 1282 ([0.17)
IFS (variables) 976 (0.17) 12.58 (0.18) 12531 (0.18)
IFS (features) 066 (0.20) 12,38 (0.18) 11.88 (0.21)

projections showed much better performance, yet the misclassification rates were
far from optimum. However, other nonparametric classifiers achieved reasonably
low misclassification rates. Among these classifiers, nearest neighbor method had
slightly higher error rate, but those of other classifiers were fairly similar. It is
quite evident from Fig. 2(b) that IFS could identify the optimal class boundary.
Though snceessive projections failed to improve the performance of CUS, IFS was
very suceessful in this problem again.

Example 3. Next we consider a higher-dimensional classification problem with
two populations, where the first two co-ordinate variables in the two classes are
distributed as

pix|l) = N=2(0,0,1,1,1/2) and p(x|2) = U7[-5,5] = U[-5,5]. (14)

Other three variables are independent and identically distributed as N (0, 1) in both
the populations. These variables do not contain any separability information, and
they are used simply to add noise.

Clearly, in this example, the true class boundary is of the form X7 + X7 —
X1Xs = Cy for some constant Cp. This can be rewritten (not uniquely) as A{(X, —
0.5X2)}? + BX] = C, where A, B and C are appropriate constants. Thus, we see
that only two linear features contain the information about class separability. When
weran [FS algorithm on different sets of 500 observations generated from these two-
classes, the final model contained exactly two linear features in most of the cases.
Figure 3 shows that IFS could obtain very appropriate estimates of linear features
and that of the optimal class boundary in this noisy example. Due to quadratic
nature of the true class boundary, as expected, QDA led to the best performance in
this example. IFS performed better than all other parametric and nonparametric
classifiers, and the corresponding error rates were close to that of QDA

Since the optimal error rate is known for a simulated problem, we chose to per-
form an empirical study to test the comergence of error rates of IFS. In Example 1,
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Fig. 4. Misclassification rates of IFS for different sample sizes.

we trained IFS on training sets of varying sizes consisting of 100, 200, 400, 1,000
and 2,000 cases, and computed the test set errors based on fixed size of 3,000 test

cases. Figure 4 shows the averape misclassification rate over ten simulation runs and

the corresponding standard error for each training sample size. This figure clearly

indicates that the test set error rate of [FS converges quite quickly to some value

very close to the optimal error rate.

5.2. Resulls from the analysis on benchmark data sets

We analyze five benchmark data sets for further illustration of the proposed method.

All these data sets have previonsly been wsed by many other authors (see e g. Refs. 3,
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9, 23, 24, 34 and 36), who evaluated the performance of many classifiers on these
data sets. Alonp with the error rates of all parametric and nonparametric classifiers
that we considered in Sec. 5.1, here we report the misclassification rates for the
classification tree method as well. The data sets that we use in this section have
specific training and test samples. The sizes of the training and test sets for each
data set have been reported in Table 2. which also shows the test set error rates for
different classification methods. A brief description of these data sets is given below.

Synthetic data. It consists of bivariate observations from two competing classes,
each of which is an equal mixture of two bivariate normal populations. All these
normal populations have the same dispersion matrix but different loeation param-
eters. These parameters were chosen to have a Bayes risk of 8.0%. A scatter plot
of this data set is piven in Fig. 4. This data set is available at CM1U data archive
(http:/ /lib.stat.cmueedu).

We have used two data sets related to vowel recognition problem and refer to
them as vowel data-1 and vowel data-2.

Vowel data-1. This data was created by Peterson and Barmey™® by a spectro-
graphic analysis of vowek in words formed by “h" followed by a vowel and then
followed by *d". There were 67 speakers who spoke different words, and the two
lowest resonant frequencies of a speaker’s vocal track were noted for ten different
vowels. A scatter plot of this data set & given in Fig. 6, where the numbers represent
the labels of different classes (0" represents the tenth class).

Image data. It originally contains 19 measurements on each image of one of seven
different objects: brickface, sky, foliage, cement, window, path and prass. This data
set and the description of the variables are available at TTCI machine learning repos-
itory (http://fwww.ics.uciedu/~mlearn). The value of the wariable “region pixel

1.2 1.2

1 ' 1t
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0.8 0.6F

! =

0.4 0.4t
0z 02

a ar

-0.2 ® -0.2
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(&) Training set: 250 observations (b} Test set: 1,000 observations

Fig. 5. Estimated class boundaries for synthetic data.
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Fig. 6. Scatter plots for vowel data-1.

count” is “9" for all observations. For other two variables, “short line density-5"
and “short line density-2", almost 95% of the values are zero. We did not consider
these three variables in our study. There are some variables in the data set which are
linear or nonlinear functions of three other variables: R ( “raw red mean”), B (“raw
blue mean”) and G (“raw green mean” ). We have deleted those variables too and
carried out our analysis using the remaining nine variables (region-centroid column,
region-centroid-row, vedpe-mean, vedge-sd, hedpe-mean, hedpe-sd, rawread-mean,
rawblue-mean and rawgreen-mean).

Satimage data. This sample database was generated by taking a small section
fromn the original Landsat Multi-Spectral Scammer Imape Data purchased from
NASA by the Australian Centre for Remote Sensing. The database consists of
the multispectral values of pixels (coded as pmmbers) in 3x3 neighborhoods in a
satellite image, and the classification is associated with the central pixel in each
neighborhood. However, for our analysis we used only four spectral values related
to central pixel to classify it into one of six different classes: red soil, cotton crop,
grey soil, damp prey soil, soil with vegetation stubble and very damp grey soil The
data set and its description are available at UUCT machine learning repository.

Vowel data-2. This data set is also awailable at TTCT machine learning repository.
Like vowel data-1, it & ako related to a vowel recognition problem, where ten
measurements are taken on each observation coming from any of 11 classes. The
description of the measurement variables can be found in Ref. 23, There are 528
observations in the training set and 462 observations in the test set, which are
equally distributed among 11 competing classes.

Thble 2 reveals that IFS performed quite well in all these data sets. On syn-
thetic data, CUS and successive projection methods had the best error rate but IFS
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Table 2. MMisclassification rates (in percentage) for benchmeark data sets.

Synthetic  Vowel-1  Satimage  Image  Vowel-2

Dimension 2 2 4 ] 10

No. of classes 2 10 6 T 11

Train. sample size 250 334 435 210 528
Test sample size TN EEE AW} 2100} 462

LDA 10080 25.23 19.30 11.14 55.63
QDA 10240 11.82 15.65 14.62 A28
CuUs 8.50 24.32 19.55 . 10 51.30
Succ. proj. A.50 1802 16.90 7.48 A5.67
MNearest neighbor 11.70 17.72 15.45 8. 46.75
Classification tree 1014 2372 149.50 1257 5628
Kernel 9.30 18.32 15.30 15.71 62.12
SV-machine 9.40 21.02 14.80) 11.495 46.54
Neural network 9.40 18.62 16.95 9.95 48,92
RBF nmetwork 9.40 242 15.70 1400 4.8
IFS {variables) 4.10 )72 15.80 . 6 44,57
IFS (features) .60 23.42 15.40) 6.28 43,20

and all other nonparametric methods except classification tree and nearest neigh-
bor classifier worked well. Class boundary estimated by IFS (features) is shown
in Fig. 5. On vowel data-1, nearest neighbor method led to the best error rate.
Kernel discriminant analysis and successive projection methods also had reason-
ably lower error rate. Performance of IFS and that of other nonparametric meth-
ods were fairly satisfactory. On satellite inage data (satimape data), SVM yielded
the lowest misclassification rate, but the error rates for QDA kernel discriminant
analysis, nearest neighbor, RBF neural network and IFS were very close to that.
Performance of IFS was much better than CUS and successive projection methods.
On image sepmentation data (image data), IFS performed extremely well, and the
test set misclassification rates for the two different starting points were much lower
compared to other parametric and nonparametric classification techoiques. Given
that the test sample size was quite large, the difference between the error rate of
IFS and that of the other classifiers was found to be statistically significant. On
vowel data-2, once again IFS led to the best error rates among the parametric and
nonparametric classifiers considered here. Successive projections could reduce the
misclassification rate of CUS in this example quite a bit, but IFS did even better.
This data set was used extensively by Hastie et al ,®® where they reported results of
many other classification methods. IFS performed better than every other method
except for FDA-MARS (deg-2), which had a slightly lower error rate. Qverall, the
error rate of IFS was either the lowest among the methods compared or was very
close to the lowest error rate for a given problem. IFS ako had the lowest average
test set error rate across all the examples.

Since different classification methods were run in different platforms in our
experiments, it was not possible to compare their CPU times. Perhaps with the
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Table 3. Average number of iterations and CPU times taken by IFS algorithos for training
the network on different data sets (figures in top and bottom rows are for IFS (wariables) and
IFS (features), respectively). These averages are taken over 11 runs including ten times for
cross-validation.

Example 1 Example 2 Example 3 Synthetic Vowel-1 Satimage Image Vowel-2

Mo, of iterations 15.9 128 224 11.7 229 24.7 4.2 835
13.5 127 BT 0.3 115 0.9 91.5 676

CPU time () .74 (.63 202 0.28 206 8605 2853 13380
(.65 .62 4.3 0.23 1.0V 10887 2838 104.39

evolution of faster computers, the training time is not as important as it used to
be. However, IFS (implemented in C-programming language) works reasonably fast.
Since it is an iterative algorithm, it & difficult to find its computational complexity.
If we consider the dimension p and the mumber of class J to be finite (which is wue-
ally the case) for each iteration IFS requires O{ K2n) calculations, where K i the
mumber of knots placed on the range of each variable, and n is the training sample
size. The mumber of knots should increase with the sample size but at an extremely
slow rate. Hence, the computational cost per iteration is only marginally higher
than O{n). Table 3 shows the CPU time (on a Pentivm-4 machine) and average
mumber of iterations required by IFS algorithm on different data sets. For instance,
on vowel data-2, it took around 20min to train the model 11 times including ten
times for cross-validation. However, on the same platform, for a single run of neural
network (a two-layer perceptron with 20 hidden nodes), MATTAB took almost half
an hour (for 100 iterations) for traming. For complex problems, penerally a large
mimber of hidden nodes is required, and hence it takes a long time to train the
network. But IFS deals with fewer mumber of linear features, which helps to reduce
the computing cost substantially.

6. Conclusion

In real life classification problems, the class boundaries are more complex rather
than being linear or quadratic. In such cases, traditional methods of discriminant
analysis often turn out to be inadequate. This article presents a nonparametric
method (IFS) for discriminant analysis, which is capable to approximate these
class boundaries using 4 model similar to the projection pursuit regression model.
It antomatically identifies some linear combinations of the original measurement
wariables and fits an additive model based on regression splines using those combi-
nations. Model selection (selection of the ideal mumber of linear combinations and
the mumber of knots for fitting splines) is done using cross-validation.

[FS can be viewed as a generalized version of the single hidden layer perceptron
madel, which vses sipmoidal or other known transformation functions at the hidden
layer. But, instead of using any fixed transformation function, IFS uses cubic splines
to estimate the transformation functions from the data itself which makes it more

Hexible.
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The use of backfitting for comergence makes the alporithm fast. This enables
the use of cross-validation for model selection, which requires a number of training
on different partitions of the data. Model selection by backward deletion allows for
very simple models.

IFS can also be viewed as a modification of CUS (see Ref. 3), which uses an addi-
tive model based on the original measurement variables. The experiments reported
in Sec. § clearly show the effectiveness of IFS over CUS i terms of lower mis-
classification rates in varions classification problems. Another advantage of being
a peneralization of the CUS procedure is that IFS does not have to use random
starting points. If one starts with a's which are wnit vectors along co-ordinate axes
(i.e. original variables as initial linear features), the initial result will be the result
of CUS which wually yvields reasonable misclassification rates. The subsequent iter-
ations can only improve these misclassification rates further. Thus one can expect
comvergence to a better solution.

The experiments also show that IFS has a definite edge over perceptron models
both in terms of misclassification rate and also in visualizing the class separability.
It could find out the ideal direction vectors and nonlinear features in all examples
that we have tried including the ones reported here. IFS also favored well compared
to many other nonparametric classification technigues. Finally the entire procedure
iz fully automatic. Only the initial mumber of knots has to be specified.

IFS ean be adopted for regression problems also. Instead of indicator variables,
the response variables can be used to estimate the regression surface by projection
pursuit regression models. One of the major issues in projection pursuit regression
is to find the proper linear combinations. [FS uses backfitting to estimate them
iteratively and automatically. A similar work using smoothing splines is awailable
in Hef. 36, which perhaps could be improved upon wsing a model selection procedure
such as the one wsed in IFS.
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Appendix
IFS Algorithm:-

[[Initialization||
Define indicator variables ¥7.Y5%, ..., ¥ for J competing classes.

Initialize the direction vectors af. af. .. . &;{ (la]| =1 %) and compute the

;
linear combinations 2P — o %, i=1,2...., P

For each 2V, place the knots t'fj ; t'ﬂﬂ . .,t':-]K on its range to define the basis functions

3 .
Bfo—1, By~ 2§, B — (20 -4l),, i=12...pk=12. K

Lo

Regress ¥ (j = 1.2,.....J) on the basis functions to estimate é?.] i ¢r?1 ..... ‘35.?::'
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Compute probability estimates '?:1 - éf:ﬂ +3, f.:ri{E:]"} and residuals
U] r ili] 1 r
.Y Y (=12, Ny .
Count — 0;  Stop —0; m — 0, RSS; — E_, FE DR | 4)
while(Stop=0) do

|| Backfitting||
RSS, — R85y
for (i=1top)do
UUse Taylor series appm.!umatu:n {up to linear term) of RSS about "

RSS ~ Z Z it — ,{J"

=1 re=1

where §; = a; —of" and §;, = W|ﬂi=ﬂ:“.x=}(".
Use least squares method to estimate 8;.

® a8 ” ¢
Compute o] —&%‘5— and Z"* — alal™ x).

Flace the knots 17" on ZI"" to compute basis functions BE", (k=10.1,..

wy B

Regress Y ka szt - P k=i DGR ZE) on these basis functions to

estimate @7" J-'.I.I'.Id{ﬁr;: w =120

"I td

Compute } T =L, Fom=1,2...,N) and RS5" accordingly.

If(RSS® < RSS,)
RSSa «— RSS*, al't!— o™ ZH -z,

B;:‘H — B, (k=1,2,..., ;{}_

a};':‘“ — @t i — 250, (F=12,...,J).

T T o e =120 =12 ).
end(if)

if(RSS* > RSS,)
al a2 = 2 T gl =120 )

end(if)
end( for)
St = o Tt e U e ol (=10, 05 n=1.2, M),

RSS; — RSSa: Reduction — B85
ifil Reduction < 0.001)

Regress ¥, (j =1.2,.....J) on the current basis functions to re-compute

e+l e+l sre+1
P P P -

Re-adjust .i:-;__;:-"l,?‘__;':"l, (r=1,2,...,N) and RSS;.

Reduction «— E@f@

end(if)

m +—m+ 1; R85 — R55;.

|| Termination||

iff Reduction = 0.001) Count — ()

if{ Reduction = 0.001) Count — Count + 1

if{ (Reduction=0) or {Count=Count_stop)) Stop — 1
end({while)
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Count_Stop is a user defined parameter for stopping criterion. In this article, we

use Count Stop = 5 and terminate the program if relative reduction in RSS is

insignificant (i.e. Redoction < 0.001) over five consecutive iterations. However,

the final result is not very sensitive to this parameter if any larger value i nsed.

For the sake of simplicity, the simulated annealing part has not been included
in the above description, but one can easily incorporate it follbowing the idea

deseribed in Sec. 4.6,
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