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SUMMARY. Suppose Y; ~ N(a + Bz;,0%), i = 1,...,n are independent random
variables. For testing a = g, 8 = fo, it is shown that the power of the likelihood ratio
test (LRT) may be smaller than the power of the corresponding test under “z;’s are all
equal”, when Zl(x, — )% is close to 0. A similar phenomenon occurs for the confidence
set for (a, ). It is shown that the transition to ) .(z; — £)? = 0 is smooth for Bayesian

inference.
1. Introduction

Identifiability of parameters and design of experiments are intimately
related. As a matter of fact, it can be generally said that the lack of identi-
fiability of parameters or some parametric functions accrue from the exper-
imental design used.

We shall now consider a linear model in which an ill-conditioned design
leads to lack of identifiability of some parameters.

Consider the following linear regression model:

yi=a+Pzr;+e i=1,...,n

where the e;’s are iid N(0,02). If the z;’s are all equal neither o nor 3 is
identifiable. As a matter of fact, the variance of the least-squares estimate
of B tends to co as 37 (z; — )2 tends to 0, where z = n=' 31 z;. We shall
consider the following two situations:
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Model I : > (z;—1z)*>#0

Model IT : > (z;—%)*=0
i=1
We shall show that we are “better off” to consider Model II instead of Model

Lif 7, (z; — z)? is sufficiently small. The term “better off” is clarified in
the following theorem.

THEOREM. (a) For testing Hy: « = ag, B = By, the likelihood ratio test of
size 6 (0 < 0 < 1) is more powerful under Model II than that under Model
I, when 3" (z; — 7)? is sufficiently close to 0, and a + BT # ag + BoZ-

(b) The (1—4)-level confidence region for c and B based on the likelihood-ratio
test is more accurate (in the sense of Lehmann, i.e., having less probability
of covering wrong parameter values) under Model II than that under Model
Loif 0 (z; — )2 is sufficiently close to 0, provided the values of o + %
coresponding to wrong and correct values of (o, B) differ.

Some heuristic rules have been suggested to choose between Model T and
Model II. It is shown that the power of the likelihood-ratio test changes
abruptly as the Model I changes to Model II. In the last section the problem
is studied from a Bayesian framework and it is shown that the effect of the
transition from Model I to Model II is ‘smooth’ on the posterior distribution
and the corresponding HPD region.

2. Proof of the Theorem
We need the following lemma, to prove the above theorem.
LEMMA 2.1 For A2>0, s >0, k>0, 0<d <1,
P [Xzﬂ(AQ) > Xz+s, 6] <P [Xz(A2) > X%, 6]

where x7(A?) denotes the non-central chi-square variate with noncentrality
parameter A% and d.f. k, and xi, s is the upper 1000% point of the X%
distribution.

PROOF. Note that the pdf of x2(A?) can be expressed as

E{fry20(2)}

where f; is the pdf of X%, and the expectation is taken with respect to 0,
distributed as Poisson (A2/2).
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Now consider independent random variables U and V such that (for fixed

0)
Un~Xir2o V~ X
For testing 8 = 0 against 8 > 0 at level § based on U and V, the critical
region of the unique UMP test is given by
U> X%,a
The critical region
UV 2 Xigss

also has size 6. Hence, for 6 > 0,

2 2 2 2
P Xits420 2 Xk+s,5] <P [Xk+26' 2 X5

We get the desired result after taking expectation of the above with respect
to 6.

Note. The above result has been indicated in Das Gupta and Perlman (1974,
Remark 4.1) without any proof.

PROOF OF THE THEOREM

(a) We first assume that o2 is known.
For testing Hy : @ = o, B = Py against Hy : not Hp, the critical region
of the likelihood-ratio test at level § under Model I is given by

n{yj — (a0 + Bo)}* + Z 2(b—Bo)? > x5450°
=1

where 7 = n~' 3.7 y; and b is the least squares estimate of 5. The power of
this test at (a, ) is given by

n

=P (%((amz) (0 -+ poe))? + L2k IERE ) > s
) (1)

Now note that 7y tends to
1i = P %3 (25 (0 + 9) — (o + o2)?) > ] @)

as S (z; — 2)2 = 0.
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The critical region of the likelihood-ratio test at level § for testing Hy
against Hy and a + BT # ag + BpZ, under Model 11, is given by

n{g — (a0 + Boz)}* > x4 50°

The power of this test at («, 3) is given by

n _ _
=P [X% (2 (o + BT) — (ap + ﬁox))2> > x%,a] (3)
From Lemma 2.1, we get

71'; < Trr

Hence, for sufficiently small 37, (z; — 7)?,
T < TIr1

Now we consider the case when o2 is unknown. Then x3(A?) and X%,g
are respectively replaced by fa,,_2(A?%) and fo,—2,5 in both 77 and 7}, where
fs,k(A2) denotes the non-central f,; variate with non-centrality parameter
A? (defined as the ratio of independent x2(A?) and x7 variates), and f; x5 is
the upper 1006% point of the central f;j distribution. Correspondingly, the
m’s are replaced by 7’s. The desired result can now be obtained following
the method of proof for known o2 and invoking the result in Das Gupta and
Perlman (1974, Theorem 2.1) instead of Lemma 2.1.

(b) The desired result on the confidence intervals follows from (a) above,

by invoking the well-known duality between tests and confidence sets; see
Lehmann (1986, p.89-90).

Note. The above results demonstrate some of the consequences of the situa-
tion which leads to unidentifiability of the parameters as the design becomes
ill-conditioned.

Two issues emerge from the above development. Although it would be
better to use Model II instead of Model T if 37 (x; — z)? is less than
A2, where \? is sufficiently small, the value of A? depends on the unknown
parameters. Is there any way to resolve this issue?

Secondly, as Model T approaches Model 11 (i.e., as 1 (z; — Z)? — 0),
the power of the likelihood-ratio test changes abruptly from 7} to w7y (or
from 7} to 777). Is there any way to make this transition smooth?

To address these issues, let us consider the power function of the two
tests again, assuming o2 is known (for simplicity). Let

A} = S{la+B) - (a0 + Hod))’, 4
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o2

_ 2 n
A3 = BoPls~g gy (5)
=1

P = 3w - 570 (6)

=1
Write
mr = m(AT+AY)
;= w(A})
mrr(AY)

TIr

It follows from the monotone likelihood ratio property of the non-central chi-
square distribution that both m7(A?) and m77(A?%) monotonically increase
from ¢ to 1 as A? increases from 0 to co. Moreover,

W[(AQ) < W]](A2), A? >0

as shown by Lemma 2.1. Hence, for given A? > 0, there exists a function ¢
such that

m(AY + A3) < m (AT + g(AY)) = 7 (AD)

for A2 < g(A?). Following Das Gupta and Perlman (1974), it can be shown
that ¢ is a strictly increasing function. The function ¢ can be computed
from the table of non-central chi-square distribution.

Thus Model II would yield more power than that under Model I, if

n

(B = B0)* Y _(zi —2)*/0® < g(A}) (7)

=1

where A? is given in (4). If A? is large, the power of both the tests would be
close to 1; hence, the choice between Model I and Model II effectively arises
when A? is of moderate to small value. On the other hand, even if (8 — £5)?
is large, the power of the test under Model I may fail to be larger than that
under Model II if 3", (z; — z)? is sufficiently small.

If a preliminary sample is available, then it is possible to get an estimate
A% of A?. Then one may consider a heuristic rule which suggests to use
Model IT if (7) holds with A? replaced by A% and 3 replaced by b, its least
squares estimate.

One may also consider a randomized rule to make the transition from
Model I to Model II smooth. Suppose ¢ is the probability of using Model 11
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g(A) (b—Bo)* X1 (zi — )% /0

Figure 1: A possible randomized rule for choosing Model II over Model 1

and 1—¢ is the probability of using Model I. Then, allowing for the standard
error of A2, one may consider ¢ described in Figure 1.
A Bayesian analysis of the above problem is given in the next section.

3. Ill-conditioned design and unidentifiability: a Bayesian
treatment

We shall now consider the above example from a Bayesian viewpoint.
The model considered is the following

y; = o+ Bz + e, (8)

(i = 1,...,n) where the e;’s are iid N(0,0?), a and B being unknown. For
the present discussion we shall assume that o2 is known (for simplicity).

If the x;’s are all equal, both « and 3 are unidentifiable, the identifying
parametric function being « + fz. It can be easily seen that, under Model
IT, the conditional posterior distribution of S given o + BT is the same as
the corresponding conditional prior distribution. It is expected that, under
Model I, the same phenomenon will occur in the limit as " (z; — %)% — 0.
We shall examine the change in the conditional posterior distribution of
given a + Bz, under Model I, as 3.7 (z; — Z)? approaches 0.

For this study, we consider the prior distribution of (a, ) as

No [( Na>7F2<711 Y12 )] (9)
Kp Y21 Y22
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We consider Model I, namely S, (z; — z)? # 0. It is sufficient to consider
the posterior distribution of («, 8) given 7 and b, the least-squares estimate
of 3, since (y,b) are sufficient for these parameters. For simplicity, we shall
consider the posterior distribution of (v, 8), where v = « + $Z, noting that
(v, 8) has one-to-one correspondence with («, 3).

Given v and 3, the random variables y and b are independently dis-
tributed as

y~N(y,0%/n), b~N(B,0?/ D (zi—2)°) (10)
=1

Using generic notation for density functions, the posterior distribution of v
and B can be expressed as

p(@M)pOIB)m (V)7 (BlY)/Pm (7, b) (11)

where 7 stands for prior distribution and p,, denotes the marginal density
of (y,b). Now

po@d) = [pane)dy | [ p019)n(51) do

= [ paenil) dr, (12
where
p(bly) = [ p(6lB)n(Bl) a5 (13)
Then the posterior pdf of « is
T(Yy,6) = p(Gly)w(7)p(b1Y)/Pm (5, b), (14)
and the conditional posterior pdf of 3, given v, is
©(Bly, B,7) = p(blB)7(Blv)/p(bly) (15)
The prior conditional distribution of 3 given - is
N(a1y + ag, %) (16)
where i,
ap = Y12+722F
Y11 +2712Z+72232
a2 = (g — 1y
_ 17
fiy = po + w/(a . (17)
2 _ 922
T =02 ’71111221;5623-7229?2
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From (15) we find that the conditional posterior distribution of § given =, is

1 d*r? 72
N(——5— b 1
<d%2+1(a”+“2)Jr P72+ 1 ’d272+1> (18)

where
n

d? = Z(wl —z)%)0? (19)
i=1
Note now that the distribution in (18) tends to the distribution in (16) as
d?> — 0. The conditional posterior mean of 3, given 7, is a convex combi-
nation of the conditional prior mean of £, given 7, and b; the role of b can
be judged by its factor d27%/(1 + d?72), which tends to 0 as d> — 0. The
conditional posterior variance of , given <y, is smaller than the conditional
prior variance of 3, given y; however, as d> — 0, these conditional variances
become equal in the limit. As a whole, it appears that (18) approaches (16)
“smoothly” as .7 (x; — z)% approaches 0.
Using (14) we find that the posterior distribution of v under Model I is
normal with mean

n 1 da? | | n fy . d?ay(b—as)
ST R I L 1 ) 20
a2+02+d22+1 U2y+a,2y+ d?t2 4+ 1 (20)
and variance L
n 1 d?a? |
LI S - 21
l02+a?y+d27’2+1 (21)
where
02 = Y11 + 28712 + 920 (22)

It can be seen that the above distribution tends to the posterior distri-
bution of v under Model II as 3.7 (x; — z)? — 0. Furthermore, it may be
noted that the posterior variance of v is smaller under Model I than that
under Model II. The influence of b in the posterior distribution of v under
Model T diminishes to 0 as 37 (z; — Z)? approaches 0.

We shall now examine the change of the HPD region of (v, /) under
Model I to that under Model IT as 3, (z; — z)? — 0.

After some calculations, it can be found that the posterior distribution
of (,3) under Model I is normal with mean

(1) swenr[(2)-(5)]
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and covariance matrix

A—AD+A)'A (24)
where
A — Y11 + 2Tv12 + T2y22 Y12 + Ty2e
Y12 + Ty22 Y22
D = diag (¢%/n,1/d?)

The posterior distribution of (v, 5) under Model II is normal with mean

2 —
My O-'y Y — [y
+ g YTy 25
(Mﬁ ) (’712+96’Y22 )02/71—1—0% (25)

and covariance matrix

1 O'2 2 _
~o?/n+a2 ( Y12 +7§:722 > (05 2+ T722) (26)
Now note that
(D+A)~ =D V(1 + D YV2AD /2" pT1/2 (27)

and

D2 ( \/’g/” 8 ) (28)

as > (z; — )2 — 0. Now it is easy to see that the HPD region under
Model T “smoothly” changes to that under Model 1T as >-%, (x; — %)% — 0.
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