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SUMMARY. In estimating equation technique for estimating the mean regression pa-

rameters, one important issue is how to choose the weights to improve the efficiency of

the estimation. The key idea of this paper is to replace the weights with the empirically

estimated covariances. We discuss regression of an outcome on a vector of covariates, and

propose an optimal estimating equation approach which achieves asymptotic efficiency.

Asymptotic normality of the regression parameter estimates is also established. A small

simulation study indicates improved efficiency of this approach.

1. Introduction

We consider a general set-up with Y being the response variable and X
as the vector of, say d, explanatory variables or covariates. Our purpose in
this paper is to estimate the regression parameter vector θ which specifies the
relationship of the mean of the response with the covariates via the following
function

E[Y |x] = µ(x, θ) ,

where µ(x, θ) is a specified function up to a vector of unknown parameters
θ, based on n observations (yi, xi), for i = 1, · · · , n. Here, (yi, xi) denotes the
observed values of Y and of covariates X on the ith individual. A special but
important case included in the above model is the regression model in which
µ(x, θ) is a function of xT θ. Likelihood based estimation of θ is common
in such cases when distribution of Y is known, which is covered under the
broad heading of generalized linear models (McCullagh and Nelder, 1989).
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Evolving from the generalized linear model is the quasi-likelihood, which re-
quires, instead of a distributional assumption, an assumption of only variance
function, denoted by V (x, θ) = V ar[Y |X = x]. The estimate of θ satisfies
the quasi-score estimating equation,

∑
i (∂µi/∂θ)V −1

i (yi − µi) = 0, where
Vi = Vi(θ) = V (xi, θ) and µi = µi(θ) = µ(xi, θ). Interestingly, the estimate
from such an equation has all of the desirable properties as a likelihood-based
estimate, but is more robust (McCullagh and Nelder, 1989, p328).

When neither distribution nor variance has been specified, estimating
equation technique has been proposed to estimate θ in the univariate regres-
sion (Huber, 1967; White, 1982) and also in the multivariate analysis (Liang
and Zeger, 1986; Prentice and Zhao, 1991). Specifically, rather than assum-
ing a particular variance function, one may choose a weighting function, wi,
and then estimate θ as a solution to the estimating equation,∑

i

(∂µi/∂θ)w−1
i (yi − µi) = 0, (1)

for θ. It can be shown easily that the above estimating equation yields con-
sistent estimate of θ, and the estimate has an asymptotic normal distribution
with an easily estimated asymptotic variance-covariance matrix (Liang and
Zeger, 1986). Hence, this estimate is more robust than either likelihood-
based or quasi-likelihood-based estimate. However, the price for this gain of
the robustness by the estimating equation technique is possible inefficiency.
Godambe and Heyde (1987) (see also McCullagh and Nelder, 1989, ch 9.5)
have shown that the optimum choice of this weight function is the variance
function itself or its proportionality in the sense that the asymptotic vari-
ance of any linear combination of the estimate of the parameter vector θ is
minimized. For example, with binary response, the variance function is fully
specified by the mean of the response, Vi = µi(1−µi). Hence, the weighting
function should be chosen to equal this variance function. In general, how-
ever, assuming a variance function usually requires an untestable and yet
nuisance assumption about an aspect of the random response process. For
example, with count response, if it is resulted from a sum of independently
distributed binary random responses, the count has a binomial distribution,
and thus has a specific variance function. However, in the presence of depen-
dence between these binary random responses or of heterogeneity in their
means, the count response does not have the binomial distribution, and the
variance of the count responses has a so-called over-dispersion, which could
be arbitrary depending on the source for the over-dispersion. A usual choice
of the over-dispersion parameter, resulted from either beta-binomial or equal
within-correlation, represents a strong assumption about the variance func-
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tion, and, often, is not verifiable from the available data.
How to improve efficiency of estimating θ by the estimating equation with

unspecified variance function is of great interest. Our idea is to estimate vari-
ance function nonparametrically, and to replace the weighting function wi in
(1) with the estimated variance function. Intuitively, the nonparametrically
estimated variance function will approximate the true variance function,
and hence the estimating equations with the estimated variance function will
achieve the optimality in estimating the regression coefficients in the absence
of any knowledge regarding the true variance function. Among many non-
parametric regression techniques, we choose the kernel smoothing method.
One way of estimating the variance function is to use two applications of
kernel smoothing to estimate E[Y 2|x] and E[Y |x], respectively. However, a
more efficient way is to exploit the assumed mean structure µ(x, θ) and es-
timate E[(Y − µ(x, θ))2 |x] using one application of kernel smoothing. This
idea has been considered by Carroll (1982) to deal with linear regression with
unknown heteroscedasticity. Carroll (1982) suggested the kernel smoothing
technique to estimate the variance function based on the squared residuals
which are obtained through an ordinary least square estimates of the pa-
rameters. Then, with estimated variances as weights one can obtain the
weighted least squares estimates of the regression coefficients in linear re-
gression (see also Carroll and Ruppert, 1988, p110-113). Estimate of θ thus
obtained by using nonparametrically estimated variances (weights) has the
same asymptotic distribution as if the variances were known. The proof
of this result has been provided, with long and tedious algebra, by Carroll
(1982) for linear regression with one covariate and also by Robinson (1987)
and Müller and Stadtmüller (1987) in some general cases. The purpose of
this work, although in principle similar to that of Carroll (1982), is two-fold.
First, it considers the estimating equation approach, thus avoiding any dis-
tributional assumption, with the most general form of mean function µ(x, θ)
and suggests an iterative method alternating between estimation of the Vi’s
and estimation of the parameter of interest θ to achieve both the efficiency
and robustness (see Section 2). Secondly, this approach leads to a simple
proof of the asymptotic results in the most general case (see section 3) and
allows for natural extension to multivariate response data (see section 5).
Section 4 presents a small simulation study to investigate the performance
of this method based on nonparametric estimation of variance.

2. An Optimal Estimating Equation

We use kernel smoother (Nadaraya, 1964; Watson, 1964) to estimate the
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variance function V (x, θ), assumed to be continuous in x, as

V̂ (x, θ) =
∑n

j=1 K[h−1(x− xj)][yj − µj(θ)]2∑n
j=1 K[h−1(x− xj)]

,

where K(·) denotes the kernel function of order r, say, and x denotes a
typical covariate vector. In particular, such a kernel estimate for Vi can be
written as

V̂i = V̂i(θ) = (
n∑

j=1

DijS
2
j )/

n∑
j=1

Dij , (2)

where Dij = K[h−1(xi − xj)] and Sj = yj − µj(θ). The choice of the above
kernel smoother does not preclude the use of other smoothing technique,
except that this choice offers an advantage for the theoretical proof of the
asymptotic properties to be discussed in the next section. As in (1), assuming
µi to be differentiable in θ, let us write, for a fixed θ, the estimating equations

Un(θ, V ) = n−1/2
n∑

i=1

µ̇iV
−1
i Si , (3)

where µ̇i = ∂µi(θ)
∂θ , and

Un(θ, V̂ ) = n−1/2
n∑

i=1

µ̇iV̂
−1
i Si . (4)

We suggest estimating θ by solving the optimal estimating equation
Un(θ, V̂ ) = 0 for θ. Implementing this is rather straightforward, similar to
reweighted least square, via the following algorithm with a fixed bandwidth
h for kernel smoothing.

Step 1: Set Vi = 1 for all i and solve Un(θ, V ) = 0 (see (3)) for θ to obtain an
initial estimate θ0.

Step 2: Obtain the nonparametrically estimated variances V̂ 0
i with θ = θ0 as

described in (2), for all i.

Step 3: Solve Un(θ, V̂ ) = 0 for θ, with V̂i’s replaced by V̂ 0
i ’s, to obtain an

improved estimate θ1. This step may be iterative.

Step 4: Go back to Step 2 with θ0 replaced by θ1 and continue the iteration
until convergence.
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Carroll (1982) suggested one iteration of steps 1-3 above to settle for
the estimate θ1. Clearly, the estimate obtained at the final iteration satisfies
Un(θ, V̂ ) = 0. This estimate is denoted by θ̂(h) to emphasize the dependence
on the bandwidth h. In principle, one should find an optimal choice of the
bandwidth h by minimizing, for example, the asymptotic variance of θ̂(h)
(see the next section). In this paper, we do not consider such optimal choice
of h, but estimation of θ for a fixed bandwidth h. Hence, we write θ̂(h) = θ̂
suppressing the dependence on h. Given the order r, usually the choice of
kernel function has little effect on the nonparametric estimates, given here
by (2). However, selection of the bandwidth h is crucial. The condition (5)
for the asymptotic results in the following section gives a guideline for such
a selection.

3. Asymptotic Results

Note that, from (3), E[Un(θ, V )] = 0 and, since V ar[Si] = Vi, we have

V ar[Un(θ, V )] = n−1
n∑

i=1

µ̇iµ̇
T
i V −1

i ,

where µ̇T
i denotes the transpose of µ̇i. Then, assuming that the limit exists,

write VU = VU (θ) = limn→∞ n−1∑n
i=1 µ̇iµ̇

T
i V −1

i as the asymptotic variance
of Un(θ, V ), for a fixed θ.

Let us first specify the sufficient condition on the bandwidth h which is:

h → 0, nh2d →∞ and nh2r → 0 as n →∞. (5)

This condition has been recently worked with by several authors (Carroll and
Wand, 1991; Carroll et al., 1995; Wang et al., 1997). This clearly requires
r > d. Thus, higher order kernels will be required for larger values of d.
Note that

E[V̂i] =
∑n

j=1 DijVj∑n
j=1 Dij

= Vi + O

hr +

√
h2−d

n

 , (6)

for i = 1, · · · , n, which can be easily verified by using the technique similar to
Silverman (1986, p38-40). The following result (7) will be extensively used
in further derivations:
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Assuming E[S4
i ] < ∞, we have

V̂i = Vi + Op(hr +
1√
nhd

) , (7)

for all i = 1, · · · , n. To give a sketch of the proof for (7), write Wj = V ar[S2
j ],

which is finite since E[S4
j ] is, for all j. Then, note that

V ar[V̂i] =
∑n

j=1 D2
ijWj

(
∑n

j=1 Dij)2
= O(

1
nhd

) , (8)

using the same technique (Silverman, 1986, p38-40). Then, using (6), we
have the result.

Note that θ̂ satisfies Un(θ, V̂ (θ)) = 0 (see (4)). By a Taylor series expan-
sion, we have

n1/2(θ̂ − θ) =
[
−n−1/2 ∂

∂θ
Un(θ, V̂ (θ))

]−1

Un(θ, V̂ (θ)) + op(1) . (9)

Write ηn = {nh2r + 1/(nh2d)}1/2. Consider the following linear approxi-
mation (see Wang et al., 1997):

Un(θ, V̂ )−Un(θ, V ) = n−1/2
n∑

i=1

µ̇iSi

(
1
V̂i

− 1
Vi

)

= n−1/2
n∑

i=1

µ̇iSi

[
− V̂i−Vi

V 2
i

+Op(h2r+
1

nhd
)

]
,

using (7)

= −n−1/2
n∑

i=1

µ̇iSi

V 2
i

(V̂i − Vi) + Op(ηn)

= −n−1/2
n∑

i=1

µ̇iSi

V 2
i

 n∑
j=1

Dij(S2
j − Vi)∑n

k=1 Dik

+ Op(ηn)

= −n−1/2
n∑

i=1

µ̇iSi

V 2
i

Dii(S2
i − Vi)∑n

k=1 Dik

−n−1/2
n∑

i=1

∑
j 6=i

µ̇iSi

V 2
i

Dij(S2
j − Vi)∑n

k=1 Dik
+ Op(ηn)

= An + Bn + Op(ηn), say. (10)

Assuming E[S6
i ] < ∞, it is easy to verify that An = Op(ηn). Note that

E[Bn] = 0. With routine (but long and tedious) calculations, one can also
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verify that V ar[Bn] = Op(η2
n) (see the Appendix for a sketch of the proof).

Hence, Bn = Op(ηn). Thus, we have, from (10), Un(θ, V̂ ) − Un(θ, V ) =
Op(ηn); or,

Un(θ, V̂ ) = Un(θ, V ) + Op(ηn) . (11)

The asymptotic normality of Un(θ, V̂ ) is now easily seen from (11) with
asymptotic mean and variance same as that of Un(θ, V ), that is 0 and VU ,
respectively. Therefore, Un(θ, V̂ ) is asymptotically unbiased and, hence, θ̂
converges in probability to θ (Foutz, 1977), assuming VU (θ) to be posi-
tive definite. Because of (7), n−1∑n

i=1 µ̇iµ̇
T
i V̂ −1

i can be used as a consis-
tent estimate of VU . The asymptotic normality of n1/2(θ̂ − θ) now follows
from (9).

Note that the term inside [ ] in (9) can be written as

−∂

∂θ

[
n−1

n∑
i=1

µ̇iV̂
−1
i Si

]
= −n−1

n∑
i=1

[(
∂

∂θ
µ̇iV̂

−1
i

)
Si − µ̇iµ̇

T
i V̂ −1

i

]
.

Using (7) and (5), the first term can be shown to be op(1), following the
same derivation as (11), and the second term is

n−1
n∑

i=1

µ̇iµ̇
T
i V̂ −1

i = n−1
n∑

i=1

µ̇iµ̇
T
i V −1

i + op(1) → VU .

Hence, the asymptotic variance of n1/2(θ̂ − θ) is, from (9) and using (11),
V −1

U . However, noting that Un(θ, V̂ ) =
∑n

i=1 Un,i(θ, V̂i) with Un,i(θ, V̂i) =
n−1/2µ̇iV̂

−1
i Si, a finite sample approximation for the variance of Un(θ, V̂ )

can be taken as
n∑

i=1

Un,i(θ, V̂i)Un,i(θ, V̂i)T .

Then, an alternative estimate for the asymptotic variance of n1/2(θ̂ − θ) is(
1
n

n∑
i=1

µ̇iµ̇
T
i V̂ −1

i

)−1( n∑
i=1

Un,i(θ, V̂i)Un,i(θ, V̂i)T

)(
1
n

n∑
i=1

µ̇iµ̇
T
i V̂ −1

i

)−1

,

(12)
evaluated at θ = θ̂, the so called ‘sandwitch estimate’.

4. A Simulation Study

We conduct a simulation study to investigate the finite sample perfor-
mance of our method based on nonparametric estimate of the variance func-
tion. One important objective of this study is also to investigate the extent
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of efficiency gain by the suggested iterative method over the one-iteration
method of Carroll (1982) for linear regression. For this purpose, we simulate
regression data from heteroscedastic Normal, Binomial and Poisson distri-
butions and analyze the data assuming only their mean structure. In each
case, for a sample of size n, the n values of the regressor X (assumed scalar
for our simulation) are generated from U [0, 10] distribution. The models for
simulation, given X = x, assume different mean structures for the corre-
sponding response variable Y , given by µ(x, θ) as functions of α+βx, where
θ = (α, β).

Firstly, the conditional distribution of Y , given X = x, is assumed to be
Normal with mean µ(x, θ) and variance cx. For the model parameters, we
choose different combinations of θ = (5.0, 1.0), (20.0, 0.0) and c = 0.5, 1.5.
For the Binomial distribution of Y given x, number of trials m is taken as
10 and logit of the success probability is assumed to be α + βx so that

µ(x, θ) = 10× exp(α + βx)
1 + exp(α + βx)

.

We choose θ = (−4.6, 0.5) and (−2.95, 0.3). Thirdly, for the Poisson distri-
bution, we assume µ(x, θ) = exp(α + βx) and choose θ = (1.61, 0.11) and
(1.61, 0.16). These parameter values were chosen to reflect different levels of
heteroscedasticity.

For a particular model and given the n values of X, we carry out 1000
simulations. In each of them, the n values of Y are generated from the cor-
responding distribution and θ is estimated by the estimating equation ap-
proach with four different weight functions as follows: (I) assuming the vari-
ance structure (that is, by solving (3)) which gives asymptotically the most
efficient estimate, (II) assuming homoscedasticity (that is, Vi = V (xi, θ) = 1)
which is step 1 of our algorithm in section 2, (III) nonparametrically estimat-
ing the variance by kernel smoothing (see (2) and step 2 of our algorithm)
with θ = θ0 obtained from (II) above and then carrying out step 3 of our
algorithm once (similar to Carroll’s method), and (IV) same as (III) above
but iterating steps 2-4 of our algorithm five times (for computational sim-
plicity, we do not iterate till convergence). For the nonparametric estimates
of variance functions, we use the Epanechnikov’s kernel function given by
K(x) = 0.75(1−x2), |x| ≤ 1, and a window length h that is proportional to
n−1/3.

We first consider estimating the asymptotic relative efficiency (ARE)
of the initial estimate of θ, from (II), by assuming equal variance, with
respect to that from (I). This is obtained by the ratio of the corresponding
variance estimates (from (I) and (II)) based on the estimates of θ from 1000
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simulations and denoted by ARE0 in the tables. Next, we estimate ARE
for the one-iteration estimate from (III), with respect to that from (I), by
using (i) the variance estimate based on V̂U (that is, n−1∑n

i=1 µ̇iµ̇
T
i V̂ −1

i ),
and also (ii) the sandwitch estimate given by (12). The variance estimates
in the numerator (that is, for the estimate from (I)), in both (i) and (ii),
are also based on V̂U and equation (12), respectively, but using the true
variance structure. These are denoted by ARE1 and AREs1, respectively.
The same is done for our estimates from (IV) using five iterations and are
denoted by ARE5 and AREs5, respectively. The two entries in each cell of
the tables are the corresponding ARE’s for the estimates of the intercept and
slope parameters, respectively. The results are presented in Tables 1-3 for
Normal, Binomial and Poisson models, respectively. The simulation results
indicate small bias in the estimates (not reported here), as expected, which
reduces with increasing sample size.

Table 1. Asymptotic relative efficiency for Normal models.

θ c n ARE0 ARE1 ARE5 AREs1 AREs5

(5.0,1.0) 0.5 25 .505 .561 .586 .604 .620
.639 .849 .861 .868 .885

50 .307 .481 .510 .656 .676
.530 .832 .849 .931 .945

100 .344 .510 .530 .666 .677
.566 .810 .821 .900 .907

1.5 25 .401 .542 .586 .767 .801
.641 .932 .952 .995 .998

50 .217 .269 .274 .207 .210
.525 .648 .650 .640 .647

100 .126 .158 .161 .128 .130
.417 .531 .535 .580 .585

(20.0,0.0) 0.5 25 .833 .946 .963 .968 .976
.870 .989 .996 .959 .966

50 .331 .425 .436 .525 .536
.571 .768 .772 .840 .849

100 .281 .425 .441 .541 .554
.522 .697 .708 .796 .807

1.5 25 .589 .698 .727 .809 .829
.711 .912 .927 .959 .975

50 .250 .348 .356 .424 .433
.482 .697 .700 .783 .794

100 .414 .483 .493 .563 .568
.581 .765 .770 .824 .828
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The ARE’s of one-iteration and five-iteration estimates (from (III) and
(IV), respectively) are evidently larger than those from (II), obtained by
assuming homoscedasticity. Therefore, using nonparametric estimate of the
variance function is better than not using any weight. Also, the five-iteration
estimate is more efficient (although marginally in most cases) than the one-
iteration estimate. The ARE of the slope parameter estimate is generally
seen to be more than that of the corresponding intercept parameter estimate.
So, the uncertainty due to estimation of variance function seems to have
more effect on the intercept parameter estimate. The sandwitch estimate of
variance, in general, results in higher ARE, which indicates that its use may
lead to more efficient interval estimation.

Table 2. Asymptotic relative efficiency for Binomial models.

θ n ARE0 ARE1 ARE5 AREs1 AREs5

(-4.6,0.5) 25 .592 .886 .897 .927 .940
.638 .970 .975 .956 .967

50 .452 .886 .907 .947 .959
.508 .951 .964 .973 .984

100 .573 .836 .841 .957 .961
.612 .877 .881 .963 .966

(-2.95,0.3) 25 .767 .951 .963 .992 .998
.802 .980 .987 .990 .995

50 .812 .948 .955 .997 .999
.842 .994 .997 .994 .996

100 .816 .928 .931 .995 .996
.846 .979 .980 .995 .996

Table 3. Asymptotic relative efficiency for Poisson models.

θ n ARE0 ARE1 ARE5 AREs1 AREs5

(1.61,0.11) 25 .881 .964 .988 .988 .993
.892 .952 .966 .983 .987

50 .906 .970 .980 .985 .987
.892 .965 .971 .987 .989

100 .892 .986 .992 .986 .987
.888 .981 .983 .971 .972

(1.61,0.16) 25 .775 .957 .982 .973 .985
.798 .978 .994 .975 .986

50 .860 .962 .971 .967 .970
.866 .977 .983 .982 .984

100 .855 .985 .991 .992 .994
.847 .980 .982 .977 .979
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5. Discussion

The variance of the response variable as a function of the covariates may
be misspecified because of the wrong modeling assumption or presence of
overdispersion, etc. The assumption of arbitrary variance function, and the
use of a nonparametric estimate for it, as in section 2, makes the estimates of
the regression parameters robust against such misspecification. Although, in
the context of mean regression problem, variance function is a nuisance com-
ponent, its nonparametric estimation ensures that the estimation of mean
parameters is optimal while alleviating the problem of choosing a variance
function. For this purpose, one could use any other nonparametric estimate
of the Vi’s instead of the kernel smoother, for example, using other smooth-
ing techniques or by using replications whenever they are available at the
different xi’s (Fuller and Rao, 1978). There could be situations when esti-
mating variance function is of primary interest. For example, in studies of
HIV infection, while CD4 cell counts measure the immune status of patients,
their variability over a period describes the stability of infection. In moni-
toring quality control, the primary objective is to quantify variability of the
key outcome. One of the study objectives in genetic analysis of variance
is to assess how much variation of phenotype may be explained by genetic
factors.

Although the method described in section 2 implicitly assumes that the
covariates are continuous randomly selected from a covariate space, it works
in principle for fixed covariates and also for discrete or categorized covariates.
The asymptotic results are, however, difficult in the latter case. The variance
estimates V̂i’s, while plotted against the covariates, gives an idea if only a
subset of the covariates affects the variance and hence a lower dimensional
kernel smoother may be adopted. If the variance is assumed to be a smooth
function of a single argument xT θ, or the mean µ, as is often the case, one
can use a univariate kernel function; it alleviates the rather computational
problem of having to work with a multivariate kernel function (Silverman,
1986, Chapter 4). This kind of dimension reduction has also been considered
by Carroll et al. (1995) in the context of semiparametric regression with
errors in covariates.

In this paper, we worked with only univariate response data. The es-
timating equation approach described in this paper is easily extended for
multivariate response data in which Vi is to be interpreted as the covariance
matrix of Yi, the response vector corresponding to X = xi. The nonpara-
metric estimate of the matrix Vi in this case can be derived as before by
obtaining the kernel smoother for each of its elements. For example, the
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(j, j′)th element of Vi, Vi(jj′) say, can be estimated as

V̂i(jj′) =
∑

l Dil × (ylj − µlj(θ))
(
ylj′ − µlj′(θ)

)∑
l Dil

,

where Yij = yij denotes the jth component of Yi = yi and µij(θ) = E[Yij |X =
xi]. The estimate V̂i thus obtained is used as a ‘working covariance matrix’
in the usual estimating equation approach.
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Appendix

V ar[Bn]

= n−1

∑
i

∑
j 6=i

V ar

(
µ̇i

V 2
i

Dij∑
k Dik

Si(S2
j − Vi)

)

+
∑
i6=i′

∑
j,j′:j 6=i,j′ 6=i′

Cov

(
µ̇iSi

V 2
i

(S2
j − Vi)Dij∑

k Dik
,
µ̇i′Si′

V 2
i′

(S2
j′ − Vi′)Di′j′∑

k Di′k

)

+
∑

i

∑
j 6=j′( 6=i)

Cov

(
µ̇iSi

V 2
i

(S2
j − Vi)Dij∑

k Dik
,
µ̇iSi

V 2
i

(S2
j′ − Vi)Dij′∑

k Dik

)
= n−1 [B1n + B2n + B3n] , say. (13)

It is easy to see that

B1n =
∑

i

∑
j 6=i

µ̇2
i

V 4
i

D2
ij

(
∑

k Dik)2
Vi(Wj + V 2

j − 2ViVj + V 2
i )

=
∑

i

O(
1

nhd
), as in (8).

Thus n−1B1n = O( 1
nhd ) = O(η2

n). Note that B2n = 0 and

B3n =
∑

i

µ̇2
i

V 4
i

∑
j 6=j′( 6=i)

DijDij′

(
∑

k Dik)2
Vi(Vj − Vi)(Vj′ − Vi)

=
∑

i

µ̇2
i

V 3
i

∑
j 6=i

Dij(Vj − Vi)∑
k Dik

∑
j 6=j′( 6=i)

Dij′(Vj′ − Vi)∑
k Dik



estimating equation with unspecified variances 107

=
∑

i

O(hr +

√
h2−d

n
)

2

, as in (6).

Thus n−1B3n = O
(
h2r + 1

nhd−2

)
= O(η2

n). Hence, from (13), we have
V ar[Bn] = O(η2

n).
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