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Fast Polygonal Approximation of Digital Curves
Using Relaxed Straightness Properties

Partha Bhowmick and Bhargab B. Bhattacharya

Abstract—>Several existing digital straight line segment (D55) recognition algorithms can be used to determine the digital straightness of
a given one-pixel-thick digital curve. Because of the inherent geometric constraints of digital straightness, these algorithms often produce
a large number of segments to cover a given digital curve representing a real-ife objectimage. Thus, a curve segment, which is not
exacthy digitally straight but appea rs to be visually straight, is frrgmented into multiple DSS when these algorithms are run. |n this paper, a
new concept of approximate straightness is introduced by relaxing certain conditions of D535, and an algorithm is described to extract
those segments from a digital curve. The number of such segments required to cover the curve is found to be significanthy fewer than that
of the exact OS5 cover. As a result, the data set required for representing a curve also reduces to a lamge extent. The extacted set of
segments can further be combined to determine a compact polygonal approximation of a digital curve based on certain approximation
criteria and a specified error tolerance. The proposed algonthm involves only primitive integer operations and, thus, runs very fast
compared to those based on exact DS S, The overall time complexity becomes linear in the numbe rof points present in the representative
sat. Expenmental results on several digital curves demonstrate the speed, elegance, and efficacy of the proposed method.

Index Terms—Digital geometry, digital straight line, polygonal approximation, shape analysis.

1 INTRODUCTION

THE efficient representation of lines and curves in the
digital plane has been an active subject of research for
nearly half a century [24], [25], [37]. In particular, digital
straight line segments (DSS)! have drawn spedal attention
for their challenging nature from the viewpoint of theoretical
formulation and also for their potential applications to image
analysisand cumpulergraphics. Ina digital image containing
one or more objects with fairly straight edges, the set of (exact
or approximate) Dss captures a strong geometric property
that can be used for shape abstraction of the underlying
objects, as well as for finding the resemblance among several
digital objects.

The necessary and sufficient conditions for a discrete/
digital curve (DC) to be a DSS have been stated in the
literature in various forms [17], [24], [35], [37]. In [35], it has
been shown that a DC is the digitization of a straight line
segment if and only if it has the chord property. A DC Chas the
chord property if, for every (p, q) in C, the chord 7 (the line
segment drawn in the real plane, joining p and q) “lies near” C,
which, in turn, means that, for any point (z.y) of 7, there

L. The acronyms "IdC," "DSL," "DES," and “ADSS" have been used in
this paper in both singular and plural senses, depending on the context.

exists some point (7, j) of C such that max{|¢ — =/, |j —y|) = L
A few other definitions related to this work are given below?

Chain Code. 1f p (1, j) i a grid point, then the grid point
(7,7 is a neighbor of p, provided that max(|i -,
li — 71} = 1. The chain code [16], [17] of p with respect to its
neighbor grid point in  can have avaluein {0,1.,2,....7},as
shown in Fig. 1a.

Digital Curve (DC). A DC C is an ordered sequence of grid
points (representable by chain codes) such that each point
(excepting the first one) in C is a neighbor of its predecessor
in the sequence (see Figs. 1b, 1c, and 1d).

Irreducible Digital Curve. A DC C s said to be irreducible
if and only if the removal of any grid point in C makes C
disconnected. All the DC shown in Fig. 1 are irreducible. A
DSS is essentially an irreducible DC.

An example of an oper-end DC is shown in Fig. 1b. The
traversal of an open-end DC using Depth First Search (DFS)
[10] starts from one of its two endpoints, say, s. Thus, the
chain code of C is given by (1, 2)10756543, considering
5= (1,2). If C has some branching (Fig. 1c}, then the complete
chain code of C can be written as (1, 2)10756543(3, 4)76. I C
is a closed curve, then the DFS may start from any suitable
grid point of C (Fig. 1d).

Several intriguing prnblems and properties related to
DSS and digital straight line/ray (DSL) have been studied
by various authors [7], [33], [37]. Many attributes of DS5 can
be interpreted in terms of continued fractions [26], [29], [46].
The most fundamental problem, which is highly relevant to
pattern recognition in general and to curve approximation
in particular, is to ascertain whether or not a given DC is a
DSS. Many solutions to this problem have been reported in
the literature [11], [12], [13], [27], [28], [43].

The proposed work introduces a new concept of approx-
imate digital straight line segments (ADSS) by preserving

2. The definitions and discussions in this paper are with respect to the
Sneighborhood connectivity [24] of the object and are wvalid for the
4neighborhood as well with certain modifications.



BHOWMICK AND BHATTACHARYA: FAST POLYGONAL APPROXIMATION OF DIGITAL CURVES USING RELAXED STRAIGHTNESS...

1
i}
1 L e
x| ol 7
F |
. 3
; a3 |
4 0
5 l‘\==: :'* -
52 ' a7 4 5
6 0
ia) i)
Fig. 1. Chain codes and their enumeration for defining DC. (a)
(€1 {1, 21 0756543(3, 4176 (d) (2, 1)0756543121.
some of the most fundamental properties of a DS5, while

relaxing or dropping a few others (see Fig. 3). A procedure is
thendescribed for extracting the set of ADS5 required to cover
a given DC assuming 8S-neighborhood connectivity. The
number of ADSS extracted from a set of DC in a real-world
scenario is likely to be appreciably fewer than that of a DSS
cover since many visually straight segments may fail tosatisfy
all the stringent properties of an exact D55 and, thus, are
recognized as multiple D55 by the extraction algorithms.
Some examples of DSS and ADSS present in DC have been
shown in Fig. 2. [t may be observed that the set of D55 in Fig. 2
contains 48 I‘Tagmenb-, each of which is “exactly straight,”
whereas that of ADSS contains only 20, which look “visually
straight.”

The concept of ADSS can also be wsed to construct a
polygonal approximation of a DC efficiently. Since the set of
ADSS provides anelegant and compact representation of DC,
it is very effective in producing approximate polygons (or
polychains) using a single parameter. The whole process
consists of two stages—first, extraction of ADSS and, second,
polygonal approximation. The major features of the algo-
rithm are listed as follows:

1. The detection of ADSS in stage 1 is based on simple
chain code properties; thus, only primitive integer
operations, namely, comparison, increment, shift,
and addition (subtraction), are required.

2. The ADSS extraction algorithm does not use any
recursion and thus saves execution Hime.

3. To compute the pul}rg{mal approximation in stage 2,
only the two endpoints of each ADSS are required as
input data and a few integer multiplications as
operations; thus, the algorithm runs very fast.

4. The actual approximation of a DC never oversteps
the worst case approximation for a given value of a
control parameter. That is, the maximum deviation
(of an edge) of the resulting polygon from the
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Fig. 2. Set of (a) D55 and that of (b) ADSS axtracted from a small set of
DC (the segments altemately colored in black and gray).
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Chain codes in 8-neighborhood connectivity. (b) (1, 2)10756543

original curve never exceeds the pre&:ribed value of
the approximation (control) parameter.

Several other methods [8], [9], [20], [50] have been
proposed recently for (approximate) line detection. Most of
the conventional parametric approaches are based on certain
distance criteria, usage of masks, eigenvalue analysis, the
Hough transform, and so forth. In contrast, the proposed
method relies on utilizing some of the basic properties of DSS
for extraction of ADSS.

Man}ralg{rrimms for approximating a given DC or contour
are well known [1], [3], [23]. Several variants of effident but
suboptimal algorithms had been proposed later [5], [6], [32],
[41], [42]. The class of polygonal approximation algorithms,
in general, can be broadly classified into two categories—one
in which the number of vertices of the approximate
polygon(s) is specified and the other where a distortion
criterion (for example, maximum Euclid ean distance) isused.

Most of the existing polygonal approximation algorithms,
excepting a few, have superlinear time complexities, for
example, O( V) in [47], O( M N?)in[32], O(N?)in[41]and [42],
and O M) in [34], where M denotes the number of segments,
and & denotes the total number of points representing the
input set of DC. A comparative study of these algorithms can
be found in [51]. Further, in order to analyze curvature, most
of them require intensive floating-point operations [2], [15],
[18], [44]. [49]. For other details, the reader may look at [4],
[14], [31], [47], [48], [39], [44], [52], and [53]. The method
proposed here uses only integer operations and vyields a
sub{:-pl'imal polygonal approximation with linear ime com-
plexity. A comparison of the proposed technique with some
of the important approaches is shown in Table 1.

2 ExacT aND APPROXIMATE STRAIGHT LINE
SEGMENTS

In this work, we use some regularity properties of D55 that
can be successfully derived from the chord property. Before
justifying the rationale of our algorithm, the DSS properties
(defined with respect to chain codes [16]) [17], [35] are listed
below:

(F1} At most two bypes of elements can be present and these
can differ only by unity, modulo eight.

(F2)} One of the two element values always occurs singly.

(F3) Successive occurrences of the element occurring singly
are as uniformly spaced as possible.
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TABLE 1
A Comparative Study of Some Existing Algorithms with the Proposed One
Dnfficulty 1 Mon-
" e : MNon- T Procedural : i Eror :
Alporithm and ils [eslurss Echideun Flexibilily complexily :;:EJr:u.tuld- P :-nf::r-
1. corvature maxima: (i) region of support; (i) measure of - no ne high* mcdinm T e
significance:® (i) nonmazima suppression [44],
2. ant eolony search: (1) graph representation; (i pode ran- oo {4} very hight high yes i
sition rule; (111) phervmuone wpdating tole [52].
3. arvea deviation per wnit length of approx. segment [47]. 0 wes® no Tow Towar yes yos
perceplual urpmnizalion: (i) ok classificativny’  ves s} bighé high iy e
(i) linking-meting: (i) smoothing;  {iv) application
of kmnwledge/milc |22].
5. using ADSS (proposed). ves v very Jow o ¥y ves

Awerl (sell- intersecting Sbranching curves when the inpul sel of gnd ponls constluting a curve 15 nol ordered

""r:.g., cosine curvatare, & ooarvatore, 1 corvamre, o,

“due (o mulliple deralions [or oomonaxima suppression (in 4 passes) aod curvature (odiog
“doe tn complex caleulutions, c.g., cxponentistion in selection problem of 4 node

“hy replacing e + g with (e o+ fold or masd wl. v}
Fourallel lioks folass | & 25, jolersection links, aod single loks.

feuc tn thres stages, cach using multplications for the eatire set of points om the curee

The Properties (F1-F3} were based on heuristic insights
[17]. Further, the Property (F3} is not precise enough for a
formal proof, as stated in [30]. A formal characterization of
DSS was provided later in [35], stated as follows:

(R1) The runs have at most two directions, differing by
45 degrees, and, for one of these directions, the run length
must be 1.

(R2) The runs can have only two lengths, which are
consecutive integers.
(R3) One of the run lengths can occur only once at a time.

(R4) For the run length that occurs in runs, these runs can
themselves have only two lengths, which are consecutive
integers, and s0 on.

A few instances have been given in Section 2.1 (see Fig. 3)
to clarify the significance of (R1-R4) in characterizing a DS5.

2.1 Extraction of ADSS

In the proposed algorithm EXTRACT-ADSS, designed for
extraction of ADSS from a DC, we have used (R1) along
with certain modifications in (R2). However, we have
dropped (R3) and (R4), since they impose very tight
restrictions on a DC to be recognized as a D55. Such a
policy, with the adoption of (R1), modification of (R2), and
omission of (R3) and (R4), has been done in order to
successfully extract the ADSS from a DC, and some of the
major advantages of this scheme are given as follows:

o avoiding tight D55 constraints, especially for the
curves representing the gross pattern of a real-life
image with certain digital aberrations /imperfections,

» enabling extraction of ADSS from a DC, thereby
straightening a part of the DC when the concerned
part is not exactly “digitally sl‘raight,"

» reducing the number of extracted segments, thereby
decreasing storage requirement and runtime in
subsequent applications,

o reducing the CPU time of ADSS extraction, and

e using integer operations {mly."

3. No floating-point operations are required in EXTRACT-ADSS. Only
integer operations tor addition, shift, and comparison are necessary. Even
multiplications and divisions have been avoided; for example, to compute
L(p+ 31/4], 3 is added with p, followed by two successive right shifts.

Since the chain code of a DC is a one-dimensional list C,
the ADSS may be characterized by the following sets of
parameters:

1. Orientations parameters given by n (nonsingular ele-
ment), s (singular element), [ (length of the leftmost
run of n), and r (lengthof the rightmost run of n), which
play dedsive roles on the orientation (and the digital
composition thereof) of the concerned ADSS. For
example, in Fig. 3, the curve {; hasn=10,s= 1, and
chain code 0*10710°10%10%10° having ! =4 and r = 5.

2. Rum length interval parameters given by p and g, where
[, 4] is the range of possible lengths (excepting [ and
r) of n in C that determines the level of approxima-
tion of the ADSS, subject to the following conditions:

(el) g—p=d=|(p+1)/2] (1)

(2) (-phlr-plse=|(p+1)/2]. (2)

While implementing EXTRACT-ADSS, we have strictly
adhered to (R1), as it is directly related to the overall
straightness of a DC. However, we have modified the
stricture in {R2) by considering that the run lengths of n can
vary by more than unity, depending on the minimum run
length of n. The rationale of modifying (R2) to the
Condition (cl) lies in the fact that, in order to approximate
the extracted line segments from the DC, an allowance of
approximation (d) specified by (c1) may be permitted. Given
avalue of p, theamount d by which gis in excess of pindicates
the deviation of the ADSS from the actual/real line, since,
ideally (for a DS5), ¢ can exceed from pby at most unity, and
the significance of din characterizing an ADSS is as follows,

Without loss of generality, let L be an ADSS with slope in
[0, 1. Letpy=p,m=m+ L, m=m+1,..., pg=q be the
run lengths of 0s present in L, and let the frequency of the
run length p; in L be n; (= 0) for i =0.1,..., d. Then, the
slope of the real line joining the start point and the endpoint
of L is given by
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Fig. 3. Instances of DC showing the significance of properies and conditions related with D35 and ADSS mecognition.

m= (N — 1;/2?“.;;},. i (3)
=i}
where N = ny +m + ...+ ny Hence, using the fact that p <
peglori=01,..., d, we get
N—-1 1 N—-1 1
3 2 ) 4
N f;+13m§ N p+1 ()

Thus, when the real line intersects the concerned run (if
the real line does not intersect the concerned run of L, then
the error is greater), the isothetic error of a run length p in L
(see Fig. 4) is given by

1 i) i)
e<smip+1)< (l_ﬁ) (1+_Hjl-1) < 1+P:_1. (i)

Hence, it is evident that the error incurred with an ADSS is
controlled by d, and, by (5), the lower the run length (p) of n,
the lower would be this allowance of approximation. Thus,
we keep the provision for adaptively changing thisallowance
of approximation, so that elongation of an ADSS is made as
much as Fm-}:ible till it does not lose its overall visual
straightness,

Apart from d, the other parameter, namely, ¢, is incorpo-
rated in(c2), which, along with(c1), ensures that the extracted
ADSSis not badl}r approximated, owing to some unexpected

real line —-, L
L _...;*.' b

e ‘_q__+l|-|+if:-+;|-.-|+a‘ ? B

Fig. 4. Maximum (isothetic) emor « comesponding toa run length p; (of 0s)
—with g + 1 number of grid points in the comesponding row—for an
ADSS representing a real line segment with slope m = tan#d, 0 <m < 1.
Although the real line intersects the run, in some other instance, it may
not.

valuesof! and r. The DSS properties (R1-R4), however, donot
give any idea about the possible values of land  (depending
onn). Further, in the algorithm for DSS recognition [11], fand
r are not taken into account for adjudging the DSS character-
istics of a DC. However, we have imposed some bounds on
the possible values of [ and = in order to ensure a reasonable
amount of straightness at either ends of an extracted ADSS.
The values of d and ¢ are heuristically chosen so that they
become computable with integer operations only. Some other
valuesliked = |(p + 3)/4]| ande = |(p +1)/2| orsomayalso
be chosen, provided that the computation is realizable in the
integer domain and does not produceany undesirable ADSS.
Forexample,inFig. 3, the curveC; hasp=1,q=21=11,and
r= 1. In our case ((1) and (2)), therefore, we get d =1 and
€= 1 resulting in a violation of (c2) by [; thus, C; will not be
accepted as an ADSS.

To justify the rationale of (c1) and (c2), we consider a few
DC, C,-Cs5, asshownin Fig. 3. Itis interesting to observe that,
although each of ¢, and C; has the appearance of a digital line
segment, they fail to hold all the four properties of DSS
simultaneously, as shown in their respective figures. The
curve ) violates (R3), and the curve (s violates (R4).
However, they satisfy (R1), (c1), and (c2) and, therefore, each
of them is declared as an ADSS. Similarly, the curve Cy
satisfies (R1-R4), (c1), and (c2); it is both an ADSS and a DSS.
However, none of the curves C; and C; can be announced as a
DSS or an ADSS because of the violation of (R2), (c1), and (c2)
(see Fig. 3).

2.2 Algorithm ExXTRacT-ADSS

Fig. 5 describes the algorithm EXTRACT-ADSS for extracting
ADSS from the chain code of each DC, say, Ci, stored in the list
C. This requires n; repetitions from Step 2 through Step 23,
where n;. is the number of ADS5in Ci. Let the ith repetition on
Ce produce the ADSS Al Recognition of L is prompted by
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Fig. 5. Algorithm EXTRACT-ADSS to find out the ordered list .4 of
endpoints of ADSS in the input curve ¢ that contains the chain code for
each connected component.

finding its corresponding parameters (n. s, I) using the FIND-
PARAMS procedure (Fig. 6) in Step 2 of EXTRACT-ADSS. This
is followed by checking/validation of

Property (R1): Step 4 and Step 10;

Condition (cl): while loop check at Step 9; and
Condition (c2): on the leftmost run length [ in Step 8
and Step 11, and on the rightmost run length + in
Step 14.

Proof of correctness. For each ADSS L', we show that
Property (R1)and Conditions (c1) and (c2) are simultaneously
satisfied. We also show that L!" is maximal in length in C;
in the sense that inclusion of the character (nor s or any other
in {0, 1,000, 7})(orasubstring of characters) that immediately
precedes or follows the part of DC corresponding to L:.I"J in
Ci does not satisfy the ADSS property /conditions.

While checking (R1) in Step 4 or Step 10, if an expected n
or s is not found at the desired place in Ci, then the current
ADSS LY ends with the previously checked valid char-
acters. This is explicit in Step 4 and implicit in Step 10. Thus,
L!"' satisfies (R1) and is maximal from its starting point and
finishing end, since either it is the first ADSS in C; or the
previous ADSS L:-Ii’, was maximal.

Mow, for each new run (of n), (cl) is verified in Step 9
—excepting the leftmost run I, which is not required since p
(and g) does not exist for a single run—after appropriately
updating p and g in Step 17 and Step 19, respectively,
whenever necessary. In Step 9, if it is found that g is
unacceptably large (that is, ¢ £ p+ ), then the while loop
(Steps 10-19) is not executed, and the current ADSS L:.I'] ends
with the truncated part of that run (bruncated maximally,
that is, up to length p + ¢, in Step 15 of the previous iteration)
as its rightmost run .

In checking (c2), however, we have to be more careful.
For the second run (that is, the run immediately following [}

Lad [d =

Peacedore Fian Tadams G500
Stepear

i+ wu

Lt =%+ 1 then
|

4. =2 zloment # o following O 4 1]
=, Do lelinesl ren lensdhoel g
fi return

7. else

L S I | I | S A R |
a9, P |

. while Jf L ¢ (ns)

1. 1 [ = s + 1] then

12. el zihen

15, gwiap & oanld &

14, ]

15, Tetarm

1a, 1l

17. e

15 relurm

Fig. 6 The procedure FIND-PARAMS that finds n, s, and [ from C.

of the current ADSS, (2) is checked (with respect to I} in
Step 8. It may be noted that if [ —p = ¢, then (c2) is not
satisfied and, so, the first two runs (! and its successor)
trivially constitute an ADSS by Step 7, because, for two
runs, we get only [ and r (and no p or g), and no relation is
imposed between ! and r to define an ADSS,

For the third and the subsequent run(s), if any, the
corresponding run length is stored in & (Step 10). If some
(small Enuugh} k violates (c2), then that k is treated as r
Steps 11-13), and the current ADSS ends with that run as the
rightmost run (of run length &), whereby the maximality
criterion of the ADSS i fulfilled. Otherwise, if & does not
exceed the maximum possible length of the rightmost run
(checked in Step 14}, then we consider k as a valid run of the
current ADSS (Step 14); else, we truncate it to the maximum
permissible length (p+¢) as the rightmost run (Step 15).
MNote that, if £ >p+e then k> g (for p+ez=p+d=yg),
and Step 19 updates g to & hence, (c1) will be false in Step 9
in the next iteration and, so, the ADSS will end here with
the (maximally) truncated part (p+ ¢) as its rightmost run.

Time Complexity. Determination of the parameters
in,s, 1), in FIND-PARAMS consists of two cases—the first
one (Steps 2-6) being easier than the second (Steps 7-18). In
either of these two cases, the procedure searches linearly in
C for two distinct (but not necessarily consecutive) chain
code values and determines the parameters accordingly. As
evident from the loop in either case, the three parameters
are obtained using only a few integer comparisons. The
number of comparisons is { — 1 for the first case, and that
for the second case is the number of characters in ¢ until
two consecutive nonsingular characters are found.

The parameters n, s, and [ obtained in FIND-PARAMS are
successively passed through a number of check points, as
mentioned earlier, which take constant time as evident in
Steps 3-8 of EXTRACT-ADSS. In Step 5 of EXTRACT-ADSS,
the first run length of n is measured immediately after the
leftmost run length of n, if any, and it starts from the first
nonsingular character out of the two consecutive characters
detected in FIND-PARAMS. In Step 10 of EXTRACT-ADSS, we
have another simple (and silent) loop that determines in
linear time each valid run of n in C, the validity criteria being
verified and updated in Steps 9-19, with each of these steps
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i, thereby making P;; an emor point, whereas P is not an error point,

since the iscthetic distance of P, is P,,)V,,, which is lesser than 3

taking constant time. Hence, for the ADSSL P”, the algorithm
EXTRACT-ADSS, together with the procedure FIND-
PARAMS, takes linear time; therefore, the time complexity
for extraction of all ADSS in C is strictly linear on the number
of points in .

2.3 Error Points

An ADSS extracted from an input DC may not be a perfect
DSS. There may OCCUr erronecus points. An erroneous point
or error point is that whose isothetic distance (that is, the
minimum of the wvertical distance and the horizontal
distance) from the real straight line corresponding to the
concerned ADSS is greater than 1. To check whether a point
is an error point or not, we use (6), stated as follows.

Let "1 and E; be the start point and the end point of the
shownin Fig, 7. Let 5.E, denote the real line segment joining
5; and E;. Then, it can be shown that P,; := (x,, y,) is anerror
point corresponding to the line 5.E, ifand only if

2|xgsyep — Xep¥es| — max{|xgs|, [yes|} = 0, (6)

where x,, =r. —r., ¥, = 4 — y., and so forth. Although
(6} is not required at any stage in our algorithm, it enables
us to check whether or not P;; is an error point without
using any floating-point arithmetic.

3 PoLYGONAL APPROXIMATION

Extraction of the ADSS for each curve Ci in the given set
(binary image) T := {C:};", of DC generates an ordered
set of ADSS, namely, A : = (L™, corresponding to Ck.
In each such set A, several consecutive ADSS may occur,
which are approximately collinear and, therefore, may be
combined together to form a single segment.

Let "Ll“]}-' be the maximal (ordered) subset of the ADSS
starting from LI ! that conforms to some approximation
criterion. Then, these ja —j +1 segments in A; are
combined together to form a single sl‘ralght line segment
starting from the start point of L_'I and ending at the
endpoint of le’ This procedure is repeated for all such
maximal *iubheh of A in succession to obtain the polygonal
approximation (in case i is a closed curve) or pulvcham
approximation (in case C; is open), namely, Py, curre.sp{md—
ing to C.

In the proposed algorithm, depending on the approxima-
tion criterion, we have used a greedy method ufapprmﬂ'mat—
ing the concerned curve C;. starting from the very first ADSS
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in 4. The determination of a minimal set of DSS (and a
minimal set .4¢ of ADSS, thereof) corresponding to a given
curve Ci is known to be computationally intensive [24], [37];
thus, for real-time applications, a near-optimal but speedy
solution is often preferred than the optimal one

3.1 Approximation Criterion

There are several variants of approximation criteria avail-
able in the literature [39]. We have tested our algorithms
with two variants of the approximation measures using
area deviation by Wall and Danielsson [47] (Table 1), which
are realizable in the purely integer domain, subject to few
primitive operations only. The approximation criterion is
defined with respect to the approximation parameter or error
tolerance, denoted by 7, as follows.

3.1.1 Cumulative Error (Criterion Cx)

Let {L”""}j:';' be an ordered subset of A as discussed above.
Then, the ADSS (j; — ji + 1 in number) in 4 are replaced
by a single straight line segment starting from the start
point of I‘fj and finishing at the endpoint of L_lII‘] if

S (). ) < () 04),

(7)
where s*l[Ll ’J and r-'l[L' ’ ) represent the respective start point
and the EI‘Id point of the ADSS 'L”", and so forth The start
point of L coincides with the End pmnt uf the preceding
ADSS, if any, in A, and the end point of L
the succeeding one, if any. In (7), |2&(p, ¢, 7)| denotes twice
the magnitude of the area of the triangle with vertices
1= (T Yp) o § = (T, Yy )eand 7= (1, 4 ), and d (p, ) is the
maximum isothetic distance between two points p and g
Since all these points are in 2D digital space, the above-
mentioned measures are mmputable in the integer domain,
as shown in the following equations:

! coinddes with

dr(pg) = nmxﬂrp — J’.‘,|.|, |yﬁ - -_4,:,|.|}. 5]
1. 2 1

Aipgr) =T, T, | i)
Yo Uy Yr

From (9), it is evident that A{p, ¢, 7 is a determinant that
gives twice the signed area of the triangle with vertices p, g,
and . Hence, the ADS5 in the given subset are merged to
form a single straight line segment, say, Ti provided that the
cumulative area of the triangles (j» — j; in number), having
L as base and the third vertices being the endpoints of the
ADSS (excepting the last one) in the subset L= }j:f, does not
exceed the area of the triangle with base L (isothetic length)
and height .

3.1.2 Maximum Error (Crterion C,,.)

With similar notations as mentioned above, using the
maximum error criterion, the ADSS in {L'® }jf would be
replaced by a single piece, provided that the following
condition is satisfied:



1506

e A () c)-o()
i (o). o(e)

The rationale of considering two such criteria is explained as
follows: Since we would be replacing a number of ADSS,
which are almost straight and, more importantly, are not
ordinary DC of arbitrary patterns and arbitrary curvatures,
the end point of each ADSS makes a triangle with the
replacing segment, namely, L; therefore, the sum of the areas
of triangles formed by the endpoints of these ADSS in
combination with the repladng line L gives ameasure of error
due to the approximation of all ADSS in (L"}" by L.
Alternatively, if we are guided by the worst case approxima-
tion, that is, if the mostly digressing ADSS is considered to
estimate the error, then the maximum of the areas of these
triangles should be considered as the error measure for
approximation of the worst ADSS in {L”"‘}f by L.

Empirical observations, as reported in Section 4, reveal
that the above-mentioned two criteria are essentially similar
in the sense that they produce almost identical polygons for
different DC for different values of the error tolerance (thatis,
7). This is quite expected as far as the output is concerned.

As mentioned earlier in Section 3, to construct polygonal
approximation, we consider the start point of the first ADSS
(that is, L_ll.f"]l and the end point of the last ADSS (that is,
L_ll.:"’}. This can be justified as follows:

Fact 1. The sum (for criterion Cz) or the maximum (for
criterion (..} of the isothetic distances of the endpoints of
each ADSS from the replacing line L never exceeds the
specified error tolerance 7. This follows easily on expansion
of the left-hand side of the corresponding equations ((7) and
(10)) and from the fact that the term d(s(L.’).e(L}"))
represents the isothetic length of L.

Fact 2. Since each ADSS L' is approximately a DSS, we
consider that Ap = L' such that the isothetic distance of p
from the DSL passing through the endpoints of L_'I.I"J exceeds
unity (as testified in our experiments). Although, for
suffidently long ADSS, this may not hold for the underlying
Conditions (c1) and (c2), as stated in Section 2, however, in
our experiments with real-world images, this was found to
hold. In case of any wviolation, some heuristics may be
employed to find the error points and to find smaller ADSS
to resolve the problem.

3.2 Algorithm for Polygonal Approximation

The algorithm for polygonal approximation of a sequence of
ADSS in the set 4, using the approximation criterion of (7),
is described in Fig. 8. To take care of the criterion C,.. of
(10}, a similar procedure may be written.

Final Time Complexity. As explained in Section 2.2, the time
complexity forextracting the ADSSinasetof DCT := {C}{,
is given by O(N))+O(Na) + ...+ O(Ng) = O(N), where
N(=N + N +...4+ Ng) is the total number of points
representing T. Now, in the algorithm MERGE-ADSS, we
have considered only the ordered set of vertices of the ADSS
corresponding to the curves, so that the worstcase time
complexity in this stage is linear in V. Hence, the overall time
complexity is given by &(N) + O(N) = &(N), whatsoever
may be the error of approximation 7.

(10)

3.3 Quality of Approximation

The goodness of an algorithm for polygonal approximation
is quantified, in general, by the amount of discrepancy

Alporithm MMeri= ATISRLS, 0, v )

Hleps:

I o v — | law

2. for 3. thic Liin m 1)
3. A= A= Ald], A= A=+ )i
4. ta | Api]s APl 2 s
AR iy — A:.-.-a:._-_: - .."I[n_- +i 4 |].:|.'
L3 o Lhes ik, oy

1, i

5. celets A 5 lnom A

9. el

10, Trresile

1. no— i = |

Fig. 8. Algorithm MERGE-ADSS for polygonal approximation of a
sequence of ADSS in .4 using crterion Cuu..

between the approximate polygon(s) (or polychain(s)) and
the original set of DC. There are several measures to assess
the approximation of a curve Ci, such as

1. compression ratic CR = Ne/Mi, where Ni is the
number of points in C, and M is the number of
vertices in the approximate polygon Py, and

2. the integral square error (15E) between Ci and Pr.

Since there is always a trade-off between CR and ISE,
other measures may also be used [21], [38], [40]. These
measures, however, may not always be suitable for some
intricate approximation criterion. For example, the figure of
merit [40], given by FOM = CR/ISE, may not be suitable for
comparing approximations for some common cases, as
shown in [39]. In [45], the percentage of relative difference,
given by ({ Egprar — Eupe )/ Eape) % 100, has been used, where
By 15 the error incurred by a suboptimal algorithm under
consideration, and E,; is the error incurred b}r the optimal
algorithm under the assumption that the same number of
vertices are produced by both algorithms. Similarly, one
may use two components, namely, fidelity and efficiency,
given by (Ep/Eapra) % 100 and (M / Mygrae ) % 100,
respectively, where M., is the number of vertices in
the approximating polygon produced by the suboptimal
algorithm, and M, is the same as that produced by the
optimal algorithm subject to the same F,... as the
suboptimal one [39].

The algorithm proposed here is not constrained by the
number of vertices M of the output polygon P: and,
therefore, the measures of approximation where M acts as
an invariant are not applicable. Instead, we have consid-
ered the error of approximation, namely, 7, as the sole
parameter in our algorithm, depending on the number of
vertices M corresponding to Pe that will change. A high
value of 7 indicates a loose or slacked approximation;
hence, the number of vertices M, decreases automatically,
whereas a low value of 7 implies a tight approximation,
thereby increasing the number of vertices in the approx-
imate polygon. Hence, in accordance with the usage of Tin
both of our proposed methods, one based on criterion Cy
and the other on O, the total number of vertices A =
M, + My + ...+ My in the set of approximate polygons
{P:}l, corresponding to the input set of DC, namely,
T = {C:},, versus 7, provides the necessary quality of
approximation. Since the total number of points lying on
all the points in I characterizes (to some extent) the
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Fig. % HResults on “chromosome.” (a) By some existing methods
(Table 1). (b) By the proposed method.

complexity of I, we consider the CR as a possible measure
of approximation.

Another measure of approximation is given by how
much a particular point (x,y) € Ce € T has deviated in the
corresponding polygon Pe. If i := (£, 7) is the point in Py
corresponding to p:= (x,y) in I, then, for all points in T,
this measure is captured by the variation of the number of
points with isothetic deviation . with respect to d,, where
the (isothetic) deviation from p to §i is given by

dev, (p— p) = min{|x — 2], [y — 9 }. (11)

Further, since dev, (p — 7) depends on the chosen value of 7
in our algorithm, the fraction of the number of points in T with
deviation d, varies plausibly with 7. Therefore, the isothetic

ervor frequency (1IEF) (or, simply, error frequency), given by

1 =
flr. dy) _El{?}EIidE“l{?}—??}J =d, } (12}

versus 7 and d,, acts as the second measure that provides
the error distribution for the polygonal approximation of T.

4 IMPLEMENTATION, EXPERIMENTS, AND RESULTS

We have implemented one algorithm for DSS extraction
based on D55 recognition [11] and the proposed algorithm
EXTRACT-ADSS in C on the Sun OS5 Release 5.7 Generic of
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Fig. 11. Setof DSS and that of ADSS extracted from the image of a leaf.
(a) DSS. (b) ADSS.

Sun_Ultra 5_10, Sparc, 233 MHz. The results of the two
algorithms on several binary image files of curves and
contours are reported here,

We have also compared the results of our method with
those of some existing methods as shown in Table 1. In
Fig. 9 and in Fig. 10, we have presented the comparative
results on polygonal approximation of two benchmark
curves, namely, “chromosome” (given in Appendix B of
[44]) and “semicir,” respectively. The results show that our
method compares favorably with others when we consider
= 1 in MERCE-ADSS.

It may be noted that, for = 2.3, ..., the approximation
obtained by our method reqmres a *imaller number of
vertices () but at the cost of some error incurred and may
not be profitable for small curves like “chromosome” (and
the other test/benchmark curves considered in [39], [44],
[47], [48], [52]). However, for sufficiently large curves (a few
being presented in Figs. 15 and 16), a slackening of +
reduces the number of vertices to the desired limit, as
explained later in this section.

In our implementation, the procedure for extraction of the
straight line segments (D55,/ ADSS) from a given curve starts
from one end of the curve if it is an open end or starts from a
point with a chain code (with respect to its neighbors) not
satisfying Property (R1)if itisa closed one; in case of failure of
the above-mentioned two criteria, the start point is chosen
arbitrarily.

The results for the algorithm on DSS extraction and that
on ADSS extraction for an image of a leaf {copped and
zoomed for pixelwise clarity) are shown in Fig. 11. Earlier, in
Fig. 2, similar results have been shown for another image
(cropped). It is evident from the extracted set of DSS and that

Ixﬁliﬁ
R

anl enliny sreh. [52)
W =17

curvalure max. |44

[N =322 (A7 — 1

Fig. 10. Results on “semicir.”
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TABLE 2
Comparison of DSS and ADSS Extraction Algorithms on Different Images

Trnape Tmage sive | Mo, of F.A, Mo, of sops, | Average Tength CPU fime {scos.)

Name rowxcol | Points | (secs)® | DSS | ADSS | DSS | ADSS D58 ADSS | {P}*
bird-nestlings | 480320 | 3041 B38| B2 37| i 930 542 0.17 003
climber 20 350 2750 392 | 1170 419 | 235 (.56 6,74 0,20 S
leat 2400 256 1512 3,84 341 106 | 345 12,35 217 ks 2
spiccr 24932 286 a7 4,24 383 IS57 | 30K 11.25 3493 11 QLA
test-4ii 1p 1A 2809 0,20 B3 276 | 327 10.14% 448 14 i
VASC A 335 Kty 1061 | 1972 G8l | 307 BH1 O 1432 .43 10
FCPU lime [or polygonul sapproximalion using area deviation [47].
*averape CPIT time for + =1 — 20 with criteria C}_: and O
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Fig. 12. Polygonal approximations for a set of small test images, namely, “test-001," using crterion Cx.

of ADSS that not only is an extracted ADSS reasonably
straight but the number of ADSS is also appreciably smaller
than that of DSS, a result that is used to expedite the
subsequent algorithm for polygonal approximation. Because
of the recursive nature (apropos the run of run lengths) of
the D55 extraction algorithms, they are inherently much
slower than the ADSS algorithm, as reflected by the CPU
times reported in Table 2. In this table, we have also given
the CPU time required for polygonal approximation b}r the
algorithm based on area deviation [47] (by considering all
points in the input set of curves instead of the endpoints of
their ADSS) toshow how ADSS extraction prior to polygonal
approximation accelerates the process. We have also
furnished some other significant parameters to justify the
use of ADSS in our polygonal approximation algorithm.

Since such an algorithm will run faster for a smaller set of
segments (whether exact or approximate), the set of ADSS
may be used instead of that of DS5.

We have tested our polygonal approximation algorithms
on two dasses of test images—one with 500 sets containing
randomly generated DC of lengths varying from N = 500 to
N =2000 and another class with 20 sets of hand-drawn
curves. One such hand-drawn test set is shown in Fig, 12.In
addition, results on 150 real-world binary images (edge
maps) of various natures have been generated.

Fig. 12 demonstrates the polygonal approximation with
the criterion Cx. The input image consists of a single (hand-
drawn) curve with seven orientations at 15 degrees
increments such as 0 degrees, 15 degrees, ..., 9 degrees.
It is interesting to notice that, as the approximation
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Fig. 13. Quality of approximation for the “test-001" image shown in Fig. 12. In (a), two histogram profiles on ¥/ A versus the error tolerance + have
been shown, where one histogram corresponds to crterion Cx. and the other to criterion ... In (b), the plot of [EF := fi+.d.] wersus the error
tolerance — and the isothetic distance 4. cormesponding to criterion O« has been shown, and that corresponding to criterion Co.. is very much
similar. It may be noted that, heme, - = (| comesponds to the number of vertices without any polygonal approximation (that is, with ADSS only).

tolerance T continues to increase, the sets of vertices tend to
become increasingly similar, indicating the invariance of
polygonal approximation to rotation (or orientation) when T
becomes sufficiently high. Further, due to the anisotropic
nature of the square grid and the rounding-off error in
digitization and thinning [19], [36] applied on a rotated
curve, the difference chain code [36] of the rotated curve is
likely to differ from that of the original curve. Hence, for
smaller values of 7, the difference in such chain codes
representing two orientations pla}rs a critical role in
ascertaining approximate *il'raighmess of a small component
(whose “smallness” is decided by 7). A larger value of T+,
however, compensates for such local anomalies in a DC and
thus produces almost identical polygons.

The two measures on quality of approximation for the
“test-001" image have been rendered in Fig. 13. In Fig. 13a,
the profiles of two histograms demonstrating the distribu-
tion of the CR = N/M with respect to the error tolerance =
have been shown corresponding to criteria Cy and Cy..
The stability of the algorithm on polygonal approximation
is evident from the nature of the plots shown for both the
criteria. For a sufficiently high value of v, the CR becomes
almost asymptotically constant, owing to the fact that nearly
identical sets of vertices are produced for two close (and
suffidently high} values of 7, as shown in Fig. 12,

In Fig. 13b, the plot on IEF using criterion Cs only has
been shown, since that with aiterion C,.. is very much
similar. It may be observed from this plot that, for higher
values of (= 6), the amount of maximum (isothetic)
deviation (say, d)u.) in all the seven curves in Fig. 12
falls quite short of the permissible limit, that is, 7, and no
less importantly, for a given value of v, the number of
points (say, Ni ) with deviation 4. (and IEF, thereof)
decreases almost monotonically with d,. A small subset of
the numerical figures in our experiment with the “test-001"
curve is furnished below:

T 6 7 16 18 20
dJ.III.I-'DC:I 4 ] 13 15 15
‘""rr.l'_ | o) 35 15 a2 0 13

The above-mentioned data clearly shows that, for the
curves given in Fig. 12, for 726, we get i jmy

appreciably smaller than ¢ and, more importantly, the
IEF for d, = d| .. i5 very small (for example, for 7 = 20,
IEF = 13/2809 = (.0046, and so forth), which indicates that
error values nearing d) (. have very low frequency,
thereby reinforcing the expectation of hlgh quality in the
approximation process. This assertion is true as well for
the other images, whether synthetic or real world.

Since most of the images in practical applications involve
real-world images, we have presented here results of few
such images considered in our experiment. Fig. 15 exhibits
the approximate polygons for a “bird-nestlings” image for a
few values of  corresponding to each of the approximation
criteria. Itis apparent from this figure that the resultant sets of
polygons for the two criteria differ marginally (the set
corresponding to criterion Cy is marginally better than
) and that the number of vertices falls off drastically in
thelowerend of the spectrum (of 7) and gradually steadies in
the upper end of the spectrum. Further, our algorithm in the
caseof thisreal-world “bird-nestlings” image has very dosely
similar characteristics with the test image (Fig. 12} as
evidenced by the resemblance of its quality measures given
in Fig. 14 with those in Fig. 13, certifying the efficiency and
robustness of our algorithm, irrespective of the nature and
complexity of the curves.

In Fig. 16, approximate polygons for few other images
with =4, cnrrespnndmg to the appnmclmah{m criterion
Uz, have been shown. The quality measures for these
images are not, however, included in this paper for their
almost similar patterns with those given in Figs. 13 and 14,

5 ConcLusions aND FuTure WORK

It is evident from the discussions and the algorithms
proposed here that a set of ADSS extracted from DC is
significantly smaller in size than that of DSS extracted from
the same, although each ADSS can be treated as sufficiently
straight for various practical applications. Furthermore, the
CPU time needed for ADSS extraction is remarkably lesser
than that for DSS extraction.

Regarding polygonal approximation, the proposed meth-
od has been found to work well to determine a suboptimal
solution from an arbitrary set of DC. It is evident from the
experimental result and analysis that the polygon vertices are
densely located in and around the regions with high
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(d)

(1) Oz 7= 8.

curvature and sparsely in the regions with low curvature,
owing to the fact that the length of an ADSS (alternatively, a
DSS) is small in the former region but high in the latter.

The major contributions of the proposed work are
summarized as follows.

Approximate straighimess. This is the major strength of
the algorithm and marks its difference from the existing
algorithms. The proposed algorithm utilizes the basic
concepts of digital geometry and outputs the polygon
efficiently and successfully using low-level operations.

Primitive integer operations. As no fl{:-ating—puint opera-
tions are needed, the algorithms run very fast. Herein lies one
of the major differences from the existing approaches.

ic) (f
Fig. 15. Results on “bird-nestlings” image including extraction of ADSS. (a) input set of DC. (b) ADSS. () Ux : 7= 2. (d) C,x ¢

T=2{(8Ce:7=8

Convergence property. The algorithm converges to a
quasi-static set of polygons for sufficiently high values of r,
as evident from the analysis and observations.

Robustness. The proposed algorithms are robust be-
cause of the fact that the basic properties of approximate
straightness are inherited from those of the exact digital
straightness.

Minor dependence on optimality aiterion. As the set of
ADSS is generated first, the final stage of merging the
collinear ADSS to a single edge of the approximate polygon
becomes relatively simple when either of the two approx-
imation criteria proposed here is used.

In the future, optimizing the set of ADS5S to cover a given
DC would be a promising area of research, since the output
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Fig. 16. Approximate polygons for few more images with =4 and criterion Cy .

set of the algorithm EXTRACT-ADSS depends on the starting
point and the direction of the traversal. A theoretical analysis
of the error distribution in an ADSS extraction algorithm, as
well as investigation of other und erlying properties of ADSS,

is another field for conducting further research.
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