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Abstract—CQuantum Boolean circuit svnthesis issues are
hecoming a kev area of research in the domain of guantum
computing. For gate-level synthesis, minterm based and Reed-
Muller canonical decomposition techniques are adopted as
common approaches. Physical implementation of guantum
circuits have inherent constraints and hence nearest
neighbour template of input lines is gaining importance. In
this work, we present a briel analysis of the varions Fixed
Polarity Reed Muller (FPRM) expressions for a given
quantum Boolean circuit and also introduce the rules for the
nearest neighbour template-hased svnthesis of these forms.
The corresponding circuit costs are evaluated.

Index Terms—Quantum Boolean Circuit, Reversible
Logic, Reed-Muller Expression, Nearest Neighbour Template

L INTRODUCTION

The model of Quantum Computing stands on the
understanding of quanum circuits and their application to
solve computational problems. A quanum  circuit 15
employed o process quantum bits (gbit). A gbit may be
considered as the equivalent to a binary bit in a classical
computer [ 1]. It can be taken as a particular spin state of an
electron, or a certain polanzation state of'a photon. The spin
state of an electron may be up (1) or (]) down, or the
polarization state of a photon may be wvertical (]) or
horzontal | < ). The two guantum mechanical states are
represented in standard quantum mechanics [2] by standard
ket notation | and |1=. The real difference between the
classical and quantum states is that while in the former, the
states are definite, in quantum computing the states are
superposed. For example, a quantum state 15 represented by
superposition of two states like w=a 0> + b 1> where a
and b are the complex amplitudes representing the
probabilities of state (&= and 1= respectively satisfying the
condition a® + B° = I. Unlike a classical computer in
which a bit has exactly one value from the set {0, 1], a gbit
can represent both states simultaneously. The maximum
number of possible states depends on the number of gbits
1., n gbils can represent 2° states.

A 2-gbit vector can simultaneously represent the states
[0E=,  |01= [10=, [l1= and the probability of their
occurrence depends on the value of the complex amplitudes

cg €y, €2 and ¢ The superposed quanmm state yois
represented as = o 100> + o; 100> + o2 10> + 3 W=,
Henee comes the concept of quantum register [6] of n gbits
holding 2* simultaneous values. This also implies that i we
perform an operation on the contents of a register, all
possible wvalues are operated on simultaneously, thus
leading 1o quantum parallelism [5]. However, in practice it
15 quite complex o achieve quantum parallelism, and is
dependent on the property of quantum decoherence [3], [7].

While Quantum Boolean circuit synthesis for Reed-
Muller expansion using C'NOT gates exists, this paper
proposes a method for physically viable synthesis using
nearest neighbour templates of quantum gates.

The organization of this paper is as follows. Prelimimnary
concepts of reversible logic which s predominant in
quantum gates appear in Section 11, A brief introduction to
quantum  gate network s presented in Section 1L
lmplementation of Quanm Boolean functions with Reed-
Muller decomposition and cireuit construction based on
physical realization 15 given in Section 1V and concluding
remarks in Section V.

1. PRELIMINARIES

A. Reversible Logic

A Boolean function s reversible if each of the values in
the input set can be mapped with a unique value in the
output set. Landauver [8] proved that the usage of traditional
irreversible circuits leads to power dissipation and Bennet
[4] showed that a circuit consisting of only reversible gates
does oot dissipate  power. Above all, some of the
applications like digital signal processing, computer
eraphics, cryptography, reconfigurable computing require
the preservation of input data.

B. Reversilble Logic Gates

A reversible logie gate implements a reversible Boolean
function and necessarily has equal number of input and
outpul wires. Next we discuss about a few reversible gates.

C'NOT Gates: In general, a C'NOT gate has k+ 1 input
and output wires. It has k control inputs and the k+7 ™ input
is inverted at the output only if all the & control inputs are at
logic high. For k=0, 1t is equivalent 0 a NOT gate which
maps the mput x —x &1, 1.e., classical XOR of mput with
logic 1, as shown in Fig.l(a). For k=7 it 15 termed as
controlled NOT {CNOT) zate which maps the two inputs {x,
y) —(x, x8 v) as shown in Fig. 1(b). The C°NOT gate, also
termed av TOFFOLD gate, maps the three inputs top-
control, bottom-control and target gbits (x, v, ) = (x, v, x &
xy) as shown in Fig. lic), where the classical XOR and



AND operations are involved. A C'NOT gate with k control
gbits and a single target gbit, shown in Fig. 1{d), maps
(Xpeo XXy ¥) = (XX, v xpxo.. ). The control and
the target gbits are indicated by » and & respectively.

Swap Gates: A swap gate is a 2x2 reversible gate. It
interchanges the values of two input gbits at the output. Fig.
2 illustrates the internal architecture of a swap gate.

C. Reversible Quantwn Boolean Circuits

The synthesis of Quanum Boolean Circuits ((QBCs)
can be done 1if we defline a set of tansformation rules for
reversible QBCs. A QBC is a quantum system of n gbits
specified by Leg=lo>o le,> and a mumber of
reversible quantum gates. In QBC the convention for circuit
representation 1s 1o have the mput gbits at the extreme left,
which interact with a sequence of reversible quantum gates
as desired and finally the output appears at the extreme
right where all the input values are restored at the output.
The desired function is obtained with the help of a set of
ancillary bits which are mnitalized at the input with |(5=.

D. Previous Work

Younnes and Miller have mtmoduced in their work [9],
techniques for representation of quantum Boolean circuits
using Reed-Muller expansions and have mainly focused on
generalized C'NOT based circuit synthesis. Though C'NOT
gates are acceptable in logic design, the technology based
implementation of quantum circuits demands the usage of
only one, two and three gbit quantum logic gates like NOT,
CNOT, SWAP and C°NOT. Hence there is a need for
defining efficient synthesis techniques in quantum circuils
involving only quantum gates with small fan-in.
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L QUANTUM GATE NETWORK

A classical logic operation is a Boolean operation on a set
of inputs and resulting to a single ouput. So a logic
function f can be generalized as f7 {01/ —{0, 1], where n is
the number of nputs. A logic function is expressed by its
minterms {or implementation. A minrerm coresponds 1o an
input combination comresponding o which the value of the
logic function is logic high and is represented by the
equivalent decimal integer of the r-bit binary value.

In quanmum computing, the realization of Boolean logic
needs the implementation of reversible logic operations and
hence the CNOT gates provide us a possible solution. We
need to build a circuit wilizing reversible CNOT gates for
the implementation of Boolean function in the quantum
domaimn. The circuit for a n gbit single valued Quantum
Boolean function can be represented as a network with n+17
mput and output gbits, as shown in Fig. 3. The n control
gbits are represented as  la> for i= 0.0,2.. n-1 and the
extra targel output gbit as |f= w0 store the result gbit, as
shown in Fig. 3. The extra input gbit is initialized o 10>,

It should be noted that in quantum domain, there is no
feedback and fanout. Also for reversibility we have 1o
restore all the imput values afier each quantum gate
operation, hence classical synthesis from mintenms are not
directly applicable. The choice of proper gate library for
synthesizing a quantum gate network affects the total circuit
cost mn terms of technology based implementation. For this
purpose, we evaluate the gate cost for synthesizing the
Quantum  Boolean  function wsing the Reed Muller
canonical decomposition techmique utilizing a quantum gate
library with NOT, CNOT, SWAP and C°NOT gates only.
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Figure 1: (a) NOT gate, (b) CNOT gate, (¢) CNOT or TOFFOLI gate, (d) C"NOT gate.
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IV, IMPLEMENTATION
A boolean function fof r variables can be expressed in the filxgxpxa) =myp+ ms + ms + my= ax;Fo By (1)
Reed Muller form as (Akers 1939):
" . " a-1 Sfilxgxpxa) can also be expressed in different FPRM forms
F(Xg e Xn) =@ 3 b, s where @, =[], as
i=() k=0 Fi%:2.0) =55 8xX, ®x, 88X, @1 (I polarity) (2)
and x, =x )?!j o1, R T e
k g OF X, bie(0.1) S (Xg%,%,) =5,5 B x, B Ry, (2 polarity) (3)
@, are known as product terms and b determines whether a
a product term is present or not.  The XOR operation is S %260, %)= 6085 BX BN (3 polariry) (4)
indicated by & and muluplication is assumed to be the
AND np:crarjun_ The canonical Reed Muller expression can F 1%, %,2,) =Xx, Bx, B xx, Bx, (4 polarity) (5)
be classified as Positive Polarity Reed Muller (PPRM),
where the wvadables are un-complemented. For each : o AT
: 5 : ; pl .f,(—*tn-ﬂvrz}—xz-‘l Dxx, O, OI (5 polarity) f6).
variable x; in the given expression il we use the un- ;
complemented literal { x, ) or the complemented literal ( X, ) Flex.5)=5x8xxy @ BX, D1 (6 polarity) (7
throughout, then it 15 Fixed Polarity Reed Muller (FPRM) . R T
expression. F X x.x0,) =55 @5 &% &1 (7 polarity) (8)
Consider the realization of the function f; (x, x;, x:) = X The ms:itim index ofa “17 in the 3-bit binary equivalent of
{1,5.6,7) as given in Table 1. The PPRM expression for i the decimal mteger value of a polarity corresponds to the
and the seven (2° - 1) FPRM forms are given next. index of the complemented variable. For example, only
variable x; is complemented in 4 polarine FPRM above.
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Figure 4: Quanum gate networks for all possible Reed Muller expressions of the function f; in Table 1:
(a) PPRM, (b) 1 polanty FPRM , (¢) 2 polanty FPRM, (d) 3 polariyy FPRM,
() 4 polarity FPRM, () 5 polarity FPRM. (g) 6 polanty FPRM, (h) 7 polarity FPRM.



As seen in Figure 3, SWAP gates play a key mwle in
bringing the control and the target gbits of any guantum
eate on adjacent lines in a quantum gate network which is
called the nearest neighbor configuration. The
requirement of nearest neighbour relatonship between the
control and the target gbits is tuly justified due to the
limitation of the J-coupling force [10] required to perform
multi-gbit logic operations and this works effectively only
between the adjacent gbits.

We present below a set of circuit emplates for non-
adjacent ghit controlled CNOT and C°NOT in our nearest
neighbor based synthesis approach. We inroduce the circuit
templates for CNOT, and C°NOT gates utilizing the SWAP
gates. In Fig. 5, for a C°NOT we use the notation
(ctrictrlz target) where the integers crely, crrl; and target
are respectively the indices of the mput gbits of the circuit
for the top-control, bottom-control and the target gbit of this
C°NOT gate. The same convention is also followed for
CNOT gate which is represented as CNOT{cwrl target).
According to the convention for index values of nput gbit
lines mentioned eadier, we assign mdex 1 to the
bottommost control gbit input of the circuit, and the
successive index values are assigned as we go upwards o
the topmost gbit line. Thus, C°NOT(4,3.1) represents a
C*NOT gate with its top-control on the 4™ input gbit line, its
bottom-control on the 3™ line and its target is on the lowest
(1% input gbit line. The exact number of SWAP gates
required Tor nearest neighbor configuration is determined
by the differences m the index wvalues of the mwo control
gbits with the target gbit, which can be calculated by the
following rules:

Rule 1: For a CNOT gate, we reguire s, pairs of SWAP
gates if the difference between the index values of the top-
control and the target ghit is 5, with s, greater than 2, and
5, paiv of swap gates if the difference between the index
values af the bottom-control and the target ghit is 5, with 5,
greater than 1.

Example: In (°NOT(4.3,1) (Fig 5(a)) the difference in
index value between the top-control and target is 4-/=3 and
that between the bottom-control and the target s 3-1=2,
hence we require two pairs of SWAP gates, one each w
make the top-control and bottom-control as the nearest
neighbor of the target gbit

In C°NOT(4.2.1) (Fig 5(b)) the difference between the top-

(a) (b)

M

/!
Tl

control and target is 4-7=3 and that between the botiom-
control and the target is 2-/=1 | hence we require only one
pair of SWAP gate.

Rule2: For a CNOT gate we reguirve s, pairs of SWAP
gates if the difference between the index values of the
control and the target ghit is 5, with 5. greater than 1.

Example: In CNOT(4, 1) (Fig. 5(c)) the difference in index
value between the control and the target gbit is 4-1 = 3,
hence we require 2 pairs of SWAP gates, and similiarly we
require a single pair of SWAP gate for CNOT(3,1).

The circuit in Fig. 6{a) comresponds to the 1 polanty
FPRM of the function f;. Using the nearest neighbour
template C°NOT(4,3.1) in Fig. 3(b), the circuit shown in
Fig. 6ib) is obtained. We can observe an increase in the
gate count and circuit level due o the usage of the extra
SWAP gates. Hence we need w focus on the mimmization
of gate count and number of levels in the QBC, in order to
reduce the quantum circuit cost.

The Reed-Muller form of quanmum Boolean circuits
typically mvolves generalized C'NOT gates depending on
the number variables and hence we have to convert each of
the C'NOT gates i equivalent C°NOT based representa-
tion. Figure 7 shows a C°NOT equivalent circuit for a
C'NOT gate involving two ancillary gbits. The number of
C°NOTgate required for a single C'NOT is 2{k-2)+ I and the
number of ancillary gbis required is k-2, where k is the
number of control gbits in the C*NOT gate.

Observation: Any Quantum Boolean Circuit (QBC) can be
synthesized using C°NOT, CNOT, NOT and SWAP gates.

The cost of the C°NOT gate and the 2*2 gates like CNOT
and SWAP can be taken from the basis of echnology based
implementation of these gates. The related works [11,12] n
NMRE  based quantum computing hardware development
suggest that the cost of

o al* gaeis |,
g 2%2 pateis 5, and
o o 3*3 pateis 5 umes that of a 292 gate, 1.e., 25.

Based on this, we calculate the gate requirement and the
quantum gate cost for the different polarites of Reed-
Muller circuits in Table 2.
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Figure 5: Nearest neighbour configuration templates for
(2) C°NOT(4.3.1), (b) C"NOT(4,2,1). (¢) CNOT(4.1), (d) CNOT(3.1)
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Figure 6: (a) An example QBC (b) Synthesis using nearest neighbor emplates
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Figure 7: A C*NOT gate and its equivalent nearest neighbour circuit with C°NOT gates

Table 2: Gate Count and Quantum Gate cost for different FPRM circuits Tor fif vgxp,xa)

Polarity #CNOT | #CNOT # SWAP #NOT Quantum Gate
Gales Gates Gates Gates Cost
PPRM 2 1 4 0 75
1 polanty FPRM 2 2 [ 3 93
2 polanty FPRM 2 1 8 2 97
3 polarity FPRM 2 2 10 6 116
4 polarity FPRM 2 2 [ 2 92
5 polarity FPRM 2 1 4 5 80
"6 polarity FPRM | L 2 10 5 115
7 polarity FPRM 2 1 8 i) 1m

V. CONCLUSION
Our work focuses on defining the nearest neighbour
synthesis techniques for quantum Boolean circuits utillizing
the Reed-Muller logic decomposition. The proposed circuit
synthesis technique wilizes a library of fundamental
quantum logic gates consisting of NOT, SWAP, CNOT,
C*NOT gates. The rules for converting general CNOT,

C°NOT gales into their nearest neighbour equivalent form
can be utlized for the development of low-level circuit
synthesis automation tools in the quantum computing
domam. Our future work will be defining an advanced
search technique, which will evaluate the best circuit for a
given Reed-Muller based quantum Boolean eircuit in terms
of quantum gate cost.
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